88. On Non-prolongable Riemann Surfaces.

By Masatsugu TSUJI. Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., Oct. 12, 1943.)

Let F be a Riemann surface spread over the *w*-plane. T. Radó¹⁾ called F prolongable, if we can map F on a proper part \mathfrak{F}_0 of another Riemann surface \mathfrak{F} spread over the *z*-plane and non-prolongable, if otherwise. A closed Riemann surface is evidently non-prolongable, but Radó proved that there exists an open non-prolongable Riemann surface by an example of a Riemann surface, which consists of two sheets, whose branch points lie at points w=n $(n=0, \pm 1, \pm 2, ...)$. We will give a class of open non-prolongable Riemann surfaces, which contains the above Radó's example as a special case.

Theorem. Let F be a Riemann surface spread over the w-plane, which consists of n sheets and whose every boundary point is a cluster point of branch points and such that the set E of projections of boundary points of F on the w-plane is a closed set of capacity² zero. Then F is non-prolongable.

Proof. Suppose that F is prolongable and that we can map F by w=f(z) on a proper part \mathfrak{F}_0 of another Riemann surface \mathfrak{F} spread over the z-plane. Then there exists an inner point z_0 of \mathfrak{F} , which is a boundary point of \mathfrak{F}_0 . We may assume that z_0 is not a branch point of \mathfrak{F} , since otherwise, we can map \mathfrak{F} by $(z-z_0)^{\frac{1}{p}}$ on another Riemann surface, such that z_0 corresponds to an inner point differing from the branch point.

From the definition of E, there exists at least one boundary point of F above any point P of E, but there may exist inner points of Fabove P.

We take off all points from \mathfrak{F}_0 , which are the images of inner points of F lying above E and the remaining part of \mathfrak{F}_0 be denoted by \mathfrak{F}_0 . We take ρ so small that all points of a disc: $|z-z_0| \leq \rho$ are inner points of \mathfrak{F} differing from branch points.

Let $\mathfrak{F}_0(\rho)$, $\mathfrak{F}_0(\rho)$ be the part of \mathfrak{F}_0 , \mathfrak{F}_0 inside a circle $C: |z-z_0| = \rho$ and $e_0(\rho)$, $e_0'(\rho)$ be the sets of boundary points of $\mathfrak{F}_0(\rho)$, $\mathfrak{F}_0'(\rho)$ inside C respectively.

Since cap. E=0, we see that $e'_0(\rho)$ differs from $e_0(\rho)$ only by a set of capacity zero. Now in $\mathfrak{F}'_0(\rho)$, f(z) does not take values belonging to E and since F consists of only n sheets, if z tends to $e'_0(\rho)$, then w=f(z) has cluster points belonging to E. Hence by a lemma³ proved before, we have cap. $e'_0(\rho)=0$ and hence cap. $e_0(\rho)=0$. w=f(z) is one-

¹⁾ T. Radó: Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit. Math. Zeits. 20 (1924).

²⁾ In this paper, "capacity" means "logarithmic capacity".

³⁾ M. Tsuji: On the Riemann surface of an inverse function of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 19 (1943).

M. TSUJI.

valued and meromorphic in the neighbourhood of $e_0(\rho)$ and since every point of E is a cluster point of branch points of F, f(z) has an essential singularity at every point of $e_0(\rho)$. Hence by Nevanlinna-Kametani's theorem^D, f(z) takes any value infinitely many times in the neighbourhood of $e_0(\rho)$, except a set of values of capacity zero, which contradicts the hypothesis, that F consists of only n sheets. Hence F is non-prolongable, q. e. d.

430

¹⁾ R. Nevanlinna: Eindeutige analytische Funktionen. p. 32. S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities. Proc. 17 (1941). M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 18 (1942).