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0. It is well known that a vector v(s) defined on each point of
the curve x(s) in a Riemannian space V is said to be parallel along
the curve, if it satisfies the differential equations of the form

(0.1) v dv +()v’ dx =0
ds ds ds

{J} being the Christoffel symbols of the second kind. Following E.
Cartan, the Euclidean connection without torsion of the Riemannian
space being defined by

dM=dxe de, (}d:e

if we develop the curve on the tangent space at a point of the curve,
the directions v(s) defined as above along the curve will be found to
be parallel along the curve developed on the tangent space, for, the
equations (0.1) just show that the geometrical variation of the vector
ve along the curve vanishes. This will be the most natural inter-
pretation of Levi-Civita’s parallelism.

On the other hand, we have studied, in a previous paper1), the
concurrency of the directions defined along a curve in Riemannian
spaces. A vector v(s) defined on each point of the curve x(s) in a
Riemannian space is said to be concurrent along the curve, if it
satisfies the differential equations of the form

dx/ + av
ds

=0,

where a is a suitable function of s. In fact, these equations show
that the geometrical variation of the point M-l-ave vanishes along
the curve, and hence, if we develop the curve x(s)on the tangent
space at a point of the curve, all the directions v(s) defined on each
point of the curve pass through the fixed point M+ave.

Generalizing these concepts of parallelism and concurrency, we
shall study in the present Note the torso-forming directions in Rieman-
nian spaces. The torso-forming directions may be considered in affinely
or projectively connected spaces. We have already indicated an ap-
plication of torso-forming directions to the geometrical interpretation
of the projective transformations of asymmetric affine connections).

1) K. Yano: Sur le paralllisme et la concourance dans l’espace de Riemann.
Proc. 19 (1943), 189-197.

2) K. Yano" Jber eine geometrische Deutung der projektiven Transformationen
nicht-symmetrischer affiner Obertragungen. Proc. 20 (1944), 284-287.
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1. Consider a vector v(s) defined along a curve x(s) in a
Riemannian space and develop the curve z(s) on the tangent space at
a point of tae curve. If, after the development, the directions defined
by v(s) form a developable surface or torse, the directions defined by
v(s) are said to be torse-forming along the curve in the Riemannian
space.

In order that the directions v(s) defined along the curve x(s) be
torse-forming, it is necessary and sufficient that the geometrical varia-
tion of the point M/ave be in the direction ve for a suitable func-
tion a of s; say

d (M+v%) ve,
ds

from which we obtain

(1.1) dz "t- av v
/ being another suitable function of s.

If a=0, the vector v is tangent to the curve.
from (1.1)

(1.2) v p dx
ds -s +qv

where

(1.3) p= 1 1(/t d_)---, q--

If a 0, we have

Conversely, suppose that we have a vector v(s) defined along a
curve x(s), and satisfying the differential equations of the form (1.2).

If p=O, the vector v is parallel along the curve. If p0,
putting

1 1 dp_q
p p ds p

we have the equations of the form (1.1). Hence, we have the
Theorem: In order that the directions v(s) defined along the curve
x(s), and not tangent to the curve be torse-forming along the curve, it
is necessary and sucient that the covariant derivative of v(s) along
the curve be a linear combination of the v and the tangent vector
dx
ds

2. We shall consider, in this paragraph, a torse-forming vector
field, that is, a vector field which is always torse-forming along any
curve traced in the Ridmannian space V,. In this case, we have,
from (1.2),

(2.1) v dx p dxa--s -s +qv
the semi-colon denoting the covariant derivatives with respect to {}.

daAs these equations must be satisfied for any directions ---, we

have
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(2.2) v! p/av

for a suitable scalar o and a suitable vector a.
The vector v satisfying the equations of the form (2.2), the unit

vector v’]v, where v denotes the length of v, satisfies also the equa-
tions of the same form, hence we can assume that the v in (2.2) is
a unit vector. Then multiplying (2.2) by v,=g,v" and summing up
for the index 2, we find

0-- pv, + a, from which a, pv,.

Substituting this in (2.2) we have

(2.3) v,=p(-v,v),
or in covariant form

(2.4) vx,:,,--p(g,,,-v,v,,)

These equations show that the covariant derivative v,: of the
vector v is symmetric with respect to lower indices / and , hence
we have

v v 0,x x
which shows that vt, is a gradient vector of a scalar F(x), that is to
say,

F

Thus, there exists, in our Riemannian space V,, a family of
hypersurfaces F(xl, x, ...,x’)=constants to which the vector field v
is normal.

On the other hand, we know that a hypersurface whose normals
are always torse-forming along any curve traced on it is totally um-
bilical. Hence the hypersurfaces F-constants are all totally umbilical.
Moreover the equations (2.3) show that vv vanishe, hence the curves
generated by v are all geodesics. Thus we have the
Theorem: If a Riemannian space V, admits a torse-forming vector
field v, it contains a family of o totally umbilical hypersurfaces whose
orthogonal trajectories are geodesics.

3. Suppose that our Riemannian space V. contains a family of
totally umbilical hypersurfaces whose orthogonal trajectories are

geodesics. We shall then choose a coordinate system with respect to
which the totally umbilical hypersurfaces are represented by the
equations =constants, and their orthogonal trajectories by =con-
stants. (i, , k, 1, 2, ..., n- 1)

Thus the fundamental quadratic differential form of the space
may be written as

(8.1) ds g,(x?)dxdcr] + g,,(x)dx,"d,x
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The curves defined by x=constants being geodesics,
have1)

(3.2) {} 0 or -g - x --2 --Z
from which we have

343

we must

The hypersurfaces defined by z=constants being totally umbilical,
we must have

(3.3) {} =gkH or g"( g:-- + g gk )=gHoz -oZ
from which we have

gk=f(x)g(z)

Thus, the (3.1) becomes

(3.4) ds f(x)gk(x)dxdx + g,,(x’)d,x’dx

writing x instead of jg, dor,

(3.5) ds=f(x)g’(x)dxdx + dx’dx

Conversely, if the fundamental quadratic differential form of a
Riemannian space can be reduced to the form (3.5) by a suitable choice
of the coordinate system, it is easily seen that the hypersurfaces defined
by the equations x’=constants are totally umbilical and the curves
defined by x=constants are geodesics. Hence, we have the
Theorem In order that a Riemannian space V, contains a family of

totally umbilical hypersurfaces whose orthogonal trajectories are
geodesics, it is necessary and sucient that the fundamental quadratic
differential form of the space V, be reduced to the form (3.5) by a
suitable choice of the coordinate system.

4. Suppose that our Riemannian space V. admits a torse-form-
ing vector field v(x), then the space V. contains a family of ol totally
umbilical hypersurfaces whose orthogonal trajectories are geodesics.

Conversely, iti V. contains such figures as above, there exists a
coordinate system with respect to which the fundamental quadratic
differential form is (3.5). In such a coordinate system, the Christoffel
symbols are given by

*{)--{k} /( ’’f+ kf--f gi),
(4.1) *

{..}- {..}-0,

where {}* are Christoffel symbols formed with g and

1 0 logf_1_ logf._ f,=g,f f=
2f=

2 -:OZ

1) K. Yano: Concircular geometry II. Proc. 16 (1940), 354-360.



344 K. YANO. [Vo]. 20,

Thus, in such a coordinate system, the vector field v-- is torse-
forming, for

Thus, we have the
Theorem: In ord tha$ a Riemannian spe V admi$ a torse-for-
ing vector fie, it is necessary and ien$ that the space V ctain
a family of totally umbilical hyersurfes whose thogol trajec-
ties are geodecs.
Theorem: In or&r that a Riemannian space V admit a torse-fm-
ing vector field, it necessary and cien $$ Shere e a co-
ordinate stem wish respec$ to which She fundamtal quadrat dif-
ferengal form may be writn in the fm (3.5).

5. It is interesgng to observe that the form of the function
f() in (3.5) gfves us various spial cases which have already been
studied by the present author.

The Riemannian space V admitting always a torse-forming vtor
field v, we have sn that the space V contains a family of totally
umbilical hypersurfaces whose orthogonal trajtories are geesics.
Suppose esially that the normals to these hypersurfaces are con-
current along these hypersurfaces. Then the mn curvatures of these
hyrsurfaces mt be constant and the space must admit concircular
transformations. Thus f(x) in (3.5) omes a fncgon of only
and the of our space takes the form

(5.1) & f(x)g](xgdxd+ddx
Conversely, if the fundamental quadratic differential form of the

space may ruc to the form (5.1) by a suitable choice of the
coordinate sysm, the Riemannian space admits concrcular trans-
formations and hence it contains a family of tally umbilil
hyrsurfes th constant mn curvatures whose orthogonal trajec-
tories are gesics, and we can conclude that the vtor field defin
as the normals to these hyrsurfaces is torse-forming and concurrent
esially along the hyrsurfaces.

If the rse-foming vtor field is espially a concurrent one,
the space conins a family of tolly umbilical hypersurfaces wth
consent mean curvature whose orthogonal trajries are gdics,
and the length of the gdesics twn two of these totally umbilical
hypersurfaces must constantss. Then the functioa f(} fn (5.1)
takes the sial form (), and the d of our space bomes

(5.2) d=()g(}dd +dd
1) K. Yano: Concircular geometry I. Proc. 16 (1940), 195-200; II, 354-360; III,

442-448; IV, 505-511; V, Proc. 18 (1942), 446-451.
2) K. Yano: Sur le paralllisme et la concourance dans l’espace de Riemann.

loc. cit.
3) K. Yano and T. Adati: Parallel tangent deformation, concircular transforma-

tion and concurrent vector field. Proc. 20 (1944), 123-127.
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Conversely, if the fundamental quadratic differential form of the
space may be reduced to the form (5.2), the space contains a family
of co totally umbilical hypersurfaces with constant mean curvatures
whose orthogonal trajectories are geodesics and the length of the
geodesics between two of these totally umbilical hypersurfaces are
constant, thus the vector field defined as the normals to these hyper-
surfaces is concurrent not only along the hypersurfaces but also along
their orthogonal trajectories, and the vector field is concurrent in all
the space.

Finally if the torse-forming vector field is especially a parallel
one, the space contains a family of c1 totally geodesic hypersurfaces
whose orthogonal trajectories are geodesics, thus the function f($) in
(3.5) must be equal to a constant, and the ds of our space becomes

(5.3) ds

Conversely, if the-fundamental quadratic differential form of our
space may be reduced to the form (5.3), the space contains a family
of 0 totally geodesic hypersurfaces whose orthogonal trajectories are
geodesics. Thus the vector field defined as the normals to these hyper-
surfaces is parallel not only along these totally geodesic hypersurfaces
but also along their orthogonal trajectories and the vector field is
parallel in all the space.


