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44. A Screw Line in Hilbert Space and its Application
to the Probability Theory*.

By Kiyosi IT0.
Mathematical Institute, Nagoya Imperial University.
(Comm. by S. KAKEYA, M.LA., April 12, 1944.)

§1. A. Kolmogoroff has investigated the spectralization of the
screw line in Hilbert space in his paper “ Kurven im Hilbertschen
Raum, die gegeniiber einer einparametrigen Gruppen von Bewegung
invariant sind Y, where he has promised to give the complete proofs
in another paper. In this note I will show his results, although the
proofs may run in the same way as his own. And I will apply the
results to the theory of two-dimensional brownian motions.

§2. Under a congruent transformation in a Hilbert space we
understand an isometric mapping from 9 to 9 itself. On account of
the Mazur-Ulam’s theorem® any congruent transformation K is ex-
pressible in the form:

(2.1) Kr=a+Ux

where a is a fixed element in  and U is a unitary operator.

Following after Kolmogoroff, we call a curve g(t) in $ as a screw
line (induced by a | |-continuous one-parameter group {K,} of congruent
transformations), if we have g(f)=Kz(0) for any {. We have clearly
t(t+9) =K. 5(0)= K, K;z(0)=K.;x(t). We define the moment function
By(t, 7, 5) of any curve g(¢) by

(2.2) By(t, v, o)=(5t+1)—x(®), x(t+2)—1(0)) .

Theorem 1. A mecessary and sufficient condition that x(t) should
be a screw line is that By(t,t, o) is independent of t and comtinuous
n v and qg.

Proof. The necessity is clear by the identity :

By(t, 7, o)=(K.5(0)— 1(0), K,x(0)—1(0)) .

Sufficiency. The following proof is essentially due to Mr. K. Yosida.
Suppose that Bi(t,, s)=DB(r,s), where B(r,s) is continuous in = and
o. Let §; be the linear manifold determined by the set z(t)—1(s),
—o <s5,t<o, and P be DOH;,. Since we have

(2.3) ” 250 (E(ti'f' )= kst )) 1}2
=4 0sB(t— 0 ti—85) = | S as (st —x(6)) [},

the following isometric mapping V., can be well defined in $,:

* The cost of this research has been defrayed from the Scientific Expenditure of
the Department of Education.

1) C.R. (Doklady), 1940, vol. 26, 1. Cf. also Neumann and Schoenberg: Fourier
integral and metric geometry, Trans. Amer. Math. Soc. vol. 50, 2, 1941,

2) Cf. S. Banach: Theorie des opérations linéaires, p. 166.
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(2.4) Shoas(alt) —1(6) = Sas(altet ) —2lsit)) -

Since we have V. '=V_. by the definition, we can extend V. and
define a unitary operator in 9,, say V. again.

V.V,=V.., is clear. The continuity of V. (with respect to )
follows from that of B(, o).

Let I, be the identical operator in ;. Then V.®I, will be a
unitary operator in $=9,®9,, say U.. Thus we have a continuous
one-parameter group {U.} of unitary operators.

We put a.=x(z)—U.z(0) and define K, by Kiyr=a.+Uyx By
simple calculations we obtain K.K,=K;.,. Therefore g(t) is a screw
line induced by the group {K.}.

§3. A canonical form of a screw line.

Theorem 2 (A. Kolmogoroff). A mecessary and sufficient condition
that x(t) should be a screw line is that it is expressible in the form :

oo e".lt_l
(31) w)-10=| <=Lown,
where @ satisfies
(8.2) orthogonality: ENE'=0 implies (¢(E), (D(E”))=0,

and ]
(8.8) j | 2(d2) B+ J Il (P(dzl) F ~ o

st w1 A
Proof. Sufficiency. We will caleulate the moment function B, (%, ,0).

By(t, 7, o) = (2t +7) —3(t), 5(t+0) — (1))

o GA+T) . piAt ~tA@+T) _ - AL
o e Rtticl el P2 Y
~oo0 %A
0o ',lr —_— —
=[" £l e Lo
o U

By Theorem 1 we can see that £(t) is a screw line.

Necessity. Let {K.} be the group that induces x(f). Put Kyx=
a:+Ug. Then {U:} is a continuous one-parameter group of unitary
operators. By the Stone’s theorem we have

3.4) Ut=f *E(dA) .
Now we have

1(£)-0=3(:(2)-:(*71))
=§1U1;—‘(5( ) 3:(0)
=" GBI (5(L)-50) (v 69)

"< : ~LE@)(5(1)-20).

—c0 e‘l? 1

*)
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E(dl)(x( ) 2;(0)) .

(x0)-x0)

(L,ﬁ <=L Ban(x () 1)) (by ()

8
Put D.(a, B)= j
« w1
Then we have

e, ﬁ)=j” e

=§"e

-1
- 5” y : » ran(i()-w0) (¥ th§f°2t:}2;§;’nality
=@ p(a, B) .

Thus we see that @,(a, ) is independent of n, say @(a, 3). Then we
obtain

(35) i(2)-10=" -‘i"ffT‘l—mz).

-0

The orthogonality of @ follows at once from that of E(d2). Next
we have

j‘_ln o1 = j‘ | S [ E@D ;) —)f

< (Z)|E-10G0-0)f <=
1o@n? _

5 By the orthogonality
wizr A

We have only to prove j

of @ we have,

B(E E)=(5(£) -0 o(£)-5)

2

j‘1<|;11 <A 9“%.—-1 ¢(d/1)uz 1<A<x)

en_

§151M<A

On account of the continuity of B(z, t) (E (z:,(r)—g(O), g(r)—g(O))),

TAT __ 2 1
we have Br, 02|  [<=Lfjo@nr, and so [ B dz 1
1sii<a 0 4

5 .M’L(%E. (...j‘lleizr_llzdz.:z(l___?.h;_)‘_)zi_ for ‘,11_2__1)

1siil<a 0 " w(dl) "2 2

Let 1 tend to o, Then we have S A ,§4jB(r, 7)dr < oo,
1514 0

Theorem 8. The measure @ in the preceding theorem is expressible
by 1(t) as follows :

1 | 1 O@R)I? .




206 K. Ité. (Vol. 20,

@6) 0l p=lim L tim 33 ([ a) (s —x6r1-0)

Tk=c<—1+%k«), 3k=c(—-1+ %_1>, for any continuity points «, B

n
of .
For the proof we shall mention some preliminary lemmas con-
cerning the @-integrability; we say that a complex-valued function
f(A) is @-integrable, if we have

37 [T irwrieane<e.

Lemma 1. Assume that |f,(1)| be bounded from above by a @-
integrable function f(1) and that liznf,,(/l)= f(2). Then we have

(3.8) lim [~ f@o@n={"_swo@n.

By Lemma 1 and by (8.3) we obtain

Lemma 2. If there exist two positive numbers A, M such that we

have |fQ)| <M for |2| <A and that |fQ)| < -2 otherwise, then

| 2]
f () is @-integrable.
The proof of Theorem 3. We put

(39) $u@=33(['e ) (00— 2r29)
and iAT, iAT,
(310) P, p=31¢ " ¢ 2 2¢
k=1 1A
Then we have
(3.11) si0=|" ["Fuanoan.

By simple calculations we obtain

2 sin (A—p)e sin de,
n

.c
—i A

, ;<2
(812) Fa(,m=33¢ ke =0
- W Asin A=A,
n
and

LI ~, —3, (AT,
(818) R4, K)=3] ¢ Th(e™ % — g 41y g KN HIn 1)
_ei(/lro—#dx)’ b‘,,+1=c(1 +_11; ) )

For any 230 and for any n we have, by (3.13),

[P man) < 1033111 @ —00+2)dn= L[ 2 sle+ 1.
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If |2]>max{|a|,[f]} and n>->==, then we have .l;#cl

T
< 24c <—72r~ for a<u<B, and so
n

SBFn(l,/x)d/x‘ < gBZISin (A—=p)e| . ‘%c' du=r rlsin (A—pe d

a a ‘%}_)‘_—_/‘(6\ ‘l| a ll'—'#l
T n
<nc(B—a).

Making use of Lemma 1 and 2 we obtain, by (3.11),

s.=" (tim SiF(l, K)an )0(d2)

—00

== (8 O FS0,0)|Z2¢, | Fa,p)]
-j sllmF,,(l,p)d/x(ﬂ(d/l) ( = zaFo)

-V @

o (B of —
=2X_J“%/‘—)9—dp¢(dl) (by (8.12))

® =2j5 j“” P800 sop(da).

adea-n 0

I e e e . (B-D gin §

n order to obtgin S=Ilim S.(c) we shall first estimate =2 dg
o0 ca-n 0

in two ways:

r"“’ sin 4 w‘ <r sin 4 0
a0 =J.. 0 ’
and

Y"H’ sinodo' < c(B—a) < 2(B—a)
oa-p 0 = cmin(la=2],|—-2]) = |2l

for |2]>2max {|«|, |B8]}.

Therefore, making use of Lemma 1 and 2 again, we obtain, from

0, s=2 " tim [*™508 go(gz), it & and g are both continvity
—o0 €% J g(g—1) 0
points of @.

§4. A ocanonical form of a screw function. A complex-valued
function B(r,0), —o <7, ¢ <o is called a screw function, if there
exists a screw line ¢ such that B:(t, z, 0)=Bl(x, o).

Theorem 4 (A. Kolmogoroff). A mecessary and sufficient condition
that B(z, o) should be a screw fumction is that B(r,s) is expressible in
the form :

(41) Bl o)=[" 221 £ L pgyy,
e 24 —1A
F(d2)
where F(dr)+ = <L o
»‘mq ( 5”121 2
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Proof. The necessity is evident by Theorem 3.

Sufficiency. We define the functions £, depending on z real para-
meter r as follows: &£.(£)=0 (t37), £.(-)=1. Let $* be the system
of all linear forms of £’s with complex coefficients. We introduce an
inner produect (f,g) into $* by

(; cy(fr”"so), 92 dv(Eaﬂ— EO)) =§ clld—VB(rIU d,,) ’

(f,9) is evidently linear (conjugate linear) with respect to f(g), and
we have further

(Sheus,—8), Do, ~&) S ‘g_._'___

Let M* denote the set of all f’s such that (f,f)=0. Then H=o*/N*
may be considered as a Hilbert space. Let g(f) denote the element of
H corresponding to &. Then we have

By(t, 7, o) = (5(t+7)—x(t), t(t+0)—12(t))
=(5t+r_52, Et+a"ft)
=B(t+z, t+7)—B(t+, t)— B(t, t+ o)+ B(t, t)

=j°° -1 e _lF(dz) —B(z, q).
—w 1A

Therefore g(f) is a screw line by Theorem 1, and so B(z,s) is a screw
funetion.

Theorem 5. The measure F in the preceding theorem is expressible
in the form :

n

@2 Fap=lm (L) 1im 3 ([ %au) (B, )

O/ m>eo K, =1

=B, 74-1) — B(¥2e-1, 78) + B(se-1, Th—l)) )

r,,=c(—1 +—2;L’_i), 8,,=c(—1+—2—73n——1) for amy continuity points o, B
of F.

The proof can be achieved in the same way as in Theorem 4 and
so will be omitted.

§5. The two-dimensional brownian motion as a screw line on
LX2,P). A system of complex-valued random variables z,(w), we(£2,P),
ae€ A, is called normal, if any rendom variable of the form: ) c,-ac,,i(w),

¢;/’s being any complex numbers, is subjected to the normal law in the

§B+322
complex plane, i,e. to the law of the form: dédy. In any
normal system the orthogonality in L¥2,P) implies the (stochastic) in-
dependence. A stochastic process (¢, »), S<t< T, is called normal,
if the system {x(¢, w)} is normal. Under a (two-dimensional) brownian
motion in the time-interval (S,T), — < S, T < o, we understand
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a normal, differential®, and temporally homogeneous (complex-valued)
process.

A screw line x(t,w), —oo <t < o, in the Hilbert space L¥ %2, P)
is called normal, if it is a normal process. The moment function
B(r,0) of any normal screw line is real-valued and so is determined

by B(r,<) as follows: B(, o)=-3(B(s-+a, v+0)~B(z, ) —Blo, o).

Theorem 6. Let x(t,w) be a normal screw line in LA 2,P). A
necessary and sufficient condition that it should be a brownian motion
is that B(r,7)=a?|r|, @ being a positive constant, 1.e. that Bz, o)
2
S letal=lcl=lsD.

The proof is brief and so will be omitted.

Usually we obtain a mathematical scheme of brownian motions
by introducing a convenient probability distribution into a functional
space®. But the above theorem gives another method of constructing
the scheme.

Let C be the complex plane, and G be the probability distribution

on C such that G(E)=” —71[ e €*™dEdy. We consider the product

E
measure space (C, G)™, say (£, P). We denote by a.(w) the n-th co-
ordinate of w, n=0,1,2,.... Now we define x(¢, w), 0 < ¢t < 2r, by

int
ot w)=tag(w)+S Gnl@)e™
n%0 m

Since a,, n=0,1,2,..., are independent and normally distributed, the
system {a,} is normal and so %(f, ») is a normal process. On account
of the identities :

int 2 2
ot ) =20, )=S0 e, oo+ 1l o1 T oo
" n n¥0 n 3

we see by Theorem 2 that x(f,w) is a screw line, whose moment
int __ 2
function B(t, o) is determined by B(x, r)=2‘ i - 1| lanP=2rt for

0<t<2r. By Theorem 6 «(f, ), 0 <t<2m, is a brownian motion.
This is the scheme obtained by N. Wiener®.

By this method we cannot construct a brownian motion on an
infinite time-interval; in this point the former is more advantageous,
while the latter may be more convenient on account of its concreteness.

1 wish to express my gratitude for the kindness with which Mr.
K. Yosida has encouraged and directed me through the course of this
investigation.

8) Cf. J.L. Doob: Stochastic processes depending on a continuous parameter,
Trans. Amer. Math. Soc. vol. 42.

4) Cf. J.L. Doob. loc. cit. (8).

5) R.E.A.C. Paley and N. Wiener: Fourier transforms in the complex domain,
Chap. 9. Random functions, Amer. Math. Soc. Coll. Publ. 19, 1934.



