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45, Projective Parameters on Paths in D. van Dantzig’'s
Projective Space.

By Kentaro YANo.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.LA,, April 12, 1944))

1. J. Haantjes® discussed a few years ago the projective geometry
of paths with the use of D. van Dantzig’s homogeneous curvilinear
coordinates®. In a generalized projective space H, referred to a system
of van Dantzig’s homogeneous curvilinear coordinate (x*)®, if we in-
troduce a projetive connection /72 satisfying the three conditions :
() (BI) oY= —1I4, (ii) HA=1I1} and (iii) TAa*=0, the equations
of paths or of autoparallel curves are

d’ 2 de? dx’ _ da? 2
(1.1) o +0} o ar - dr +pxt .

The finite equations of a path being «’(r), Haantjes introduces
two homogeneous coordinates #* on each path. Then the equations of
paths may also be written as

1.2) ot =at(u%,

where the x*(u®) are homogeneous functions of u* of degree 1, and the
differential equations of paths take the form

0%t ox* ox’ ox?
1.3 1, =rp %%,
(1.3) owtoue  “oud ow " ous

The functions I'% appearing in (1.8) transform like the coefficients
of a projective connection in an H,, and satisfy the same conditions as
(i), (i) and (iii). Then, J. Haantjes proves that the curvature tensor
formed with the I'Z vanishes identically and therefore there exists a
coordinate system (u*) for which I are all zero. This special co-
ordinate system being determined up to linear homogeneous trans-
formations with constant coefficients, the non homogeneous parameter

(1.4) t=u/u’

is determined up to linear fractional transformations. Thus, ¢ is a
projective parameter defined on each path. J. Haantjes proves then
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that, in the case of so-called normal projective connection, ¢ coincides
with the L. Berwald’s preferred projective parameter®.

In previous papers®, the present author remarked that choosing
a suitable function p and a suitable parameter ¢, we can write the
differential equations (1.1) in the form

o’ | 111 (o) S02" dp” _
(1.6) di + ,uv(Px)—d—t— dt 0,

and the parameter ¢ in (1.5) is a projective parameter. In the present
Note, we will show that the parameter ¢ coincides with that of L.
Berwald not only in the case of normal projective connection, but also
in the case of general projective connection.

2. To compare J. Haantjes’ theory with L. Berwald’s one or with
the author’s one, we must introduce the non homogeneous coordinate
system (¢Y) in H,. The non homogeneous coordinate system (£°) may
be defined by

(2.1) E=£" o, 2% ..., 2",
where £%(x) are homogeneous functions of degree zero, and hence
(2.2) Ef;x"=0 N where Ef;=$‘:)=6$‘/6w‘ N

the rank of the matrix (&%) being n.
To define the inverse of (E?%), we introduce a covariant projective
vector p; satisfying

(203) plwl = 1 ’
and being the homogeneous functions of %' of degree —1.

Then the inverse (E;?) of (EY,) is defined by means of the equa-
tions

(2.4) EjEi,=58 and Ejp,=0.
It will be easily proved that the (E;*) and (E?,) satisfy the re-
lations
2.5) E}=EEi,=dl—a'p, .
The (E%), (Ei*) and E} being thus defined, we introduce the
quantities I'% and I'ji by means of the equations

(2.6) Y= —E;*Ey(pu,—mlll),
and
2.7 = —EE(EY, ,—~ES11)

respectively. It will be proved in the next paragraph that Ij, are
components of a tensor which defines the projective parameters on

1) L. Berwald: On the projective geometry of paths, Annals of Math, 37 (1986),
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2) K. Yano: Les espaces & connexion projective et la géométrie projective des
paths, Annales Scientifiques de 1'Université de Jassy, 24 (1938), 895-464; Projective
parameters in projective and conformal geometries, Proc. 20 (1944), 456-58.
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paths and I}, are the coefficients of an affine connection which gives
the same system of paths as the projective connection I72.

The choice of the covariant projective vector p; being quite
arbitrary but for the condition (2.8), we can take

(2.8) Pi=pit¢a

instead of p;. The P, and p; are both covariant projective vector
fields satisfying (2.3), the ¢, is also a covariant projective vector field
satisfying

(2.9) {011%‘ =0,

If we effect the transformation of p,; of the type (2.8), the matrix
(E?) is invariant, say, EY)=E?, but (E;?) is changed into (&;?) follow-
ing the formulae

(2.10) Ej*=E;* —u'y;,
where
(2.11) ¢;=E;*p; and consequently by (2.5) and (29) ¢,=FE%¢;.

Denoting by I and I the functions (2.6) and (2.7) defined by
the E% and E;? respectively, we have

(2.12) I%=I%—E"EX(¢,,— @lI5) — 950k
and
(2.13) =T}~ dpr—}p;,

by virtue of the relations
TPy +0,=0, 2°0,,+0.,=0, 2°¢,,+¢,=0 and 0+ =0

obtained from (2.8), (2.9) and the fact that p;, and ¢, are both homo-
geneous functions of 2* of degree —1.

On the other hand, differentiating the equations ¢,=FEi,p; with
respect to #*, we have

Sop,v=Efp,yipi+Ean{cv50j.k s (¢f.k=a¢?i/35")
from which
(2.14) Ej B (0 — 0ill )= 9,6~ il
by virtue of (2.7) and (2.11). Thus, the equations (2.12) may also be
written as
(2.15) [3=I%— 01t el f—0ivn.

The equations (2.13) and (2.15) show that the functions [}, and
I}, are the coefficients of a projective connection studied by the
American School® and consequently, as the present author showed?,
of E. Cartan’s projective connection.

1) See, for example, O. Veblen: Projektive Relativititstheorie, Berlin, Springer,
1933.
2) K. Yano: Les espaces & connexion projective et la géométrie projective des
paths, loc. cit.
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We observe that the coefficients 17} of the projective connection
being symmetric, the functions 7'}, defined by (2.7) are symmetric with
respect to two indices 5 and k, but the functions I}, defined by (2.6)
are not necessarily symmetric with respect to two lower indices.

8. In this paragraph, we consider the equations of paths (1.1)
which may be written in the form (1.5). If the equations (1.5) are
expanded, we have

d? de? de’ [ 2 dp daxt | 1 d%
: 1 2 dp dof 1 dp s
(81) g Vo e a a e ae D

by wirtue of the conditions I7Aa*=1}4"=0 and II}(px)=p 1T} (x).

A solution of (8.1) being x*(¢), if we substitute this in (2.1), we
have £(t). We shall calculate the differential equations satisfied by
these functions £%(t). Differentiating (2.1) with respect to t{, we have
successively

det . dat

LA AL

dt A dt

e . det do? | g dE
de? =B dt dt B de ’

and hence, remembering (2.7), we have

d¥xs ; dE7 gk ; ( d%? de*  dx* dx* d&
32) &5 08 e i 1 _
(82) a g g ‘<dt’=+”“ dt dt)z"dt dt

by virtue of the relations

Ei=EiEi=di-u'p,, Mher=0, B9 =05

and EZE:E} .=E%, ,+p,Ei\+pEi,.
Substituting (8.1) in (3.2), we find

dt ; dE7 dEF 1 dp da* \ d&¢
= =2 49 ~ 2. )2 =
gt g g T (p dt+p“dt)dt 0
Introducing here a parameter s by the equations
1 dp d” dit dt \2
3.3 2( = 0P 4, BT Vo @ /(0L
(3:3) (p dt+p“dt) dsz//<ds>'
the above equations are written in the form
d? ; dET dEk
3.4 LN S AL S Y )
©4) & T as g 0

which shows that the functions defined by (2.7) are coefficients of an
affine connection which gives the same systcm of paths as the pro-
jective connection /7). The differential equations of paths in non
homogeneous coordinates being thus obtained, we shall consider the
relation between the parameters ¢ and s. Differentiating (3.3) with
respect to ¢, we have
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oL (G) 5 i G (G G )]

d3t dt di dt \*
(%) -2(55) /(%)
Substituting (3.1) in the above equation, we obtain

_2(dp\_4 dp  da* da* da”
(8.5) pz(dt o dt P ar 4t dt

=05/ (%) %) /(&)
The equations (3.3) and (8.5) give us

69 Ga=f/E /()

da’
ds °

+ 2Py, —ITS,

= 2(1’;:, v~ D ”/fu +p.upv)ﬁ“
ds
On the other hand, we have from (2.6)
Puv _p/l”/fv +p.0.= _E{”E{cv[;?k .
Substituting this in (8.6) we have finally

dg? dE"
3.7 t, s} =—2I%
1) {t.sy= “ds ds

Thus, the parameter ¢ being defined by a Schwarzian derivative,
the t is a projective parameter.
4. The equations (2.7) can also be written in the form

4.1) B, ,=Eil}—-EE"}—p.El,—pE,.
Expressing the integrability conditions of these equations, we find
(42) 0=E4L11},,~EL.ELEY Rimm
Doy = AT+ 0D E b — (0= D21l o+ PuD)E,
—ELpotEUpoy,

where I12,, and R;, are curvature tensors formed with 17} and
respectively. It is well known that the curvature tensor /17, satisfies

II-}}uuMu = ”-’}wa}xu =] 5,..,,‘,,96‘” =0.
The equations (4.2) can also be written as
(43) ELEFERECI =R+ [k — 0% — 85 (i —

If the projective curvature is normal, that is to say, if the pro-
jective curvature tensor I/4,, satisfies the condition 17%,,=0, we have
from (4.3), by contraction
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(4.4) 0=Rpy+nly—1I%;,

where Rj, is the contracted curvature tensor Rij.
From (4.4) we have

(45) ro,=— "Bt R
! n—1

Substituting these values of I}, in (4.8), we have
(4.6) ELEEpE:°1l},

1_ 1 (nR i+ Ry;)0%

; 1 ;
=Rljun— a1 (nR i+ Ries) 34+ pr

1
————0Y R — Ruz)
+ e (R — Ry

which shows that E%,E“EpE;°Ill%,, is the Weyl projective curvature

tensor.
Substituting (4.5) in (8.7), we have

& de
ds ds °

Thus, our projective parameter ¢ coincides with what was discussed
by L. Berwald and J. Haantjes.

%)) {t,s}=—2_Rj
n—1



