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91. Conformal and Concircular Geometries
in Einstein Spaces.

By Kentaro YANo.
Mathematical Institute, Tokyo Imperial University.
(Comm, by S. KAKEYA, M.LA., Oct. 12, 1943.)

S. Sasaki® has recently studied the spaces with normal conformal
connexions whose groups of holonomy fix a point or a hypersphere,
and derived the fundamental theorem : If the group of holonomy of a
space C, with a normal conformal connexion is a subgroup of the Mébius
group which fixes a point (or a hypersphere), the C, is a space with
a normal conformal connexion corresponding to the class of Riemann
spaces conformal to each other including an Einstein space with a
vanishing (or non-vanishing) scalar curvature. The converse is also
true.

But, it seems to me that, the group of holonomy of C, fixing a
point or a hypersphere, the whole space C, is not necessarily conformal
to an Einstein space, but it may admit of an exceptional point or
hypersurface. The first purpose of this Note is to study such excep-
tional cases.

S. Sasaki” has also studied the spaces with normal conformal con-
nexions whose groups of holonomy fix two points or hyperspheres.
These spaces are closely related to the Einstein spaces which admit a
concircular transformation®. The second purpose of this Note is to
consider the relations between the conformal and the concircular geome-
tries in these spaces.

§1. Spaces whose groups of holonomy fix a point or a hyper-
sphere.

Let us consider a space C, with a normal conformal connexion and
take the Veblen repere [4,, A, A’ in each tangent space, then, the
normal conformal connexion may be expressed by the following
formulae :

dAo = dxlAA ’
a1) dA, =11%dx’ Ay+ T} dx A, + I dr* A
dAoa = ”oloydxyAl ]

where

1) S. Sasaki: On the spaces with normal conformal connexions whose groups of
holonomy fix a point or a hypersphere, I. Japanese Journal of Mathematics, vol. 18
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S. IL. respectively.

2) K. Yano: Concircular geometry I. Concircular transformations, Proc. 16 (1940),
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curves, ibidem, pp. 442-448; IV. Theory of subspaces, ibidem, pp. 505-511; V. Einstein
spaces, ibidem, 18 (1942), pp. 446451.

3) K. Yano: Sur la théorie des espaces 4 connexion conforme, Journal of the
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The greek indices run from 1 to » and the latin ones from 1 to n—i.
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R,, and R being respectively the Ricci tensor and scalar curvature
formed with the fundamental tensor g, =A4,4,. We suppose that the
fundamental quadratic form g,dx"d»” is positive definite.

The normal conformal connexion of C, being thus defined, we
suppose that the group of holonomy of C. fixes a point or a hyper-
sphere,

(1.3) p=90"A)+ A, +¢"A..,
then we must have d¢p=¢r,dz’, from which we obtain

[ (@) ¢o.v+”gv¢u=¢ofv ’

1.4) ) o+l +lL =g e,

(0) ¢°.°v + ¢u = ¢°°Tv ’ (¢1 = gul¢”)

where the comma and the semi-colon denote respectively the ordinary
and covariant derivatives with respect to the Christoffel symbols
mi={i}.

Here. we must distinguish two types of point or hypersphere as
whether there exist or not in the space the points for which ¢==0.
Type (4), (i). There exists a point for which ¢°=0, ¢ being a
point-sphere.

The ¢ being a point-sphere, we have g,¢"¢" —2¢°¢~=0, con-
sequently, we must have ¢*=0 at the point for which ¢*=0. Thus,
there exists generally only one such point in C, and there the point-
sphere ¢ reduces to ¢°A,, that is to say, the point-sphere ¢ coincides
with the point of contact of C, with the tangent Mébius space. Thus
we have the
Theorem II. If the group of holonomy of C, fixes a point-sphere of
the type (A), there exists, in C,, a point at which the point-sphere and
the point of contact of C. with the tangent Mobius space coincide. If
we map the tangent Mobius space at that point along any closed curve
starting from and arriving at the point, the image of the point coincides
with the original point. (Cf. S. II. Theorem 8.)

Type (A), (i1). There exist the points for which ¢*=0, ¢ being a
hypersphere.

Such points constitute in general a hypersurface which we denote
by the parametric representations z'=x%x®). Then, from the identical
relation ¢=(2X(x))=0, we have by differentiation

(1.5) $7BA=0 and $7.,BYBi+omH=0,
A a ) )
where Bi"=§x'”—, Iﬂé‘=5§§;,‘—+33“3:;”{,:‘y}— B}
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and {;i} are Christoffel symbols formed with g;.=g,.B}*B;".

Differentiating (1.4) (¢) covariantly and substituting, in the result-
ing equations, (1.4) (b)) written in the covariant form ¢%g,,+¢...+
n%,¢==¢,x,, we have

(1.6) PTuvt (Pur,— ¢oguv =1 2v¢°°) =7, Tut S Tp0 .

Contracting ByB;” to (1.4) (¢) and (1.6), and remembering the relations
¢°=0 and (1.5), we have

7 $:B=0 and ¢7:Hi'+¢'9:=0,
from which and (1.5), we can conclude that the hypersphere ¢ is
tangent to the hypersurface ¢”=0 and that Hj;;* =—71;g""H.;5‘gjk, say,

the hypersurface ¢~=0 is totally umbilical. Thus we have the
Theorem ILII. If the group of holonomy of C, fixes a hypersphere ¢
of the type (A), there exists in C, at least one totally umbilical hyper-
surface, and the hypersphere ¢ is always tangent to the hypersurface.
(Cf. S. II. Theorem 7.)

The group of holonomy of C, fixing always a point or a hyper-
sphere, we shall now consider the region of C, where ¢*==0. For
such a region, putting °=¢"%¢~ and p*=¢?/¢™, the equations (1.4)
may be reduced to

{ (@) P—rp+1I50"=0,
®)  P9wtPusv—Pup+113,=0. (P2=GiuP")

The tensors g,, and I/}, being both symmetric with respect to two
lower indices # and v, the equations (1.8) (b) show that p, is a gradient

vector, say, there exists a function p such that p, =4 log p/o»*. Effect-
ing a conformal transformation g, =pg%,,, we have

(1.8)

172,= ]Izv+f’n: v~ Pufot ; gaaPaPBgﬂv ’

and the equations (1.8) (b) written in the form

o 1.
]Izy+p/‘;y—P"Py+ 19 Bpapﬁg/tv=(_'g ppapﬁ—upo>gllv

2 2
show that
7o =1 (1 a8, 5 95
(19) = (5900 )
The tensor I3, being defined by
_Rﬂ’._. Pg/.'.‘L,

mg,=—

n—2 2(n—1)(n—§j ’

the equations (1.9) show that the Riemannian space with fundamental
quadratic form g,,dx"dx* is an Einstein gpace, say, for which we have
R =1ps JI° =Gi... where B and é6=— — 1 B
R, nRg,‘,,, thus we have //),=c¢g,., where &' and ¢ =1 &

are constants. From
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(1.10) E=;12—(%g“%ﬂa—f'°) :

we have by covariant differentiation
—2Py(%g"”papa—ﬂ°)+(g"“p¢; wes—F,)=0.
Substituting (1.8) (b) in these equations, we obtain
po',,—pop,-i-ﬂgyp":O ’
that is to say, the equations (1.8) (a) are identically satisfied.
The ¢ being a point or a hypersphere according as %g“”p,,pp—p"=0
or not, the equation (1.10) shows that the ¢ is a point or a hyper-

sphere according as ¢= _,_,_L_,_R is zero or not. Consequently we

2n(n—1)

have the
Theorem LIII. If the gronp of holonomy of C, fixes a point of the
type (A), C, is conformal, with the exception of a point, to an Einstein
space with vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)
Theorem LIV. If the group of holonomy of C,. fixes a hypersphere of
the type (A), C, is conformal, with the exception of a totally umbilical
hypersurface, to an Einstein space with non-vanishing scalar curvature.
(Cf. S. I. Fundamental theorem.)
Type (B). There exists no point for which ¢*=0, ¢ being a point-
sphere or a hypersphere.

In this case, the above reasoning gives the
Theorem 1.V. If the group of holonomy of C, fixes a point-sphere of
the type (B), the whole C, is conformal to an Einstein space with
vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)
Theorem ILVI. If the group of holonomy of C, fixes a hypersphere of
the type (B), the whole C, 1is conformal to an Einstein space with
non-vanishing scalar curvature. (Cf. S. I. Fundamental theorem.)

Conversely we have the
Theorem IVII. The group of holonomy of a C, conformal to an
Einstein space with vanishing scalar curvature fixes always a point-
sphere of the type (B). (Cf. S. I. Fundamental theorem.)
Theorem I.VIII. The group of holonomy of a C, conformal to an
Einstein space with mon-vanishing scalar curvature fixes always a
hypersphere of the type (B). (Cf. S. I. Fundamental theorem.)

If we calculate the coefficients of the normal conformal connexion

(1.1) in the case of an Einstein space for which R,.,,=%Rg,,,, we have

(1.11) 1% =cg,, and I&,=co?,
where e=— ——-1—-—R s
2n(n—1)

hence, we can see that the group of holonomy of this normal conformal
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connexion fixes a point-sphere A. or a hypersphere —cA4,+ A. accord-
ing as the scalar curvature R and consequently ¢ is zero or not.

Now, we shall consider the integrability condition of the equations
(1.8). We have, after some straightforward calculation,

(112) o~ PiCwa=0,

where C5, and CJ,, are respectively the conformal tensors of J. M.

Thomas and H. Weyl. Hence, we have the

Theorem IIX. If the group of holonomy of a Cy fixes a point or a

hypersphere, the Cg is necessarily conformally flat. (Cf. S. I. Theorem 2,)
§2. Conformal circles.

In a previous paper”, we have defined the conformal circles in a
conformally connected manifold by the equation %:‘:TPA*FO’ where ¢t

is a projective parameter. The differential equations of the conformal
circles are

& det Ot P det e dot dpt s det
where 8 is the arc length. Moreover, we have defined the geodesic
circles and conformal geodesic circles? by the equations

&t | dot Pt P _
2.2) 37 | ds T o o8
W L
@D i o o s ds ds s O
respectively, where
Puv=!’n:u"Pqu+—;-y“8Pan and pf,:g‘”pm’_

0,

From these equations, we have the
Theorem II.I. If all conformal circles are geodesic circles, then 11%,=cd?,
that 18 to say, the space is an Einstein space®.

Theorem ILII. If all the conformal circles belong to a system of con-
Jormal geodesic circles, then II%,+p% =cd2, that is to say, the space i8
conformal to an Einstein space.

Now, suppose that the group of holonomy of C, fixes two points
or hyperspheres P=p"A,+p*4;+A. and Q@=¢"4,+¢*'4,+ A.. of the
type (B), and consider a curve Ayr) whose direction is orthogonal to
the hypersphere belonging to the pencil of spheres determined by P
and Q and passing through the point on the curve. Then we have
the equations of the form

dAs _p &4 @A
G _p_q, %L —-qPtbQ, 0 —¢P+dQ,
dr Qe dr Q dr’ Q
1) K. Yano: Sur les circonférences généralisées dans les espaces i connexion
conforme. Proc. 14 (1938), 329-332.
2) K. Yano: Concircular geometry I. loc. cit.
8) T. Suguri: On the circles in a Riemann space and in a conformally cornected
manifold. (japanese), Tokyo-Buturigakko-Zassi, 51 (1942), pp. 148-169.
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Ao don dAo
=0,
o Tae TPy
d

4P and %Q being proportional to P and @ respectively. This

equation may be reduced, by a suitable choice of ¢ and p, to the form

and hence

—ﬁ%pAo-—O Hence we have

Theorem ILIII. If the group of holonomy of C, fixes two points or
hyperspheres, the curve whose direction is orthogonal to the hyperspheres
belonging to the pencil determined by these points or hyperspheres and
passing through the point on the curve is a conformal circle.

§8. Totally umbilical hypersurfaces.

If we define the repere [4;, A;, A;,, As]P on a hypersurface C,-,:
2*=2%2%) by

A= 4,
A't' = B?AA ’
@1 A= po— H% Ao +Bi'4A,,
1
: -—H"a,.H + H" ‘At A,
As= -1y Ao 2

where B;? is defined by g,,B*B;*=0 and g.B;“B;’=1, and Hj'=
H,-k,;B}"‘, A, being the so-called central sphere, the normal conformal
connexion is expressed by the formulae

dAs;= de A; ,
(32) dAj=” dxkAo"'Il kdx"A +115k,.dx"A + dx"A..,
’ dA; = I ude* A+ ITErda A,
dAs= Hiada® A+ Moada® A,
where
%, =113,B#B; — H“m’. len F o _1)2 ———H%H%0x,
Se={i%}s Tiwn=Mjn=Hjin— ;:]:Q"bHabigik, I3=g,
33) .
1, k—*—l.z ?k;;:ay Ilfik:_M‘kt.‘:— o dkn »

llgok g’l,,,, 11 k—‘llnk

Hence, for a totally umbilical hypersurface (M =0), we have

1) K. Yano and Y. Muto: Sur la théorie des espaces a4 connexion conforme
normale et la géométrie conforme des espaces de Riemann, Journal of the Faculty of
Science, Imperial University of Tokyo. vol. 4 part 3 (1941), pp. 117-169.
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dAd;= dz*A; ,

84 dA ;= I5de* Ay + Hide* A+ 11 da* Az, ,
dA,;=0
dA:.= i de*A;.

The conformal connexion induced on C, being defined by just the
same equations as above, we have the
Theorem IIII. Along a totally umbilical hypersurface, the mormal
conformal comnexion of C, and the comformal conmexion induced om
C,._l coincide.

It must be however remarked that the conformal connexion induced
on C,.; and the intrinsic normal conformal connexion of C, do not
necessarily coincide even if the C, is totally umbilical. The necessary
and sufficient condition that the induced and intrinsic connexions of
Ca-1 coincide is that the C, is totally umbilical and B;*Bj*B;’B;“Cjua
=0.
From the third equation of (3.4), we have the
Theorem IILII. Along a totally umbilical hypersurface, the central
sphere rests fix by the mormal conformal connexion of the enveloping
space C,.

Conversely, if a hypersurface a4+ BA, tangent to a hypersurface
rests fix along the hypersurface by the normal conformal connexion
of the enveloping space C,, we have

d(aAs+BAs)=(ads+BA)uda®,
from which, we obtain, by the use of (3.2), I7;,=0, hence, we have
the
Theorem IILIIL. If a hypersphere tangent to a hypersurface rests fix
along the hypersurface by the mormal conformal connexion of the
enveloping space C,, the hypersurface is totally umbilical.

This theorem gives an another proof of Theorem I.II. For if the
group of holonomy of C, fixes a hypersphere ¢=g¢"A)+¢'A,+¢"A.,
the equations (1.4) (¢) show that the hypersphere ¢ is always tangent
to the hypersurface ¢°=0, and by the above theorem, we can conclude
that the hypersurface ¢*=0 is totally umbilieal.

$4. The line-elements of the Riemannian spaces which admit a
family of ! totally umbilical hypersurfaces.

If a Riemannian space admits a family of oo! totally umbilical
hypersurfaces, the line-element of the space may be, by a suitable
choice of the coordinate system, put in the form

4.1) ds’=f(*)* g u () da? dac* + g um(ac®)dec"dc™

where the totally umbilical hypersurfaces are 2*=consts. and the "-
curves are orthogonal trajectories of the family of totally umbilical
hypersurfaces.

By a suitable conformal transformation of the fundamental tensor,
(4.1) may be reduced to
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(4.2) ds?=f(2*)" g (x")dx’dx" + da"da™ ,

where the hypersurfaces 2™=consts. being always totally umbilical an
a"-curves, which are their orthogonal trajectories, are geodesics.

If the x"-curves in (4.1) are conformal circles, the z"-curves in
(4.2) are also conformal circles, but they are also geodesics, hence,
from (2.1), they must be Ricei curves, and (4.2) must be of the form®

(4.3) ds?= o(x™)* g (x?)do? dac” + dada™ ,

which is the line-element of the space which admits concircular trans-
formations. Thus we obtain the

Theorem IV.I. The Riemannian spaces which contain a family of !
totally umbilical hypersurfaces whose orthogonal trajectories are con-
formal circles are conformal to the Riemannian spaces which admit
concircular transformations.

§5. Spaces whose groups of holonomy fix two points or hyper-
spheres.

Suppose that the group of holonomy of C, fixes two points or
hyperspheres of the type (B): P=p'4,+p*A,+A. and Q=¢’4,+¢*4;
+A., then from §1, we know that p,=g,.p"* and ¢,=g,.¢" are both
gradient vectors such as p; =4 log p/ox* and ¢,=a log g/6x*. Consequent-
ly, when we displace on the hypersurfaces defined by p/g=consts.,
the normal conformal connexion of C, fixes the hyperspheres P—Q
tangent to the hypersurfaces p/g=consts., and hence from the Theorem
IILIIIL., the hypersurfaces p/g=consts., are all totally umbilical. More-
over, the curves whose directions are always orthogonal to P—@Q are,
according to the Theorem ILIII., conformal circles, hence we have the
Theorem V.I. If the group of holonomy of C, fixes two points or
hyperspheres of the type (B), C, admits a family of ! totally um-
bilical hypersurfaces whose orthogonal trajectories are conformal circles.
(S. II. Theorem 1.)

We can give, to this theorem of S. Sasaki, a concircular geometrical
interpretation. According to the theorems in §1, the C, is conformal
to two Einstein spaces which are not mapped by a trivial mapping,
that is to say, not by a conformal mapping of the form g, =k%,, where
k is a constant, hence, these Einstein spaces are mapped conformally
to each other by a non-trivial mapping. Consequently, as stated in
“ Concircular geometry V”, the C, is conformal to an Einstein space
which admits concircular transformations, and we have the
Theorem V.II. The C, whose group of holonomy fixes two points or
hyperspheres is conformal to an Einstein space which admits con-
circular transformations.

According to the Theorem IV in “ Concircular geometry IL”, the
Theorem V.I is only a corollary of this theorem.

If an Einstein space with the scalar curvature R is non trivially
conformal to an another Einstein space with the scalar curvature R,
then the partial differential equations

1) K. Yano: Conencular geometry I, loc. cit.
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A — _l-_\ aB =___!-'___‘ —
(6.1) Pusv = Pubut g 0P =5 (R Re)gu

obtained from /7%, =113+ p,, must be completely integrable. The neces-
sary and sufficient condition that it may be so is that the space admits
a family of oo! totally umbilical hypersurfaces whose orthogonal
trajectories are geodesic Ricei curves. But this condition does not
depend on the constant E, hence we have the
Theorem V.III. If an FEinstein space with scalar curvature R s
non trivially conformal to an another Einstein space with the scalar
curvature R, then the original Einstein space is also mon trivially
conformal to an Einstein space with any scalar curvature R. (Ct. s.
I. Theorem 3, 4, 5, 6.)

Now, on a totally umbilical hypersurface in C, whose group of
holonomy fixes the point A. or the hypersphere —cA4y,+ 4., we have
from (3.1),

(.;_Hz— )A6+A&=HA,1—CA0+A~,

where H=—1 _H%: Hence the formulae (3.4) and d(—cAy+A.)=0

n—1

show that
d[(—;—H"—-c)A(, +A;,:| =0 and H=const.,

and give the

Theorem V.IV. If there exists a totally umbilical hypersurface in a
C,. whose group of holonomy fixes a point or a hypersphere, the group
of holonomy of the induced connexion of the hypersurface fixes also a
point or a hypersphere and the mean curvatwre of the hypersurface is
a constant. (S. II. Theorem 2.)

§6. Conformal and concircular geometries in Einstein spaces.

In “ Concircular geometry V.”, we have proved that:

The necessary and sufficient condition that an Einstein space whose
scalar curvature R is positive, zero or negative admits a concircular
transformation is that the fundamental quadratic differential form may
be respectively reduced to the followings :

1
Case . K=———R>0.
n(n—1) >

(6.1) ds=(A cos V' Kz"+ B sin V' K x*)*g(¥)daida® + dda™ ,

the Riemannian space *V,_; whose fundamental quadratic differential
form is *gjda’dx® being also an Einstein space with positive scalar

curvature 'R=1'—h_—2(A’+B’)R.

1
Case II. = =(.
K n('n—l)R 0

6.2) d&=(Ax"+ B)** g (o) da’dac® + da"da™ ,
the Riemannian space *V,,., whose fundamental quadratic differential
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form is “gjdx’dx* being also an Einstein space with positive scalar
curvature *R=(n—1)(n—2) A%
Case IIl. K=--1 _R<o.
n(n—1)

(6.3) ds*=(Ae' K"+ Be~" K="y *g . (x¥)dadx* + dxda

the Riemannian space *V,.; whose fundamental quadratic differential
form is *gjdx’dx* being also an Einstein space with scalar curvature

"R="40=2) 4pp.

On the other hand, S. Sasaki has proved that:

If the group of holonomy of a space with a normal conformal
connexion fixes two points or hyperspheres, the line-element of the
space can be reduced to the canonical form

(6.4) ds=[(x"y + kP * g u(x*)da’ da® + doc da™

where k is a constant >, =, <{0 according as the pencil of hyper-
spheres determined by the invariant hyperspheres is hyperbolic, para-
bolic or elliptic, and the Riemann space *V,_, with the fundamental
quadratic differential form *g¢;dx’dx* is an Einstein space. The con-
verse is also true.

The line-element (6.4) given by S. Sasaki is not the line-element
of an Einstein space, but it is the line-element of a space conformal
to an Einstein space, while our line-elements (6.1), (6.2) and (6.3) are
those of an Einstein space and must be conformal to (6.4) given by
S. Sasaki.

As a matter of fact, multiplying (6.1) by (4 cosv Kz*+ Bsinv Kz
and putting "= , /IT(-(A sin vV Kz*— Bcos V' Kx"), we have

6.5) d§2=[(5")2- Az;;Bz T*g,-,,(xf)dxfdx'ur dardz

. _ A+ B .
which corresponds to the case k=— = 1= - < 0, multiplying (6.2) by

At A A

- - and putti n_ _ A

(Az"+ BYllog (Az+ BT~ T8 T T 1og (Ar"+ B)
(6.5) dst=(a")" * g u(@¥)da’dx* + dz dz" ,

which corresponds to the case k=0, and finally multiplying (6.3) by

(Ae" X" Be VK" and putting 7= 17:1?7( (Ae" K=" — Be~"Ka™),

, we have

we have
—_— 2 __ @g * . 03 d = mn
65) as=[ @) = Trontaduiact +azaz,

which corresponds to the case k>0, =0 or < 0 according as AB> 0,
AB=0 or AB<0.



