27. Construction of a Non-separable Extension of the Lebesgue Measure Space.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 13, 1944.)

§ 1. A measure space $(\mathcal{Q}, \mathfrak{B}, m)$ is a triple of a space $\mathcal{Q} = \{\omega\}$, a Borel field $\mathfrak{B} = \{B\}$ of subsets B of \mathcal{Q} , and a countably additive measure m(B) defined on \mathfrak{B} with $0 < m(\mathcal{Q}) < \infty$. In case \mathcal{Q} is the interval $\{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers ω , \mathfrak{B} is the Borel field of all Lebesgue measurable subsets B of \mathcal{Q} , and m(B) is the ordinary Lebesgue measure with $m(\mathcal{Q})=1$, $(\mathcal{Q},\mathfrak{B},m)$ is called the Lebesgue measure space.

For any measure space $(\mathcal{Q}, \mathfrak{B}, m)$, let $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ be the smallest cardinal number of a subfamily \mathfrak{A} of \mathfrak{B} with the following property: for any $\varepsilon > 0$ and for any $B \in \mathfrak{B}$ there exists an $A \in \mathfrak{A}$ such that $m(B \ominus A) < \varepsilon$, where we denote by $B \ominus A$ the symmetric difference $B \cup A - B \cap A$ of B and A. On the other hand, let $L^2(\mathcal{Q}, \mathfrak{B}, m)$ be the generalized Hilbert space of all real-valued \mathfrak{B} measurable functions $x(\omega)$ defined on \mathcal{Q} which are square integrable on \mathcal{Q} with $||x|| = \left(\int_{\mathfrak{Q}} |x(\omega)|^2 m(d\omega)\right)^{\frac{1}{2}}$ as its norm. Then it is easy to see that $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ is equal with the *dimension* of $L^2(\mathcal{Q}, \mathfrak{B}, m)$ in case the latter is infinite, where we understand by the dimension of $L^2(\mathcal{Q}, \mathfrak{B}, m)$. We shall call $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ the *character* of a measure space $(\mathcal{Q}, \mathfrak{B}, m)$.

A measure space $(\mathcal{Q}, \mathfrak{B}, m)$ is metrically separable if $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m) \leq \aleph_0$. This is equivalent to saying that $L^2(\mathcal{Q}, \mathfrak{B}, m)$ is separable as a metric space with d(x, y) = ||x-y|| as its distance function. It is clear that the Lebesgue measure space is metrically separable.

A measure space $(\mathcal{Q}', \mathfrak{B}', m')$ is an extension of another measure space $(\mathcal{Q}, \mathfrak{B}, m)$ if $\mathcal{Q}' = \mathcal{Q}, \mathfrak{B}' \geq \mathfrak{B}$ and m'(B) = m(B) on \mathfrak{B} . The purpose of this paper is to prove, by constructing an example, the following

Proposition. There exists a metrically non-separable extension of the Lebesgue measure space whose character is 2° .

32. We begin with some lemmas:

Lemma 1. Let S be an arbitrary set with $\mathfrak{p}(S) = \mathfrak{c}^{1}$. Then there exists a family $\mathfrak{S} = \{S_r | r \in \Gamma\}$ of subsets S_r of S with the following properties:

(1) $\mathfrak{p}(\mathfrak{S}) \equiv \mathfrak{p}(\Gamma) = 2^{\mathfrak{c}}$,

¹⁾ $\mathfrak{p}(S)$ denotes the cardinal number of a set S,

(2) $\bigwedge_{n=1}^{\infty} S_{\gamma_{2n-1}} \cap \bigwedge_{n=1}^{\infty} (S-S_{\gamma_{2n}}) \neq \theta^{1}$ for any countable subset $\Gamma_0 = \{\gamma_n \mid n=1, 2, ...\}$ of Γ .

This Lemma is due to A. Tarski²⁾.

Lemma 2. There exists a family $\mathfrak{M} = \{M_{\delta} | \delta \in \Delta\}$ of subsets M_{δ} of the interval $\mathfrak{Q} = \{\omega | 0 \leq \omega \leq 1\}$ of real numbers ω such that

- (3) $\mathfrak{p}(\mathfrak{M}) \equiv \mathfrak{p}(\varDelta) = \mathfrak{c}$,
- (4) $M_{\gamma} \cap M_{\delta} = \theta$, $\gamma \neq \delta$,
- (5) $m^*(M_{\delta}) = 1$ for any $\delta \in A$, where we denote by $m^*(M)$ the Lebesgue outer measure of a subset M of Ω .

Proof. Let $\mathfrak{F} = \{F_a \mid 0 \leq a < \omega_1\}$ be a well-ordering of all closed subsets F_a of \mathfrak{Q} with $0 < m(F_a) \leq 1$, where ω_1 denotes the first ordinal number of the third class. Let us define a family $\mathfrak{N} = \{N_a \mid 0 \leq a < \omega_1\}$ of null sets N_a with the following properties:

- (6) $N_a \leq F_a$ for any a,
- (7) $N_{\alpha} \cap N_{\beta} = \theta$, $\alpha \rightleftharpoons \beta$,
- (8) $\mathfrak{p}(N_{\alpha}) = \mathfrak{c}$ for any α .

In order to construct such a family by transfinite induction, let N_0 be an arbitrary subset of F_0 of measure zero with $\mathfrak{p}(N_0) = \mathfrak{c}$. Let now $0 < \alpha < \omega_1$, and assume that the family $\{N_\beta \mid 0 \leq \beta < \alpha\}$ of null sets N_β is already defined. Since $\bigcup_{0 \leq \beta < \alpha} N_\beta$ is a null set, there exists a null set N_α such that $N_\alpha \leq F_\alpha - F_\alpha \cap \bigcup_{0 \leq \beta < \alpha} N_\beta$ and $\mathfrak{p}(N_\alpha) = \mathfrak{c}$. It is clear that we can carry out the transfinite induction and thus obtain a family $\mathfrak{N} = \{N_\alpha \mid 0 \leq \alpha < \omega_1\}$ with the required properties (6), (7) and (8). We notice that

(9) for any measurable subset B of Ω with m(B) > 0, there exists an a such that $N_a \subseteq B$.

Let further $N_a = \{\omega_{a\beta} | 0 \leq \beta < \omega_1\}$ be a well-ordering of all elements of each N_a , where ω_1 is again the first ordinal number of the third class. If we put $M_{\beta} = \{\omega_{a\beta} | 0 \leq a < \omega_1\}$, then the family $\mathfrak{M} = \{M_{\beta} | 0 \leq \beta < \omega_1\}$ thus obtained is a required one. In fact, it is clear that the conditions (3) and (4) are satisfied. In order to show that \mathfrak{M} has the property (5), assume that $m^*(M_{\beta}) < 1$ for some β . Then there would exist a measurable subset B of \mathcal{Q} with m(B) > 0such that $M_{\beta} \cap B = \theta$. This is, however, a contradiction since B-contains some N_a and hence an element $\omega_{a\beta} \in N_a \cap M_{\beta}$. Thus \mathfrak{M} must have the property (5), and this completes the proof of Lemma 2.

Lemma 3. There exists a family $\mathfrak{A} = \{A_r | r \in \Gamma\}$ of subsets A_r of the interval $\mathfrak{Q} = \{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers ω with the following properties:

(10)
$$\mathfrak{p}(\mathfrak{A}) \equiv \mathfrak{p}(\Gamma) = 2^{\mathfrak{c}}$$
,

[Vol. 20,

116

¹⁾ Θ denotes the empty set.

²⁾ A. Tarski, Fund, Math., 32 (1939).

No. 3.] Construction of a Non-separable Extension of the Lebesgue Measure Space. 117

(11) $m^* \left(\bigcap_{n=1}^{\infty} A_{\gamma_{2n-1}} \cap \bigcap_{n=1}^{\infty} (\mathcal{Q} - A_{\gamma_{2n}}) \right) = 1$ for any countable subset $\Gamma_0 = \{\gamma_n \mid n=1, 2, \ldots\}$ of Γ .

Lemma 3 is an immediate consequence of the combination of Lemmas 1 and 2.

\$3. We are now in a position to construct a required example.

Let $\mathfrak{A} = \{A_r \mid r \in \Gamma\}$ be a family of subsets A_r of the interval $\mathcal{Q} = \{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers ω with the properties (10) and (11) as obtained in Lemma 3. Let us then denote by $\mathfrak{E} = \{E\}$ the family of all subsets E of \mathcal{Q} of the form:

(12)
$$E = \bigcup_{\{\varepsilon_1, \dots, \varepsilon_n\}} A_{\gamma_1}^{\varepsilon_1} \cap \dots \cap A_{\gamma_n}^{\varepsilon_n} \cap B_{\varepsilon_1, \dots, \varepsilon_n},$$

where $\{\gamma_1, ..., \gamma_n\}$ is an arbitrary *n*-system from Γ (i.e. a finite subset of Γ consisting of *n* elements) (*n* is also an arbitrary positive integer), $\{B_{\epsilon_1,...,\epsilon_n} | \epsilon_i=1 \text{ or } -1; i=1,...,n\}$ is an arbitrary 2^n -system from \mathfrak{B} (=the family of all Lebesgue measurable subsets *B* of \mathcal{Q}), and A^{ϵ} means *A* or $\mathcal{Q}-A$ according as $\epsilon=1$ or -1. Further, $\bigcup_{\{\epsilon_1,...,\epsilon_n\}}$ denotes the union of 2^n sets which correspond to all possible combinations $\{\epsilon_1,...,\epsilon_n\}, \epsilon_i=1$ or -1; i=1,...,n, (*n* being fixed).

E is clearly a field which contains \mathfrak{B} , i.e. every measurable subset *B* of \mathfrak{Q} is contained in \mathfrak{E} , and $E_1, E_2 \in \mathfrak{E}$ implies $E_1 \cup E_2, E_1 \cap E_2, \mathfrak{Q} - E_1 \in \mathfrak{E}$. Further, for any given $E \in \mathfrak{E}$ and an *n*-system $\{\gamma_1, \ldots, \gamma_n\} \subseteq \Gamma$, the expression (12) is unique up to null sets in the following sense: if there exists another expression

(13)
$$E = \bigcup_{\{\varepsilon_1, \dots, \varepsilon_n\}} A_{\gamma_1}^{\varepsilon_1} \cap \cdots \cap A_{\gamma_n}^{\varepsilon_n} \cap B'_{\varepsilon_1, \dots, \varepsilon_n}$$

with the same *n*-system $\{\gamma_1, \ldots, \gamma_n\} \leq I$ but with possibly different $B'_{\epsilon_1, \ldots, \epsilon_n}$, then $m(B_{\epsilon_1, \ldots, \epsilon_n} \ominus B'_{\epsilon_1, \ldots, \epsilon_n}) = 0$ for any $\{\epsilon_1, \ldots, \epsilon_n\}$. In fact, from (12) and (13) follows that

(14)
$$A_{\tau_1}^{\varepsilon_1} \cap \cdots \cap A_{\tau_n}^{\varepsilon_n} \cap B_{\varepsilon_1, \dots, \varepsilon_n} = A_{\tau_1}^{\varepsilon_1} \cap \cdots \cap A_{\tau_n}^{\varepsilon_n} \cap B_{\varepsilon_1, \dots, \varepsilon_n}'$$

for any $\{\varepsilon_1, ..., \varepsilon_n\}$, which together with the relation $m^*(A_{\tau_1}^{\varepsilon_1} \cap \cdots \cap A_{\tau_n}^{\varepsilon_n}) = 1$ (which itself is a special case of (11)) imply that $m(B_{\varepsilon_1, ..., \varepsilon_n} \ominus B'_{\varepsilon_1, ..., \varepsilon_n}) = 0$ for any $\{\varepsilon_1, ..., \varepsilon_n\}$. In the same way it may be shown that if

(15)
$$E = \bigcup_{\{\varepsilon_1, \dots, \varepsilon_n\}} A_{\tau_1}^{\varepsilon_1} \cap \dots \cap A_{\tau_n}^{\varepsilon_n} \cap B_{\varepsilon_1, \dots, \varepsilon_n}$$
$$= \bigcup_{\{\varepsilon_1, \dots, \varepsilon_{n+p}\}} A_{\tau_1}^{\varepsilon_1} \cap \dots \cap A_{\tau_{n+p}}^{\varepsilon_{n+p}} \cap B_{\varepsilon_1, \dots, \varepsilon_{n+p}}^{\varepsilon_{n+p}}$$

for some (n+p)-system $\{\gamma_1, ..., \gamma_{n+p}\} \leq \Gamma$, 2^n -system $\{B_{\epsilon_1, ..., \epsilon_n} | \epsilon_i = 1$ or $-1; i=1, ..., n\} \leq \mathfrak{B}$ and 2^{n+p} -system $\{B'_{\epsilon_1, ..., \epsilon_{n+p}} | \epsilon_i = 1$ or $-1; i=1, ..., n+p\} \leq \mathfrak{B}$, then $m(B_{\epsilon_1, ..., \epsilon_n} \ominus B'_{\epsilon_1, ..., \epsilon_{n+p}}) = 0$ for any $\{\epsilon_1, ..., \epsilon_{n+p}\}$. Finally, if $E \in \mathfrak{C}$ is given by (12), $F \in \mathfrak{C}$ is given by

(16)
$$F = \bigcup_{\{\varepsilon_1, \dots, \varepsilon_n\}} A_{\tau_1}^{\varepsilon_1} \cap \dots \cap A_{\tau_n}^{\varepsilon_n} \cap B_{\varepsilon_1, \dots, \varepsilon_n}',$$

and if $E \cap F = \theta$, then $m(B_{\varepsilon_1, ..., \varepsilon_n} \cap B'_{\varepsilon_1, ..., \varepsilon_n}) = 0$ for any $\{\varepsilon_1, ..., \varepsilon_n\}$.

S. KAKUTANI.

Let us now put

(17)
$$\overline{m}(E) = \frac{1}{2^n} \sum_{\{\varepsilon_1, \dots, \varepsilon_n\}} m(B_{\varepsilon_1, \dots, \varepsilon_n})$$

if $E \in \mathfrak{C}$ is given by (12), where $\sum_{\{\varepsilon_1, \ldots, \varepsilon_n\}}$ denotes the sum of 2^n terms $m(B_{\varepsilon_1, \ldots, \varepsilon_n})$ corresponding to all possible combinations $\{\varepsilon_1, \ldots, \varepsilon_n\}$. It is then easy to see, by taking into considerations the facts observed above, that $\overline{m}(E)$ is uniquely defined for any $E \in \mathfrak{C}$ (although the expression (12) is not unique for any given $E \in \mathfrak{C}$), and further that $\overline{m}(E)$ is finitely additive on \mathfrak{C} .

We shall next show that $\overline{m}(E)$ can be extended to a countably additive measure $\overline{m}(\overline{B})$ defined on the Borel field $\overline{\mathfrak{B}} = \mathfrak{B}(\mathfrak{C})$ generated by \mathfrak{C} . For this purpose it suffices to show that

(18)
$$E_k \in \mathfrak{G}, \quad k=1, 2, \ldots; \quad E_1 \ge E_2 \ge \ldots; \quad m(E_k) \ge \delta > 0, \quad k=1, 2, \ldots$$

imply $\bigcap_{k=1}^{\infty} E_k \neq \Theta.$

Without loss of generality, we may assume that there exists a countable set $\Gamma_0 = \{\gamma_n \mid n=1, 2, ...\} \subseteq \Gamma$, an increasing sequence $\{n_k \mid k=1, 2, ...\}$ of positive integers, and a sequence of 2^{n_k} -systems $\{B_{\varepsilon_1,...,\varepsilon_{n_k}}^{(k)} \mid \varepsilon_i=1 \text{ or } -1; i=1, ..., n_k\}$ such that

(19)
$$E_k = \bigcup_{\{\varepsilon_1, \dots, \varepsilon_{n_k}\}} A_{\gamma_1}^{\varepsilon_1} \cap \dots \cap A_{\gamma_{n_k}}^{\gamma_{n_k}} \cap B_{\varepsilon_1, \dots, \varepsilon_{n_k}}^{(k)}$$

for any k and for any $\{\varepsilon_1, ..., \varepsilon_{n_{k+1}}\}$. Since

(21)
$$\overline{m}(E_k) = \frac{1}{2^{n_k}} \sum_{\{\varepsilon_1, \dots, \varepsilon_{n_k}\}} m(B^{(k)}_{\varepsilon_1, \dots, \varepsilon_{n_k}}) \ge \delta > 0$$

for each k, there exists, for each k, at least one combination $\{\varepsilon_1^{(k)}, \ldots, \varepsilon_{n_k}^{(k)}\}$ such that

(22)
$$m(B^{(k)}_{\mathfrak{e}^{(k)}_1,\ldots,\mathfrak{e}^{(k)}_{n_k}}) \geq \delta > 0.$$

It is then not difficult to see, by appealing to the relation (20), that there exists a sequence $\{\varepsilon_n^{(0)} | n=1, 2, ...\}$ $(\varepsilon_n^{(0)}=1 \text{ or } -1, n=1, 2, ...)$ such that

(23)
$$m(B^{(k)}_{\epsilon_1^{(0)},\ldots,\epsilon_{n_k}^{(0)}}) \ge \delta > 0$$

for k=1, 2, ... From this follows, again by appealing to (20), that

(24)
$$m(\bigwedge_{k=1}^{\infty} B_{\varepsilon_1^{(0)},\ldots,\varepsilon_{n_k}}^{(k)}) \geq \delta > 0$$

which together with the relation

(25)
$$m^*(\bigwedge_{n=1}^{\infty} A_{r_n}^{\varepsilon_n^{(0)}}) = 1$$

(which itself is an immediate consequence of (11)) will imply

No. 3.] Construction of a Non-separable Extension of the Lebesgue Measure Space. 119

(26)
$$\bigwedge_{k=1}^{\infty} E_k \geq \bigwedge_{k=1}^{\infty} (A_{\tau_1}^{\varepsilon_1^{(0)}} \frown \cdots \frown A_{\tau_{n_k}}^{\varepsilon_{n_k}^{(0)}} \frown B_{\varepsilon_1^{(0)}, \dots, \varepsilon_{n_k}^{(0)}}^{(k)})$$
$$= \bigwedge_{n=1}^{\infty} A_{\tau_n}^{\varepsilon_n^{(0)}} \frown \bigwedge_{k=1}^{\infty} B_{\varepsilon_1^{(0)}, \dots, \varepsilon_{n_k}^{(0)}}^{(k)} \neq \theta .$$

Thus we see that $\overline{m}(E)$ can be extended to a countably additive measure $\overline{m}(\overline{B})$ defined on the Borel field $\overline{\mathfrak{B}} = \mathfrak{B}(\mathfrak{E})$ generated by \mathfrak{E} . It is easy to see that the measure space $(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m})$ thus obtained has the character 2^c. In fact, denoting by $\chi_{r}(\omega)$ the characteristic function of the set A_{r} and putting $\varphi_{r}(\omega) = 2\chi_{r}(\omega) - 1$ for any $\gamma \in \Gamma$, the relations $\overline{m}(A_{r}) = \frac{1}{2}, \ \gamma \in \Gamma$, and $\overline{m}(A_{r} \cap A_{\delta}) = \overline{m}(A_{r} \cap (\mathcal{Q} - A_{\delta})) = \frac{1}{4}, \ \gamma \neq \delta$ (which themselves are the consequences of the definition (17) of $\overline{m}(E)$ on \mathfrak{E}), imply that $\{\varphi_{r}(\omega) \mid \gamma \in \Gamma\}$ is an orthonormal system in $L^{2}(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m})$. Thus the character of $(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m})$ is $\geq 2^{c}$. Since, on the other hand, $\overline{\mathfrak{B}}$ contains at most 2^c sets (in fact, there are only 2^c different subsets of \mathcal{Q}), we must have $\mathfrak{p}(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m}) \leq 2^{c}$. Since it is clear that $(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m})$ is an extension of the Lebesgue measure space $(\mathcal{Q}, \mathfrak{B}, m)$, so we finally see that $(\mathcal{Q}, \overline{\mathfrak{B}}, \overline{m})$ is a required example.