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91. Conformal and Concircular Geometries
in Einstein Spaces.

By Kentaro YANO.
Mathematical Institute, Tokyo Imperial University.

(Comm. by KAKEYA, M.I.A., Oct. 12, 1943.)

S. SasakiD has recently studied the spaces with normal conformal
connexions whose groups of holonomy fix a point or a hypersphere,
and derived the fundamental theprem" If the group of holonomy of a
space C with a normal conformal connexion is a subgroup, of the MSbius
group which fixes a point (or a hypersphere), the C is a space with
a normal conformal connexion corresponding to the class of Riemann
spaces conformal to each other including an Einstein space with a
vanishing (or non-vanishing) scalar curvature. The converse is also
true.

But, it seems to me that, the group of holonomy of C fixing a
point or a hypersphere, the whole space C is not necessarily conformal
to an Einstein space, but it may admit of an exceptional point or
hypersurface. The first purpose of this Note is to study such excep-
tional cases.

S. Sasaki has also studied the spaces with normal conformal con-
nexions whose groups of holonomy fix two points or hyperspheres.
These spaces are closely related to the Einstein spaces which admit a
concircular transformation. The second purpose of this Note is to
consider the relations between the conformal and the concircular geome-
tries in these spaces.

1. Spaces whose groups of holonomy fix a point or a hypev-
sphere.

Let us consider a space C with a normal conformal connexion and
take the Veblen repere [Ao, A, A]z in each tangent space, then, the
normal conformal connexion may be expressed by the following
formulae"

dAo d.A

!(1.1) dA o lldx A lldx A,li,dx Ao+
dAoo= lld A

where

I) S. Sasaki: On the spaces with normal conformal connexions whose groups of
holonomy fix a point or a hypersphere, I. Japanese Journal of Mathematics, vol. 18
(1943), pp. 615-622, II. ibidem, pp. 623-6. These papers will be cited as S.I. and
S. II. respectively.

2) K. Yano: Concircular geometry I. Concircular transformations, Proc..16 (1940),
195-200; II. Integrability conditions of 0t,v=gt,, ibidem, pp. 354-360; III. Theory of
curves, ibidem, pp. 442-448; IV. Theory of subspaces, ibidem, pp. 605-611; V. Einstein
spaces, ibidem, 18 (1942), pp. 446-451.

3) K. Yano: Sur la th6orie des espaces connexion conforme, Journal of the
Faculty of Science, Imperial University of Tokyo, vol. 4, part 1 (1939), pp. 1-59.

The gTeek indices run from 1 to n and the latin ones from to.



No. 8.] Conformal and Concircular Geometries in Einstein Slmces.

--2 2(n-- 1) (--2)

1 _=( Og,, g,., Og,,, )(z.2)

R, and R being respectively the Ricci tensor and scalar curvature
formed with the fundamental tensor g-AA. We suppose that the
fundamental quadratic form g,ttfd is positive definita

The normal conformal connexion of C being thus defined, we
suppose that the group of holonomy of C. fixes a point or a hyper-
sphere,

(1.3)

then we must have d--r,d, from which we obtain

where the comma anti the semi-colon denote respectively the ordinary
and covariant derivatives with respect to the Christoffel symbols

Here. we must distinguish two types of point or hypersphere as
whether there exist or not in the space the points for which
Ty (A), (i). Thr z/sts po/n for h ’=0, bring

The being a point-sphere, we have g-2C(R)ffi0, con-
sequently, we must have --0 at the point for which ’ffi0. Thus,
there exists generally only one such point in C and there the point-
sphere reduces to eA0, that is to say, the point-sphere coincides
with the point of contact of C with the tangent MSbius space. Thus
we have the
Thez I.I. If group of holonoy of C fzz oint-hr of
the type (A), there , in C, a point at which th oint-sphre and
h in of con of h tangen MSbius space coinci&. f
we mp t tangent MSbius space at that point along any dosed
staringfrom and a’iving at th point, the image of th point coincides
ith the orignaZ oint. (Cf. S. II. Theorem 8.)
Type (A), (ii). Thee the points fo which ’--0, being
hypezsphe.

Such points constitute in general a hypersurface which we denote
by the parametric representations z--(z). Then, from the identical
relation (z(z))0, we have by differentiation

(1.5) .zB--0 and ?;B’.B/.’H"z-- 0,

where B z H B.B. B ()
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and {j} are Christoffel symbols formed with gj--gB"B
Differentiating (1.4) (c) covariantly and substituting, in the result-

ing equations, (1.4)(b) written in the covariant form
H’=r,, we have

0.6) %;+(-o-)=%+;
Contracting BB to (1.4) () and (1.6), and rememring the relations
’=0 and (1.5), we have

(1.7) B’=0 and Hj +g=O,

from which and (1.5), we can conclude that the hyrsphere is

ngent the hyrsufface =0 and that H}=g g, say,

the hyurfaee =0 is tally umbilici. Thus we have the
Threm I.II. If the grip of holomy of C. a hyrspe
of t ty (A), tre ex in C at t rotary uil hy-
rfe, and the hypsphere always tangent to t hyrrfe.
(Cf. S. II. Theorem 7.)

The oup of holonomy of C,, fixing always a int or a hyr-
sphere, we shall now consider the region of C where + 0. For
such a rion, putting p0=9o/ and p=/, the uations (1.4)
may ruc

(a) 0._f+ ,_II -0,
(t.8)

(b) fg+:-e,+H=0. (=g,f)

The nsors g and I1 ing th symmetric with res two
lower indices p and r, the equations (1.8) (b) show that p is a ient
vr, say, there exis a function p such that p 0 log p/Oz. Efft-
ing a conformal transformation fg,,, we have

1

and the equations (1.8) (b) writn in the form

//+,,:-+ -g =,,= --e
show that

The tensor /7 being defined by

&.= R,,_< + R,,
n-2 2(n- 1)(n- 2)

the equations (1.9) show that the Riemannian space with fundamental
quadratic form b.,dx"dx is an Einstein space, say, for which we have

R,.=-.-/,.. thus we have //.o=,.. where and =-2n(n-1)"
are constants. From
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1/1 .(1.10) c=--,g papt -ps),
we have by covariant differentiation

-2p,,(--g=Se=P-+(g=Sp=; ,,p.- p.,,) O.

Substituting (1.8) (b) in these equations, we obtain

f =O

that is to say, the equations (1.8) (a) are identically satisfied.

The being a point or a hypersphere according as -.gp-p0__0
or not, the equation (1.10) shows that the is a point or a hyper-

sphere according as 8 1_____ is zero or not. Consequently we
2n(n- 1)

have the
Theorem I.III. If the gronp of holonomy of C fixes a point of
type (A), C,, s conformal, with the exception of a point, to an Einstein
space with vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)
Theorem LIV. If the group of holonomy of C fix a hypersphere of
the type (A), C is conformal, with the exception of a totally umbilical
hypersurface, to an Einstein space with non-vanishing scalar curvature.
(Cf. S. I. Fundamental theorem.)
Type (B). There exists no point for which ’=0, q being a point-
sphere or a hypersphere.

In this case, the above reasoning gives the
Theorem LV. If the group of holonomy of C fixes a point-sphere of
the type (B), the whole C is conformal to an Einstein space with
vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)
Theorem I.VI. If the group of holonomy of C fixes a hypersphere of
the type (B), the whole C,, is conformal to an Einstein space with
non-vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)

Conversely we have the
Theorem LVII. The group of holonomy of a C conformal to an
Einstein space with vanishing scalar curvature fixes always a point-
sphere of the type (B). (Cf. S. I. Fundamental theorem.)
Theorem LVIII. The group of holonomy of a C,, conformal to an
Einstein space with non-vanishing scalar curvature .fixes always a
hypersphere of the type (B). (Cf. S. I. Fundamental theorem.)

If we calculate the coefficients of the normal conformal connexion

(1.1) in the case of an Einstein space for which R,--Rg, we have

(1.11) ll=cg,, and 11=c5,

where c-- 1 R,
2n(n 1

hence, we can see that the group of holonomy of this normal conformal
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connexion fixes a point-sphere A, or a hypersphere -cA0+A accord-
ing as the scalar curvature R and consequently is zero or not.

Now, we shall consider the integrability condition of the equations
(1.8). We have, after some straightforward calculation,

(.2) c%-c.o=0,

where C, and C., are respectively the conformal tensors of J.M.
Thomas and H. Weyl. Hence, we have the
Theorem I.IX. If the group of holonomy of a Ca fizes a point or a
hypersphere, the Cs is .necessarily conformally fiat. (Cf. S. I. Theorem 2,)

2. Cofo.a circles.
In a previous paper", we have defined the conformal circles in a

conformally connected manifold by the equation --j-j#pAo=O, where t

is a projective parameter. The differential equations of the conformal
circles are

(2a) --+-, as’ as’ ds n.d
d ,, d" =0

where s is the arc lengtlx Moreover, we have defined the geodesic
circles and conformal geodesic circles. by the equations

+ -o

respectively, where

pm,= p,; ,- p,p,+-g=Sp=pe and

From these equations, we have the
Theem .II.I. If all eonformal circles aregeixdea, then
that is to say, the space is an Einstein spac.
Theorem II.II. If all the, onformal circles belong to a system of con-
formal geodeaie eireles, then IlL+.=e, that is to say, the epaee is
eoormal to an Einatein space.

Now, suppose that the group of holonomy of C, fixes, two points
or hyperspheres P--pAo+iA+A. and Q--qAo+qiAi+Ao. of the
type (B), and consider a curve Ao(r) whose direction is orthogonal to
the hypersphere belonging to the pencil of spheres determined by P
and Q and passing through the point on the curve. Then we have
the equations of the form

dAo _p_Q dA -aP+bQ dA -P+dQ
dr dr dr

1) K. Yano: Sur les eirconfSrences gfin6ralises dam les espaces it connexion
conforme. Proc. 14 (1938), 329-332.

2) K. Yano" Concircular geometry I. lee. tit.
3) T. Suguri" On the circles in a Riemann space and in a conformally connected

manifold. (japanese), Tokyo-Buturigakko-Zassi, $1 (1942), pp. 148-19.
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dAo dAoand hence dA +a / =0

dr-d--P and .drQ being proportional to P and Q respectively. This

equation may be reduced, by a suitable choice of t and p, to the form

dt .A0= 0. Hence we have

Theorem II.IIl. If the group of holonomy of C fixea two paints or
hyperspheres, the curve whose direction ia orthogonal to the hyperspherea
belonging to the pencil determined by these points or hyperspheres and
paasing through the point on the curve is a conformal circle.

3. Totally umbilical hyperurfaees.
If we define the repere [A6, At, A4, A] *) on a hypersurface C_,:

x x(xO by

(3.1)

A6 Ao,
A B’A
A 1 H.Ao +B:A,

-1

1 H?H.bAo+. 1 H?A+A

where B is defined by gB B =0 and gB B =1, and Hja--

/-/i,;B, A,; being the so-called centl sphere, the normal conformel

connexion is expressed ])y the formulae

(3.2)

where

dA6 dx A
dA II.dxA6 + ll dxA+ll dAT**,, -,

dA IIdxA6 +IIdxA

=HO,,B,Bid 1 H.H+ 1 H?,4H.gt,11,
n- 1 2(n-1)

//j {}, H Ma Ha g, H-g,
(3.3)

11 1 I =-M.a=-g M,-M.:, 7 i

-2

Hen, for a tally umbilical hyrsurfe (M=0), we have

1) K. Yano and Y. Mute: Sur la thorie des espaces A connexion conforme
normale et la g6omfitrie conforme des espaces de Riemann, Journal of the Faculty of
Science, Imperial University of Tokso. vol. 4 part 3 (1941), pp. 117-169.
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dA dxA
dA =H.,d.A +H,dA+II,d,x A,

dA 0

dA HA
The confoal connexion induc on C ing definM by just the

me uafions ave, we have the
Tem III.l. Ag a toy umic hyrf, t rm

It mt however remark that the confomal nnexion inducM
on C_ d the innsic norl conformal connexion of C do not
naly incide even if the C is tally umbilical. The nry
and mfficient condition that the inducM and intrinsic connexio of
C_ coincide is that the C is lly umbilil and "’B"’’
0.

From the third equation of (3.4), we have the
eem I[LII. Alg a rotary um hyprf, t ctral
spr r by the nm cfmal

nverly, if a hyrsuffe aA+A ngent a hyrsurfe
res fix ang the hyrsuffe by the normal conormal connexion
of the veloping spe C, we have

d(aA5 +A4)=(aA+A)rd
from which, we obin, by the use of (3.2), H=O, hen, we have
the
Tem III.III. If a hyperspre ngt

t hyrrfe the n cf con of
envying spe C, t hyperrfe toy umb.

This threm v an another prf of Threm I.II. For if the
oup of holonomy of C fixes a hyrsphere
the equations (1.4)(c) show that the hyrsphere is always tangent

the hyrsufface =0, and by the ave threm, wen nclude
that the hyrrface ’=0 is lly vbilfl.

4. T li-e of the Rman s wh admit a

If a Riemannian spe mi a family of tally umbilicaI
hyrsudac, the linelement of the space may , by a suible
choi of the rdina sysm, put in the fore

(4,1) f(x)*g(x)dd+g(x)dx"d
where the lly umbilici hyrmrf are =cons. and the x-
cu are orthogonal trajtori of the family of lly umbilil
hyrsurfes.

By a suible nformal ansformation of the fundamental nr,
(4.1) may u to
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(4.2) ds f x) g,(:r,)dxdx -t- dx’dx

where the hypersurfaces x=consts, being always totally umbilical a,.’.d

x’*-curves, which are their orthogonal trajectories, are geodesics.
If the x"-curves in (4.1) are confo.rmal circles, the x-curves in

(4.2) are also conformal circles, but they are also geodesics, hence,
from (2.1), they must be Ricci curves, and (4.2) must be of the formD

(4.3) ds a(x) gk(x)dxdx -dx’dx

which is the line-element of the space which admits concircular trans-
formations. Thus we obtain the
Theorem IV.L The Riemannian spaces which contain a family of co
totally umbilical hypersurfaces whose orthogonal trajectories are con-
formal circles are canformal to the Riemannian spaces which admit
concircular transformations.

5. Spaces whose groups of holonomy fix two points or hyper-
spheres.

Suppose that the group of holonomy of C,, fixes two points or
hyperspheres of the type (B)" P-pAo+pA+A.. and Q=qAo+qA
+A, then from 1, we know that p=gp and qa=gq" are both
gradient vectors such as p log p/Ox and q--0 log q/0x. Consequent-
ly, when we displace on the hypersurfaces defined by p]q---consts.,
the normal conformal connexion of C fixes the hyperspheres P-Q
tangent to the hypersurfaces p[q-consts., and hence from the Theorem
III.III., the hypersurfaces p/q-consts., are all totally umbilical. More-
over, the curves whose directions are always orthogona! to P-Q are,
according to the Theorem II.III., conformal circles, hence we have the
Theorem V.L If the group of holonomy of C fixes two points or
hyperspheres of the type (B), C, admits a family of o totally um-
bilical hypersurfaces whose orthogonal trajectories are conformal circles.
(S. II. Theorem I.)

We can give, to this theorem of S. Sasaki, a concircular geometrical
interpretation. According to the theorems in 1, the C is conformal
to two Einstein spaces which are not mapped by a trivial mapping,
that is to say, not by a conformal mapping of the form --kg, where
k is a constant, hence, these Einstein spaces are mapped conformally
to each other by a non-trivial mapping. Consequently, as stated in
"Concircular geometry V ", the C, is conformal to an Einstein space
which admits concircular transformations, and we have the
Theorem V.II. The C,, whose group of holonomy fixes two points or
hyperspheres is conformal to an Einstein space which admits con-
circular transformations.

According to. the Theorem IV in "Concircular geometry II", the
Theorem V.I is only a corollary of this theorem.

If an Einstein space with the scalar curvature R is non trivially
conformal to an another Einstein space with the scalar curvature R,
then the partial differential equations

1) K. Yano" ConclrM::," eometry II, loc. cit
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__
1 (R_]F)g(5.1) p,: ,, p,,p-I- -g"p=p--

2n(n- 1)

obin from +p must complexly inrab]e. The ns-
and sufficient condion that it may is tt tke sp mi

a amily o Wlly umbilil hyud who ohonal
ri a gic Ricci cv. But this condition d not
dend on the nt , hen we ve the
T V.III. If an Ein ace scar ature R
n tvyc an at Ein th t scar

W an Ein th any scar ature R. (Cf. S.
I. Thmm 3, 4, 5, 6.)

Now, on a lly umbilil hyrsuace in C who oup of
holonomy fix the int A. or the hyrsphem -cATA., we have
from (3.1),

where H= 1 H.. Hen the foul (3.4) and
--1

show that

((H’-c)A,+A]=O and H=nst.,

and #ve the
V.IV. ff tre a ty ual hyrf in a

wp of hdy a #n a hyspe,
ofy of tie of hyrfa a
nt a hyea natre of thy
a Mnt. (S. II. Threm 2.)

6. Cfarrgin Eimn.
In "ncimular mey V.", we have prov tt"
The nry and suffident condition th an Einsin sp who
1 cvae R is sitive, ro or nve mi a ncimul
fomafion is that the lumenal qatic fferentialo.may
fively ru the following"

CI. K= 1 R>0.
n-1)

(6.1) =(A/-+B sinCz)*g(z)’+,
e Riem sp *V_x wh run.mental qrafic differential
fore is *g’d# ing a an Eiin sp th sitive lar
cuamre "R n-2 (A +)R.

C II. K= 1 .R=0.

(6.2) (A+B)z*g(’)d+
the Riemnian sp *V_t. who fundamenl qumfic ffemnfial
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form is *gkdd being also an Einstein space with positive scalar
curvature *R=(n- 1) (n-2)A2.

Case III. K=--1 R.O.
n(n- 1)

(6.3) dsZ_(Ae, --K "’.+ Be-,--,,)Z.gk(x)dx.dxk+dx,,.dX,,,.,
the Riemannian space V,,._ whose fundamental quadratic differential
form is *gdxdz being also an Einstein space with alar curvattu’e

R- 4(n-2) ABR.

On the other hand, S. Sasaki has proved that:
If the group of holonomy of a space with a normal conforma!

connexion fixes two points or hyperspheres, the line-element of the
space can be reduced to the canonical form

(6.4) dse-- [(X’)-"-]- k]2 gk(x’)dxdx +d"dx",
where k is a constant >, =, <: 0 according as the pencil of hyper-
spheres determined by the invariant hyperspheres is hyperbolic, para-
bolic or elliptic, and the Riemann space *V,,_ with the fundamental
quadratic differential form *gkdzddxk is an Einstein space. The con-
verse is also true.

The line-element (6.4) given by S. Sasaki is not the line-element
of an Einstein space, but it is the line-element of a space conformal
to an Einstein space, while our line-elements (6.1), (6.2) and (6.3) are
those of an Einstein space and must be conformal to (6.4) given by
S. Sasaki.

As a matter of fact, multiplying (6.1)by (Acos/Kx"+Bsinv/-x’*)z

and putting " /1.,.-(A sin/x-Bcos /-x’), we have

(6.5) d,=(")- A-I-B
K

which corresponds to the case k=- A2-t-B2 <: O, multiplying (6.2) by
K

A A
(Ax"-i- B)"[log (Ax"-t- B)]’- and putting -- log (Ax /B)’ we have

(6.5) d=(’)*g,(x’)d:d+d,"d,",

which corresponds to the case k=O, and finally multiplying (6.3)by

(Ae’:-’(R)’4-Be-’:--’) and putting - 1 (Ae,_K,,_Be_,:_K,,.),
V K

we have

(6.6) d’-=[(Z") 4AB*gk(x’)d,xd. /d"d,2,"
K

which corresponds to the case k 0, 0 or 0 according as AB :> O,
AB 0 or AB . O.


