
No. 9.] 533

109. Bohr Compactifications of a Locally Compact
Abelian Group 11.

By Hirotada ANZAI and Shizuo KAKUTANI.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKA(]X, Nov. 12, 1943.)

This is a continuation o our preceding paper with the same title.1)

As an application o the general theory developed in the first paper,
we shall here discuss monothetic and solenoidal groups.

5. Monothetic groups. A topological group G is monothetic,2)
if there exists an element a e G, called a generating element of G, such
that the cyclic subgroup H=(aln=0, +_1, +/-2, ...} of H generated
by a is everywhere dense in G. A monothetic group is obviously
abelian.

Theorem 5.a) A locally compact monothetiz group G is either
compact or topologically isomorphic with the additive group of all
integers with discrete topology.

Proof. Let us apply Theorem 1, taking as H the additive group
of all integers with discrete topology. Then there exists a continuous
isomorphism a*’=*(a*) of the character group G* of G onto a topo-
logical subgroup G*’ of the character .group H* of H which is nothing
but the additive group K of all real numbers mod. I with the usual
compact topology. It suffices to show that G* is either compact or
discrete. If G* is not totally disconnected, then the image *(V*) in
K of every open neighborhood V of the zero element of G* contains
a continuum and hence a certain interval of K containing the zero
element of K. From this follows that a*’=*(a*) is an open mapping
and so is a homeomorphism. Thus, if G* is not totally disconnected,
then G* must be topologically isomorphic with K. This, however,
happens, only if G is discrete and is topolSgically isomorphic with H
itself. On the other hand, if G* is totally disconnected, then there
exists an arbitrary small subgroup of G" which is open-and-closed.
But this is possible only if G* is discrete; for, as a topological sub-
group of K, the continuous image G*" of G* has no sufficiently small
subgroup except the trivial one consisting only of the zero element.
Thus G* must be discrete in this case, and so G=G** must be com-
pact. This completes the proof of Theorem 5.

Remark 5. It is not difficult to construct an example of a com-
plete metric monothetic group which is not locally compact. In fact,
let f*(n) be a complex-valued bounded function defined on the additive
group H=(nln--O, :k l, :k2, ...) of all integers with the following
properties (i) there exists a sequence (m Ik-- 1, 2,...} of positive

1) H. Anzai and S. Kakutani, Proc. 19 (1943) 476-4g0.

2) Cf. D. van Dantzig, Compositio Math. 3 (1936), 408-426.
3) This theorem is due to A. Weil, L’intgration dans les groupes et leurs appli-

cations, Actualit 1939. The proof given in this paper is new.
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integers such that

(11) limk sup,,. If*(n)--f*(n/mi} i--0,

(ii) f*(n) is not a Bohr almost periodic function on H.
put

(12) d(n, p)-supk lf*(n /m.)-f*(p+m)

If we now

then H becomes a metric group with respect to this metric (12), and
it is easy to see that the completion of H gives an example of a
group with the required properties.

From Theorem 2 follows immediately"
Theorem 6.1 In order that a compact abelian group G be mono-

thetic, it is necessary and sufficient that the discrete character group
G* of G be algebraically isomorphic with an algebraic subgroup of the
additive group RE1=K(’) of all real numbers rood. 1 with discrete
topology.

Further, from Theorem 3 follows"
Theorem 7. Every compact monothetic group G can be obtained

in the following way take the additive group H= (n n O, +/- 1, 2=2, ...}
of all integers with discrete topology, and introduce on it a uniform
structure (as in Theorem 3) by means of a family F*--{f*(n)} of
complex-valued almost periodic functions f*(n) defined on H, or by
means of a family X* {a} of continuous characters a on H, where
0 1 and (n, a)=2n (rood. 1). Then G is obtained by completing
H with rspect to this uniform structure. G is separable if and only
if X*(F*)-= Uf..X*(f*) or X* is a countable set, where X*(f*) is
a countable set of characters for which the Fourier coecient of f*(n)
does not vanish and so there exists a compact monothetic group which
is not separable.

Let us now consider a compact monothetic group G which is
totally disconnected. Then every element of the discrete character
group G* of G is of finite order. Hence, from Theorem 6 follows
that G* is algebraically isomorphic with an algebraic subgroup G*’ of
the additive group RA1 of all rational numbers mod. 1. Further, it
is easy to see that there exists a sequence {nik= 1, 2, ...} of positive
integers such that G* is algebraically isomorphic with the additive
group RAI(nl, n., ...) of all rational numbers r (mod. 1) of the form
r=m]nl n, m.=0, .2= 1, .-J=2, and k= 1, 2, Since G* =RAI(n,
n,., ...) is clearly the union of an increasing sequence {Glk=l, 2, ...}
of finite cyclic subgroups-G=RAI(n, ..., n, 1, 1, ...) of order n nk,

so we see
Theorem 8. Every totally disconnected compact monothetic group

G can be obtained as a limit group of a sequence {Ca, %1k=1, 2, ...}
of finite cyclic groups C, % of order n n, where {n k= 1, 2, ...}
is a sequence of positive integers and G is finite .if and only if there
exists a ko such that n= 1 for all k ko.

1) Cf. P.R. Halmos and H. Samelson, Proc. N.A.S. 28 (1942).
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This limit group is denoted by C(nl, n, ...). Thus every totally
disconnected compact monothetic group is separable. It is further
to be noted that there is essentially only one homomorphism of
C1 k.=+l onto C1 k. From this follows fllat any two generating
elements of C(nl, n2, ...) are conjugate with each other, i.e. for any
two generating elements a and a’ of C(nl, , ...), there exists a homeo-
morphic automorphism of C(nl, ns, ...) which carries a onto a over.
Finally, C(n, n2, ...) is a continuous homomorphic image of C(ml, m2, ...)
if and only if, for any k, there exists an such that n n divides
m m. Thus n=k, k=l, 2, ..., gives a totally disconnected compact
monothetic group G=C(1, 2, ...) such that every totally disconnected
compact monothetic group is a continuous homomorphic image of G.

This result was partly obtained by D. van Dentzig.) This limit
group C(1,2, ...) is nothing but the compact character group of the
additive group RAI=RAI(1,2, ...) of all rational numbers rood. 1
with discrete topology, and is called the universal totally disconnected
compact monotheti group or simply the universal monothetic Cantor
group.

In order to discuss, a general case we need
Lemma 1. Let G* be a discrete abelian group whose cardinal

number O(G*) does not exceed c. Thn, in order that G* be algebrai-
cally isomorphic with an algebraic subgroup of the additive group
REI=K) of all real numbers rood. 1 unth discrete topology, it is
necry and sut that the subgroup G of G* consisting of all
ts of G* of finite order be algebraically isomorphic with an
algebraic subgroup of the additive group RA1 of all rational numbers
rood. 1.

The condition of Lemma 1 is clearly necessary. That it is also
sufficient may be proved by constructing a required isomorphism by
transfinite induction.

Theorem 9. In order that a compact abelian group G be mono-
thetic, i is necessary and sut hat the cardinal number p(G) of
G do not exceed 2 and further that the totally disconnected factor
group GIN of G by the componant N of the zero element of G be
monothet. In particular, every connected compact abdian group is
monothetic whenever O(G) T.

Theorem 9 follows from Theorem 5 and Lemma 1 if we observe
the following two facts" (i)) p(G*) is equivalent with O(G)
(ii)a) G is algebraically isomorphic with the discrete character group
(G/N)* of the factor group GIN. In case G satisfies the 2nd count-
ability axiom of Hausdorff, this last statement of Theorem 9 was
obtained by J. Schreier and S.M. Ulam) by a different method. We
may also prove

Theorem 10. A compact abelian group G is monothetic if and only

1) D. van Dantzig, lo cit. 2).
2) S. Kakutani, On cardinal numbers related with a compact abelian group, Proc.
(1943), 366-372.
3) L. Pontrjagin, Topological Groups, Princeton, 1939.
4) J. Schreier and S.M. Ulam, Fund. Math., 2. (1935), 302-304,
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if every finite factor group G/H of G by an open-and-closed subgroup
H qf G is a cyclic group.

Let us next consider a connected compact monotheticD group G
which is of one dimension. Then the discrete character group G* of
G has no element of finite order, and any two elements of G* are
dependent on each other, i.e., for any two elements a* and b* of G*,
there exist two integers m and n such that ma* /rib* =0" (0" denotes
the zero element of G*). Hence G* is algebraically isomorphic with
the additive group RA(n,,n., ...) of all rational numbers r of the form
r=m/nl nk, where {nkl k= 1, 2, ...} is an arbitarary sequence of
positive integers. From this follows

Theorem 11. Every connected compact monothetic group of one
dimension can be obtained as a limit group of a sequence {K, %1
k= 1, 2, ...} of compact abelian groups K, each of which is topo-
logically isomorphic with the additive group K of all real numbers rood 1.
with the usual compact topology, where {nk k 1, 2, ...} is a sequence of
positive integers and the homomorphism Xk+--*X of K, nk.,k/ onto

K,, "k is given by xk n/xk/ (mod. 1).

This limit group is denoted by K(n, n2, ...). Thus every connected
compact monothetic group of one dimension is separable. Further,
K(nl, n2, ...) contains a one-parameter subgroup L’= {a(t) ]- co <: t co }
which is dense in K(n, n2, ...). Thus K(n, n2, ...) is a solenoidal group
in a sense to be defined later ( 6), and there exists essentially only one
one-parameter subgroup of K(n, n2, o..) which is dense in K(n, n2, ...),
i.e. for any one-parameter subgroup L"= {b(t)] o <: t <: co } of
K(n, n., ...) which is dense in K(n, n, ...), there exists a constant 2
such that a(t)=b(t) for all t. Finally, K(nl, n2, ...)is a continuous
homomorphic image of K(ml, m2, ...) if and only if, for any k, there
exists an such that n n divides m m. Thus n--k, k= 1, 2, ...,
gives a connected compact monothetic group of one dimension G---K
(1, 2, ...) of one dimension such that every connected compact monothetic
group of one dimension is a continuous image of G. K(1,2, ...) is
called the universal one-dimensionat compact solenoid.

From Theorem 4 follows
Theorem 12. There exists a compact monothetic group G such that

every compact monothetic group is a continuous homomorphic image
of G in the sense of Theorem 4.

This group is nothing but the cmpact character group (RE1)*=
K(d)* of the additive group RE1-K(’’ of all real numbers mod. 1
with discrete topology, and is called the universal compact monothetic
group.

Since REI=K( is algebraically isomorphic with the restricted
infinite direct sum of one RA1 (=the additive group of all rational

1) We do not. need the assumption that G is monothetic. In fact, as was shown
in Theorem 9, every connected compact abelian group G is monothetic if the cardinal
number p(G) of G does not exceed 2c, and this is really the ce if G is one-dimensional
(G is even separable and p(G)::: in this case).
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numbers with discrete topology) and a continuum number of RA
(=the additive group of all rational numbers with discrete topology)"

(13) REI=RA1 c RA,

so we see that the universal compact monothetic group G=(RE1)*=
K’* is topologically isomorphic with the non-restricted infinite direct
sum of one universal monothetic Cantor group C(1,2, ...)and a
continuum number of universal one-dimensional compact solenoids
K(1, 2, ...) with the usual weak topology of Tychonoff"

(14) (RE1)*=C(1, 2, ...) ( -?,c K(1, 2, ...).

This gives the structure of the universal compact monothetic group.
6. Solenoidal groups. A topological group G is a solenoid1) or

a solenoidal group if there exists a one-parameter subgroup L’=
-o <: t o } of G which is dense in G, or more precisely, if there
exists a continuous homomorphism t--a(t) of the additive group
L={t I-o t o} of all real numbers with the usual locally com-
pact topology onto a topological subgroup L’ (a(t) o t co }
of G which is everywhere dense in G. A solenoidal group is obviously
abelian and connected. Exactly as in Theorem 5, we may prove

Theorem 13. A locally compact solenoidal group is either compact
or topologically isomorphic with the additive group L of all real
numbers with the usual locally compact topology.

Remark 6. It is not difficult to see that there exists a complete
metric solenoidal group which is not locally compact. An example
of such a group may be obtained in exactly the same way as in
Remark 5.

Further, since the locally compact character group L* of L is
topologically isomorphic with L itself, so we see from Theorem 2"

Theorem 15. In order that a compact abelian group G be soleno-
idal, it is necessary and sucient that the discrete character group
G* of G be algebraically isomorphic with an algebraical subgroup of
the additive group RE=L(d) of all real numbers with discrete topology.

From Theorem 3 follows:
Theorem 15. Every compact solal group G can be obtained

in the following way take the additive group L {t l- o t o }
of all real numbers with the usual locally compact topology, and
introduce on it a weaker uniform structure by means of a family
F*={f*(t)} of complex-valued Bohr almost periodic functions f*(t)
defined on L, or by means of a family X*= (a} of continuous chara-
cters a on L, where -o o and (t, a)=t (mod. 1). Then G
is obtained by completing L with respect to this weaker uniform
structure. G is separable if and only if X*(F*)= US.F.X*{f*) or X*
is a countable set, where X*(f*) is a countable set of characters for
which the Fourier coefftcient of f*(t) does not vanish and so there
exists a compact solenoidal group which is not separable.

1) Cf. D. van Dantzig, Fund. Math. 15 (1930), 102-125.
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We now need.
Lemma . Let G* be a discrete abelian group whose cardinal

number p(G) does not exceed . Then, in order that G* be algebraically
isomorphic with an algebraic subgroup of the additive group RE=Lcd)

of all real numbers with discrete topology, it is necessary and su2icient
that no dement of G* be of finite order.

The condition of Lemma 2 is clearly necessary. That it is also
sufficient may be proved by constructing a required isomorphism by
transfinite induction.

Theorem 16. In order that a compact aelian group G be soleno.
idal, it is necessary and suffwient that the cardinal number p(G) of
G do not exceed 2 and further that G be connected.

Theorem 16 follows from Theorem 14 and Lemma 2 if we observe
the following two facts (i) pIG*) s equivalent with p(G) <= 2c,
{ii} a compact abelian group G is connected if any only if the dscrete
character group G* of G has no element of finite order.

Exactly as in Theorem 12 we may prove
Theorem 17. There exists a compact solenoidal group G such that

every compact solenoidal group is a continuous homomorphiz image of
G in the sense of Theorem 4.

This group is nothing but the compact character group of the
additive group RE=L() of all real aumbers with discrete topology,
and is called the universal compact solenoid.

Since RE=L(d is algebraically isomorphic .with the restricted
infinite direct sum of a continuum number of RA(=the additive group
of all rational numbers with discrete topology):

(15) RE- RA,

so we see that the universal compact solenoid G=(RE)* is topologically
isomorphic with the non-restricted infinite direct sum of a continuum
number of universal one-dimensional compact solenoids K(1, 2, ...) with
the usual weak topology:

(16) (RE)*- ,c OK(l, 2, ...).

As we have seen in Theorems 8 and 14, every connected compact
abelian group G whose cardinal number O(G) does not exceed 2 is at
the same time monothetic and solenoidal. It is, however, not true
that if L’= (a(t) o <: t o } is a one-parameter subgroup of G
which is dense in G, then every element a(t) (t=O) of L’ is a genera-
ting element of G. On the contrary, on every one-parameter sub-
group L’ of a compact abelian group G, there exists an element of G
which is not a generating element of G. In fact, take any continuous
character ;(a) on G, not identically zero, and then take a to such that

;(a(t0)) is a rational number. Then it is clear that a(t0) cannot be a

generating element of G. We may, however, prove the following
Theorem 18. Let G be a compact separable solenoidal group, and

let L’= {a(t)I-co <:: t <:: o} be a one-parameter .vubgroup of G which
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is dense in G. Then, except for a countable number of values of t,
a(t) .is a geuerating element of G.

Remark 7. Theorem 18 ceases to be true if a compact soienoid
G is not separable. In fact, let us consider the case when G is the
universal compact solenoid and let L’ (u(t) I- o < t < } be the
dense one-parameter subgroup of G by means of which thu group G
was defined in the beginning. From the construction we see easily
that for any real number 2 there exists a uniquely determined con-

tinuous character Z(a) defined on G such that (a(t))--2t (mod. 1)
for -o <: t o. We claim that, for any fixed to, a(to) cannot be a
generating element of G. In fact, let 2 be a real number such that

1 then the corresponding character (a) on G satisfies ;(a(t0))--=02to=
(mod. 1), and this shows that (to) cannot be a generating element
of G.

Thus we arrived at a strange phenomenon that in the universal
compact solenoid G there exists a one-parameter subgroup L’-
-o t o} which is dense in G and yet no element a(t0) of L’ is
a generating element of G. On the other hand, since G is connected
and since p(G) 2, there surely exists by Theorem 9 a generating
element in G-L’ it is even possible to find a one-parameter subgroup
L" of G on which there are infinitely many (and even continuum many)
generating elements of G.

This fact shows that when two one-parameter subgroups L’ and
L" of a compact solenoidal group G are given, L’ and L" are not
always conjugate with each other, i.e. there does not always exist a
homeomorphic automorphism of G onto itself which carries L’ onto
L" over. The analogous phenomenon may also happen for a pair of
generating elements of a compact monothetic group; namely, it is
possible, to find a compact monothetic group G and a pair of genera-
ting elements a and a’ of G such that there is no homeomorphic
automosphism of G onto itself which carries a onto a’ over. It is,
however, to be noticed that such a phenomenon never happens for the
universal monothetic Cantor group C(1,2, ...) and for the universal
one-dmensional compact solenoid K(1, 2, ...).

This fact suggests that, given two locally compact abelian groups
H and G, it would be an interesting problem to investigate in more
detail the way in which H is continuously and homomorphically mapped
onto a dense subgroup H’ of G. These and the related problems will
be discussed on another occasion.


