PAPERS COMMUNICATED

53. On the Strong Summability of Series of Orthogonal Functions.

By Gen-ichirô Sunouchi.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. Fujiwara, m.i.a., May 12, 1944.)

Let $\{\varphi_n(x)\}\$ be a system of normalized orthogonal functions in (a,b) and consider the series

(1)
$$\sum_{\nu=0}^{\infty} c_{\nu} \varphi_{\nu}(x)$$

such that

$$\sum_{\nu=0}^{\infty} c_{\nu}^2 < \infty$$
.

By the Riesz-Fisher theorem, the series (1) converges in the mean to a function f(x) in L^2 . As usual we denote by $s_n(x)$ and $\sigma_n(x)$ the partial sum and (C, 1)-mean of the series (1) respectively. In this paper we discuss the convergency of

(2)
$$\sum_{n=1}^{\infty} |s_n(x) - f(x)|^k / n, \quad k > 1,$$

and

(3)
$$\sum_{n=1}^{\infty} |s_n(x) - \sigma_n(x)|^k / n, \qquad k > 1.$$

For the case of trigonometrical system, the former is considered by Hardy and Littlewood¹⁾ and the latter by Zygmund²⁾.

As an application of our theory, we shall give an alternative proof of the Rademacher³-Menchof⁴ theorem regarding the almost everywhere convergence of the series (1).

- 1. Convergency of the series $\sum_{n=1}^{\infty} (s_n f)^2 / n$.
- (1.1) In the series (1), we get

$$\int_{a}^{b} \{ \sum_{n=1}^{\infty} (s_{n} - f)^{2} / n \} dx \leq A \sum_{n=1}^{\infty} c_{n}^{2} \log n^{5} .$$

For.

$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{a}^{b} (s_{n} - f)^{2} dx = \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{\nu=n+1}^{\infty} c_{\nu}^{2} \right) = \sum_{\nu=2}^{\infty} c_{\nu}^{2} \sum_{n=1}^{\nu-1} \frac{1}{n} \leq A \sum_{\nu=1}^{\infty} c_{\nu}^{2} \log \nu ,$$

which is the required.

For the case of trigonometrical system, we have

$$\sum_{n=1}^{\infty} c_n^2 \log n \sim \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x+t) + f(x-t) - 2f(x)|^2 / 2t dx dt.$$

¹⁾ G. H. Hardy and J. E. Littlewood, Duke Math. Journ., 2 (1936), pp. 354-382.

²⁾ A. Zygmund, Fund. Math., 30 (1938), pp. 170-196.

³⁾ H. Rademacher, Math. Ann., 87 (1922), pp. 112-138.

⁴⁾ D. Menchof, Fund. Math., 4 (1923), pp. 82-105.

⁵⁾ A, B, ... are constants, not always the same from one occurrence to another.

Thus (1.1) is a special case of the result due to Hardy and Little-wood¹⁾.

(1.2) If $\sum_{n=1}^{\infty} c_n^2 \log n < \infty$, then $\sum_{n=0}^{\infty} c_n \varphi_n$ is (C, 1)-summable almost everywhere in (a, b).

This is evident from (1.1) by the Kronecker theorem. This theorem is a classical result due to Weyl²⁾ and Hobson³⁾. Moreover Borgen⁴⁾ proved that $\sum_{n=1}^{\infty} c_n^2 \{\log(\log n)\}^2 < \infty$ is sufficient for almost everywhere (C, 1)-summability. On the other hand Chen⁵⁾ proved that this is equivalent to the Rademacher-Menchof theorem in the next section.

- 2. Proof of the Rademacher-Menchof theorem.
- (2.1) If $\sum_{n=1}^{\infty} c_n^2 (\log n)^2 < \infty$. Then $\sum_{n=0}^{\infty} c_n \varphi_n$ is convergent almost everywhere in (a, b).

The method of reduction of (2.1) from (1.2) has been sketched by Zygmund⁶⁾. But for the sake of completeness we reproduce it with some simplification.

If we put

$$A_n^a = {n+a \choose a} \sim \frac{n^a}{\Gamma(a+1)}$$
, $S_n^a = \sum_{\nu=0}^n A_{n-\nu}^a c_{\nu} \varphi_{\nu}$, $\sigma_n^a = S_n^a / A_n^a$,

then we have

$$\sigma_n^{\alpha-1} - \sigma_n^{\alpha} = (\sum_{\nu=0}^n \nu A_{n-\nu}^{\alpha-1} c_{\nu} \varphi_{\nu}) / \alpha A_n^{\alpha}$$

and

$$\int_{a}^{b} (\sigma_{n}^{a-1} - \sigma_{n}^{a})^{2} dx = \{ \sum_{\nu=0}^{n} \nu^{2} (A_{n-\nu}^{a-1})^{2} c_{\nu}^{2} \} / \alpha^{2} (A_{n}^{a})^{2} .$$

Accordingly

$$\begin{split} &\sum_{n=0}^{\infty} \int_{a}^{b} \frac{(\sigma_{n}^{a-1} - \sigma_{n}^{a})^{2}}{n+1} dx = \sum_{n=0}^{\infty} \left\{ \sum_{\nu=0}^{n} \nu^{2} (A_{n-\nu}^{a-1})^{2} c_{\nu}^{2} \right\} / a^{2} (n+1) (A_{n}^{a})^{2} \\ & \leq B \sum_{n=0}^{\infty} \left\{ \sum_{\nu=0}^{n} \nu^{2} (n-\nu+1)^{2(a-1)} c_{\nu}^{2} \right\} / (n+1)^{2a+1} \\ & \leq B \sum_{\nu=0}^{\infty} \nu^{2} c_{\nu}^{2} \sum_{n=\nu}^{\infty} (n-\nu+1)^{2(a-1)} / (n+1)^{2a+1} \\ & \leq B \sum_{\nu=0}^{\infty} \nu^{2} c_{\nu}^{2} \sum_{n=\nu}^{2\nu} (n-\nu+1)^{2(a-1)} / (n+1)^{2a+1} \\ & + B \sum_{\nu=0}^{\infty} \nu^{2} c_{\nu}^{2} \sum_{n=2\nu+1}^{\infty} (n-\nu+1)^{2(a-1)} / (n+1)^{2a+1} \\ & \leq P + Q \,, \qquad \text{say}. \end{split}$$

¹⁾ G. H. Hardy and J. E. Littlewood, loc. cit.

²⁾ H. Weyl, Math. Ann., 67 (1909), pp. 225-245.

³⁾ E. W. Hobson, Proc. London Math. Soc., 12 (1912), pp. 297-308.

⁴⁾ S. Borgen, Math. Ann., 98 (1928), pp. 125-150.

⁵⁾ K. Chen, Tôhoku Math. Journ., 29 (1928), pp. 125-150.

⁶⁾ A. Zygmund, Fund. Math., 10 (1927), pp. 356-362.

Then
$$P \le B \sum_{\nu=0}^{\infty} \nu^2 c_{\nu}^2 (\nu+1)^{-2a-1} \sum_{n=\nu}^{\infty} (n-\nu+1)^{2(a-1)}$$
 $(1 \ge a > 1/2)$
 $\le B \sum_{\nu=0}^{\infty} \nu^{-2a+1} c_{\nu}^2 \nu^{2a-2+1} \le C_1 \sum_{\nu=1}^{\infty} c_{\nu}^2,$
 $Q \le B \sum_{\nu=1}^{\infty} \nu^{-2a+1} c_{\nu}^2 \sum_{n=2\nu+1}^{\infty} n^{2(a-1)} \le C_2 \sum_{\nu=1}^{\infty} c_{\nu}^2.$

Thus we get

$$\int_a^b \sum_{n=0}^\infty (\sigma_n^{\alpha-1} - \sigma_n^{\alpha})^2/(n+1) dx \leq D \sum_{n=0}^\infty c_n^2, \quad \text{where} \quad 1 \geq \alpha > 1/2.$$

In the analogous way, we get for $\alpha=1/2$

$$\int_{a}^{b} \sum_{n=0}^{\infty} (\sigma_{n}^{a-1} - \sigma_{n}^{a})^{2} / (n+1) dx \leq E \sum_{n=1}^{\infty} c_{n}^{2} \log n.$$

Thus we proved the theorem:

(2.1.1.) If
$$1 \ge a > 1/2$$
 then we have

$$\int_a^b \sum_{n=0}^\infty (\sigma_n^{a-1} - \sigma_n^a)^2 / (n+1) dx \leq A \sum_{n=0}^\infty c_n^2,$$

and for $\alpha = 1/2$,

$$\int_{a}^{b} \sum_{n=0}^{\infty} (\sigma_{n}^{a-1} - \sigma_{n}^{a})^{2} / (n+1) dx \leq B \sum_{n=1}^{\infty} c_{n}^{2} \log n.$$

Further we have

(2.1.2.) If
$$\sum_{\nu=0}^{n} (\sigma_{\nu}^{\alpha})^{2}/(n+1) \rightarrow 0$$
, then $\sigma_{n}^{\alpha+1/2+\varepsilon} \rightarrow 0$, for $\alpha > -1/2$, $\varepsilon > 0$ and $s_{n} = o(\sqrt{\log n})$ for $\alpha = -1/2$.

For,
$$|S_n^{\alpha+1/2+\epsilon}| = |\sum_{\nu=0}^n S_{\nu}^{\alpha} A_{n-\nu}^{-1/2+\epsilon}| = \sum_{\nu=0}^n |\sigma_{\nu}^{\alpha} A_{\nu}^{\alpha} A_{n-\nu}^{-1/2+\epsilon}|$$

$$\leq \sqrt{\sum_{\nu=0}^n (\sigma_{\nu}^{\alpha})^2} \sqrt{\sum_{\nu=0}^n (A_{\nu}^{\alpha} A_{n-\nu}^{-1/2+\epsilon})^2} \leq o(\sqrt{n}) O\left(\sqrt{\sum_{\nu=0}^n A_{\nu}^{\alpha} A_{n-\nu}^{-1+2\epsilon}}\right)$$

$$= o(\sqrt{n}) O(\sqrt{n^{2\alpha+2\epsilon}}) = o(n^{\alpha+1/2+\epsilon}).$$

The remaining part is analogous.

Proof of the theorem. If $\sum_{n=1}^{\infty} c_n^2 \log n < \infty$, then by (1.2), (1) is (C, 1)-summable. From (2.1.1.) and (2.1.2.), $s_n = o(\sqrt{\log n})$. By the well known theorem, the series

$$\sum_{n=2}^{\infty} \frac{c_n}{\sqrt{\log n}} \varphi_n$$

converges almost everywhere, provided that $\sum_{n=1}^{\infty} c_n^2 \log n < \infty$. Thus $\sum_{n=0}^{\infty} c_n \varphi_n$ converges almost everywhere, provided that $\sum_{n=1}^{\infty} c_n^2 (\log n)^2 < \infty$.

3. Behaviour of the series
$$\sum_{n=1}^{\infty} |s_n - f|^k / n$$
.

(3.1) If
$$|\varphi_n(x)| \leq K$$
, $(n=0,1,2,...)$ and $f \sim \sum_{\nu=0}^{\infty} c_{\nu} \varphi_{\nu}$, then
$$\int_{a}^{b} \sum_{n=1}^{\infty} |s_n - f|^q / n dx \leq A \sum_{n=1}^{\infty} |c_n|^q n^{q-2} \log n,$$
 and
$$\left(\int_{a}^{b} \sum_{n=1}^{\infty} |s_n - f|^q / n dx \right)^{1/q} \leq B \left(\sum_{n=1}^{\infty} |c_n|^p (\log n)^{p/q} \right)^{1/p},$$
 where
$$1$$

For, by Paley's theorem,

where

$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{a}^{b} |s_{n} - f|^{q} dx \leq A \sum_{n=1}^{\infty} \frac{1}{n} \sum_{\nu=n+1}^{\infty} |c_{\nu}|^{q} \nu^{q-2}.$$

The righthand side series is less than

$$\leq A \sum_{\nu=2}^{\infty} |c_{\nu}|^q \nu^{q-2} \sum_{n=1}^{\nu-1} 1/n \leq B \sum_{\nu=1}^{\infty} |c_{\nu}|^q \nu^{q-2} \log \nu$$
.

 $\left\{\sum\limits_{i=1}^{\infty} |c_{
u}|^q
u^{q-2} (\log^{1/q}
u)^q
ight\}^{rac{1}{q}} \leqq C igl(\sum\limits_{i=1}^{\infty} |c_{
u}|^p (\log
u)^{p/q} igr)^{1/p}.$ Further

Accordingly
$$\left(\int_a^b \sum_{n=1}^\infty |s_n - f|^q / n dx\right)^{1/q} \leq C \left(\sum_{\nu=1}^\infty |c_\nu|^p (\log \nu)^{p/q}\right)^{1/p}.$$

Thus we get the theorem.

Analogously we get

(3.2) If
$$|\varphi_n(x)| \leq K$$
 $(n=0, 1, 2, ...)$, then
$$\int_a^b \sum_{n=1}^\infty |s_n - f|^p / n dx \geq D \sum_{n=1}^\infty |c_n|^p n^{p-2} \log n$$
 and
$$\left(\int_a^b \sum_{n=1}^\infty |s_n - f|^p / n dx \right)^{1/p} \geq E \left(\sum_{n=1}^\infty |c_n|^q (\log n)^{q/p} \right)^{1/q},$$
 where
$$1$$

These results were given by Izumi and Kawata¹⁾ under more severe conditions.

4. Behaviour of
$$\sum_{n=1}^{\infty} |s_n - \sigma_n|^k / n$$
.

$$(4.1) \quad If \quad |\varphi_{n}(x)| \leq K \quad (n=0,1,2,...), \quad then$$

$$\int_{a}^{b} \sum_{n=1}^{\infty} |s_{n} - \sigma_{n}|^{q} / n dx \leq A \sum_{n=1}^{\infty} n^{q-2} |c_{n}|^{q},$$
and
$$\left(\int_{a}^{b} \sum_{n=1}^{\infty} |s_{n} - \sigma_{n}|^{q} / n dx\right)^{1/q} \leq B \left(\sum_{n=1}^{\infty} |c_{n}|^{p}\right)^{1/p},$$
where,
$$1
For,
$$s_{n} - \sigma_{n} = \left(\sum_{\nu=1}^{n} \nu c_{\nu} \varphi_{\nu}\right) / (n+1).$$$$

¹⁾ S. Izumi and T. Kawata, Tôhoku nath. Journ 45 (1939), pp. 134-144.

By Paley's theorem,

$$\int_{a}^{b} |s_{n} - \sigma_{n}|^{q} dx = \int_{a}^{b} |\sum_{\nu=1}^{n} \nu c_{\nu} \varphi_{\nu}| / (n+1) |q| dx$$

$$\leq A \{ \sum_{\nu=1}^{n} |\nu c_{\nu}|^{q} \nu^{q-2} \} / n^{q}.$$

Therefore
$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{a}^{b} |s_{n} - \sigma_{n}|^{q} dx \leq A \sum_{n=1}^{\infty} \frac{1}{n^{q+1}} \{ \sum_{\nu=1}^{\infty} |\nu c_{\nu}|^{q} \nu^{q-2} \}$$

 $\leq A \sum_{\nu=1}^{\infty} |\nu^{2q-2}| |c_{\nu}|^{q} \sum_{n=\nu}^{\infty} 1/n^{q+1}$
 $\leq B \sum_{\nu=1}^{\infty} |\nu^{2q-2}| |c_{\nu}|^{q} \cdot |\nu^{-q}| \leq B \sum_{\nu=1}^{\infty} |\nu^{q-2}| |c_{\nu}|^{q}.$

Thus we get the first inequality of the (4.1). The remaining is given by

$$(\sum_{\nu=1}^{\infty} \nu^{q-2} \, | \, c_{
u} \, |^q)^{1/q} \leq C(\sum_{\nu=1}^{\infty} | \, c_{
u} \, |^p)^{1/p} \, .$$

Thus we complete the proof of theorem.

Analogously we get

(4.2) If
$$|\varphi_n(x)| \leq K$$
, $(n=0,1,2,...)$, then
$$\int_a^b \sum_{n=1}^{\infty} |s_n - \sigma_n|^p / n dx \geq C \sum_{n=1}^{\infty} n^{p-2} |c_n|^p,$$

$$\left(\int_a^b \sum_{n=1}^{\infty} |s_n - \sigma_n|^p / n dx \right)^{1/p} \geq D(\sum_{n=1}^{\infty} |c_n|^q)^{1/q}.$$
 where
$$1$$

These results were considered also by Izumi and Kawata¹⁾ under more severe conditions.

5. Behaviour of the sequence $\{s_{p_n}\}$.

For any increasing sequence $\{p_{\nu}\}$, (C, 1)-summability of $\{s_{p_{\nu}}\}$ is considered by Zalcwasser²⁾. He opened the problem: For any $f(x) \in L^2$ is the sequence $\{s_{p_{\nu}}\}$ (C,1)-summable for all $\{p_{\nu}\}$, where $\varphi_{n}(x)$ is trigonometrical system. Regarding this problem we get

(5.1) If $\sum_{\nu=1}^{\infty} c_{\nu}^2$ converges, (C, 1)-summability of $\{s_{\nu_{\nu}}\}$ is equivalent to the convergency of $\{s_{p_{\alpha\nu}}\}$.

If $c_{\nu} \neq 0$, then we put

$$\begin{aligned} \varphi_{\nu}(x) &= (c_{p_{\nu-1}+1}\varphi_{p_{\nu-1}+1} + \dots + c_{p_{\nu}}\varphi_{p_{\nu}})/\gamma_{\nu} , \\ \gamma_{\nu} &= (c_{p_{\nu-1}+1}^2 + \dots + c_{p_{\nu}}^2)^{1/2} , \end{aligned}$$

where

¹⁾ S. Izumi and T. Kawata, Tôhoku Math. Journ., 45 (1939), pp. 212-218.

²⁾ Z. Zalcwasser, Studia Math., 6 (1936), pp. 82-88.

and consider the series $\sum_{\nu=0}^{\infty} \gamma_{\nu} \psi_{\nu}(x)$.

Since $\{\psi_n(x)\}$ is a normalized orthogonal system and $\sum_{\nu=0}^{\infty} \hat{\tau}_{\nu}^2 < \infty$, the (C,1)-summability of $\sum_{\nu=0}^{\infty} \gamma_{\nu} \psi_{\nu}(x)$ is equivalent to the convergency of $\{t_{2^{\nu}}\}$ where t_{ν} is the ν -th partial sum of $\sum_{\nu=0}^{\infty} \gamma_{\nu} \psi_{\nu}(x)^{1}$. Thus we get the theorem.

From this, Zalcwasser's problem will perhaps be negatively answered, but the author could not conclude it.

¹⁾ S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, (1935), p. 190.