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(Comm. by M. FUJIWARA, M.LA., Oct. 12, 1944,)

G. H. Hardy® proved the following theorem :
(A) If {a,} are the Fourier constants of a function of L, (p = 1),
then {(kZ;a;,)/n} are also the Fourier constants of a fumetion of L,.

Recently T. Kawata® has proved a dual form of (4), that is:
(B) If {a,} are the Fourier sine constants of a function of L,

(p>1), then {gak/k} are also the Fourier sine constanis of a func-
tion of L, Moreover if {a,} are the Fourier sine constamts of a
JSunction of L., then {,ga;,/k} are the Fourier sine constants of a func-
tion of L.

In the present note the author considers the case of cosine con-
stants and completes (B) in the following form.

Theorem 1. If {a,} are the Fourier constants of a function L,
(p>1), then {gak/k} are also the Fourier constants of a function of
L,. Moreover if {a.} are the Fourier constants of a function of L., then
{,‘S‘:]"ak/k} are the Fourier constants of a function of L.

The method of proof is analogous to that of Kawata, but is some-
what delicate.

Proof of the case L,. It is sufficient to prove the theorem for

pure cosine series without constant term, that is j:f (x)dx=0.
Let

) f@~Sarcosks, f@eL,,
@) 9(x) ~k% —lk— cos kz,

then g(x)e L, for all » =1 by the Hausdorff-Young theorem.
By Parseval’s relation®, we have

S 2(" _2f(r 2= cos kx
® S ened- 2 1w S .

ke
k=n k

The left-hand side series is summable (C,1), and further in this
case it converges as f(x)e L,.
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Let j:f(t)dt=F(x), then F(z)=0.
. =___ L ]_
Since g(x) log 51— cos x)
and  lim (log' )X £ (0t = lim (log 1) Somt) Pds=0,

the right-hand side of (3) becomes
2 "+ 2 (" Pl cot L dp—2 5 coske Tt
: [F(w)g(oo)l +2 jo Pl cot £da ;l' Pl 5 ]

0

2 n -1 .
——j F(x) 3] sin kxdx
Ty =1
1 1
. . cos =-—cos (n——— )z
2 j Fw)L cot Zdu— j F(z)—2 ( 2> dx
™o 2 2 0 2 sin Lo
2
5 cos (n-—l) ®
= —j Flo)— 27 g4y
0 2 sin ~2~-x

j F(w) cot 1occosl nawdx+— j F(x) sin naxdzw .
7T 0 2

Since F(x)—;— cot-%weL,, and YF(w) sin nedx=0(n"), we get the first
0

part of the theorem.

Proof of the case L,. For every 2<<1le, e L®. Since L, and
Lexp., are Young’s complementary classes, (3) is still valid and con-
vergency is assured by the Hardy-Littlewood theorem®.

hm <log )j Fdt=0
follows from the ineaquality®
(log L) ("7 e < |71 1 1og L < 2 (71 hog Il de+ 242,
x/ g 0 t 0 e

(z]<1).

And that F(x)/xeL is nothing but the maximal theorem of Hardy-
Littlewood. Thus we complete the proof of the theorem.
Remark. There exist Fourier cosine constants of a function L

0 0 3
such as Slapfk=c0, )20 nmg is sine series of a function of L.
k=1 »=2 (log n)
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As lgv k (log kY L t(ogty logz logn’ kgﬁ‘wk(loglc)2
be sine constants”. Thus our theorem is best possible in a sense.

In the Fourier integral we get analogous theorem by Titschmarsh’s
argument®,

Theorem 2. If F(x) is the transform of f@)e B, (1 <p < 2), then
5 ﬂ;)—dt 18 the transform of %rf(t)dt which belongs to L,.

[}
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