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45. Projective Parameters on Paths in D. van Dantzig’s
Projective Space.

By Kentaro YANO.
Mathematical Institute, Tokyo Imperial University.

(Comm. by S. K.KEY, M..A., April 12, 1944.)

1. J. Haantjesn discussed a few years ago the projective geometry
of paths with the use of D. van Dantzig’s homogeneous curvilinear
coordinates). In a generalized projective space H referred to a system
of van Dantzig’s homogeneous curvilinear coordinate (x)), if we in-
troduce a projetive connection // satisfying the three conditions-
(i) (IIJ/O)x=-ll, (ii) fl--II and (iii) //Jx=0, the equations
of paths or of autoparallel curves are

(1.1)
dr

/ 11 dx ddr dr -d-- +

The finite equations of a path being (r), Haantjes introduces
two homogeneous coordinates u" on each path. Then the equations of
paths may also be written as

(1.2) x =x(u),

where the x(u) are homogeneous functions of u" of degree 1, and the
differential equations of paths take the form

(1.3) ua----- +//
x" x _/’iS

The functions F appearing in (1.3) transform like the coefficients
of a projective connection .in an H, and satisfy the same conditions as
(i), (ii) and (iii). Then, J. Haantjes proves that the curvature tensor
formed with the F vanishes identically and therefore there xists a
coordinate system (u) for which F are all zero. This special co-
ordinate system being determined up to linear homogeneous trans-
formations with constant coefficients, the non homogeneous parameter

(1.a) t=u’/u
is determined up to linear fractional transformations. Thus, t is a
projective parameter defined on each path. J. Haantjes proves then

1) J. Haantjes: On the projective geometry of paths, Proc. Edinburgh Math.
Soc. 5 (1937), 103-115.

2) D. van Dantzig- Theorie des projektiven Zusammenhangs n-dimensionaler
Riiume, Math. Ann. 106 (1932), 400-454; J.A. Schouten and J. Haantjes: Zur all-
gemeinen projektiven Differentialgeometrie, Compositio Math. 3 (1935), 1-51.
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that, in the case of so-called normal projective connection, t coincides
with the L. Berwald’s preferred projective parameter1).

In previous papers), the present author remarked that choosing
a suitable function p and a suitable parameter t, we can write the
differential equations (1.1) in the form

(1.5) -dPx- + II(px) dP dpx -0
dt dt dt

and the parameter t in (1.5) is a projective parameter. In the present
Note, we will show that the parameter t coincides with that of L.
Berwald not only in the case of normal projective connection, but also
in the case of general projective connection.

2. To compare J. Haantjes’ theory with L. Berwald’s one or with
the author’s one, we must introduce the non homogeneous coordinate
system () in H. The non homogeneous coordinate system () may
be defined by

(2.1) e e(, x , ..., x’),

where (x) are homogeneous functions of degree zero, and hence

(2.2) E.x=O, where E.==8/6x
the rank of the matrix (E.) being n.

To define the inverse of (E), we introduce a covariant projective
vector p satisfying

(2.3) px=1,

and being the homogeneous functions of x of degree -1.
Then the inverse (Ei) of (E.) is defined by means of the equa-

tions
(2.4) EE.=, and Ep=O.

It will be easily proved that the (Ei) and (E.) satisfy the re-
lations

(2.5) E EE.,=3-xp
The (E:), (E) and E being thus defined, we introduce the

quantities F and I) by means of the equations

(2.6) Ik EEi}(p. pII)
and

(2.7) I. EEiJ(E. EH)
respectively. It will be proved in the next paragraph that F] are
components of a tensor which defines the projective parameters on

1) L. Berwald" On the projective geometry of paths, Annals of Math. 3Y (1936),
879-898.

2) K. Yao: Les espaces connexion projective et la g4omtrie projective des
paths, Annales Scientifiques de l’Universit de Jassy, Z (1938), 395-464; Projective
parameters in projective and conformal geometries, Proc. 20 (1944), 45-53.
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paths and are the coefficients o an affine connection which gives
the same system o paths as the projective connection //.

The choice of the covariant projective vector p being quite
arbitrary but for the condition (2.8), we can take

(2.8)

instead o . The and p are both covariant projective vector
fields satisfying (2.3), the is also a covariant projective vector field
satisfying

(2.9) --0.
If we effect the transformation of p of the type (2.8), the matrix

(E) is invariant, say, E=E. but (Ej) is changed into (Ej) follow-
ing the formulae

(2.10) --E -x
where

(2.11) =E and consequently by (2.5) and (2.9) q--E[.

Denoting by -a and the functions (2.6) and (2.7) defined by
the . and respectively, we have

E’’E"" ,I1)(2.12) / l-
and

(2.3) r-=r--
by virtue of the relations

+p,=0 z",.+=0 and +xp,.+p=0, z p,.

obtain from (2.8), (2.9) and the fact that p, and are th homo-
geneous functions of of degr -1.

On the other hand, differentiating the equations =E. with
respt to , we have

from which

(2.4) ’E""
by virtue of (2.7) and (2.11). Thus, the equations (2.12) may also
writn as

(2.15) F -. + -.The equations (2.18) and (2.15) show that the funcgons and
are the coefficients of a projtive conntion studied by the

American SchooP and consequently, as the present author show,
of . Cartan’s projective connection.

1) See, for example, O. Veblen: Projektive Relativit/itstheorie, Berlin, Springer,
1933.

2) K. Yano: Les espaces A connexion projective et la gom(}trie projective des
paths, loc. cit.
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We observe that the coecients 1t of the projective connection
being symmetric, the functions . defined by (2.7)are symmetric with
respect to two indices j’ and k, but the functions .0 defined by (2.6)
are not necessarily symmetric with respect to two lower indices.

3. In this paragraph, we consider the equations of paths (1.1)
which may be written in the form (1.5). If the equations (1.5) are
expanded, we have

(3.1)
dt.

{- 11d d 2 dp d___ -t- 1 d 0

by wrtue of the conditions II, I1=0 and II(x) -II(x).
A solution of (3.1) being xJ(t), if we substitute this in (2.1), we

have (t). We shall calculate the differential equations satisfied by
these functions (t). Differentiating (2.1) with respect to t, we have
successively

d -EJdt dt

dZ dx" dx kEJdt. -E.. dt dt dt

and hence, remembering (2.7), we h.v.

d. de d(3.2) -d-+

by virtue of the relations

dx dx d
) "p.

dt dt

E2=EE=-xp, II’", =0, E.] dx d
dt dt

and pE.+pE

ubstuting (3.1) in (3.2), we find

-de-+ at T=o
Introducing here a parameter s by the equations

he above equations are written in he form

(3.4) .-+Og de de-0
ds ds ds

which shows that the functions defined by (2.7) are coefficients of an
affine connection which gives the same systcm of paths as the pro-
jective conntbn H. The differential equations of paths in non
homogeneous coordinates being thus obtained, we shall consider the
relation tween the paramers t and s. Differentiating (3.3) with
respect to t, we have
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dt

(3.5)

The equations (3.3) and (3.5) give us

(3.6) {t, s} = dt / dt 3 ( dt /( dt )z-/-d -’,-: : / d

ds ds
On the other hand, we have from (2.6)

Substituting this in (3.6) we have finally

(.7) {t, s} -2r. ds ds

Thus, the parameter t being defined by a Sehwarzian derivative,
the is a projective parameter.

4. The equations (2.7) ean also be written in the form

(4,1) E.=EH-EEQi-pE-pE.
Expressing the integrability conditions of these equations, we find

(4.2) 0 EH-E.E.E.R.
+,(, HL+p)E (, p11+)E
Ep,,+Ep,

where H, and R are curvature tensors formed with
respeetively. It is well known that the curvature tensor H., satisfies

The equations (4.g) can also be written as

(4.8) wi R.,,w.. R

If the projective curvature is normal, that is to say, if th pro-
jective curvature tensor H, satisfies the condition Haa=0, we have
from (4.3), by contraction

p k dt / p dt ’ dt dt dt

Substituting (3.1) in the above equation, we obtain
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(4.4) 0=R-t-F-/,
where R is the contracted curvature tensor R..

From (4.4) we have

(4.5) = n,_,
Substituting these values of F in (4.3), we have

(4.6) v’’’n

R) + 1 (+ )aR. _1 i (nR+ R

+ I (R-R),

which shows that "E.E EE H. is the Weyl projective curvature
nsor.

Substituting (4.5) in (3.7), we have

(4.7) ($, s} Rde de
n-1 ds ds

Thus, our projtive parameter $ coincides with what was discuss
by L. Berwald and J. Haantjes.


