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1. Let 9 be a compact (=bicompact) Hausdorff space, and F a
closed subset of 2. Let C(2) be the normed ring of all complex-valued
continuous functions on 2, and let C(F) be analogously defined. For
any x eC(2) and ’eC(F), their norms are defined by
max x() and x’ IlF=max,eEl x’(co’) ], respectively.

Then, by Urysohn’s extension theorem, to any x’e C(F) there cor-
x ()=x(’) for any ’ e F. (When Fresponds an x e C(/2) such that

is an essential subset of 2, x() is, of course, not unique). Thus a map-
ping x=(x’) of C(F) into C(2) is defined. The parpose of this paper
is to prove that we can take as a linear ((x’/y’)=(x’)+(y’) and

(ax’)=a(’), where a is a complex number), nultiplicative ((x’y’)=
(x’)(y’)) and isometric (I]to(X’)--(y’)]lg"-]lx’--y’][F) mapping, if and
only if F i a retract of /2 in the sense of K. Borsuk’), i.e. if there
exists a continuous mapping o/=f((o) of 2 onto F such that f((,’)=’
on F.

2. Lemma? Let R be a closed subring) of C(12) containing the
unit element of C(2) and satisfying the following condition"

(*) x() e R implies X(o) e R.)

Then R is equivalentz) to C(12"), where 2" is a certain continuous image
of 12. Conversely, if 2" is a continuous image of 12, then C(12")is
equivalent to some closed subring of C(12) which contains the unit of
C(12) and satisfies the condition (*).

We shall sketch the proof" To any maximal ideal) of R there
corresponds at least one point of 12 and to any point of /2 there cor-
responds one maximal ideal of R. From this follows easily that the
set /2* of all maximal ideals of R, which is topologized by the weak
topology, is a continuous image of 2"12"=g(12). Then R is equivalent
to C(9") by the correspondence x(o)-x*(*), where x*(g())=x(o).

1) K. Borsuk, Sur les r6tractes, Fund. Math., 17 (1931), 152-170.
2) G. Silov, Ideals and subrings of the ring of continuous functions, C.R. URSS,

22 (1939), 7-10.
3) If not mentioned explicitly, we do not assume that a subring of R contains

the unit element of R.
4) denotes the conjugate complex number of z.
5) Two normed rings are equivalen$ if there exists an isometric isomorphism

between them.
6) Concerning these notions, see I. Gelfand and A. Kolmogoroff, On rings of

continuous functions on topological spaces, C.R. URSS, 22 (1939), 11-15, and I. Gelfand
and G. ilov, ber verschiedene Methoden der Einfihrung der Topologie in die Menge
der maximalen Ideale eines normierten Ringes, Recueil Math., 9 (1941), 25-39.
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Theorem. Let 2 be a compact Hausdorff space, and F a closed
subset of 2. In order that, for any element xe C(F), there exists an
extension x=(x)e C(9) of x’ such that the mapping is linear,
multiplicative and isometric, it is necessary and sucient that F is a
retract of in the sense of K. Borsuk.

Proof. Since the sufficiency of the condition is almost evident, we
shall only prove that it is necessary. We shall divide our proof into
three steps"

(1) Let R be the set of all x eC(t2) which correspond to x’ e C(F)
in the required manner" x’-,x. Then R is a closed subring of
and is equivalent to C(F). Let e’ be the unit element of C(F) and
d-* e e R. Then, since e’= e’, we must have e(o) 0 or 1 on/2. There-
fore, if we put 20= {,o e(o)= 0, o e .e2} and .r2 (o e(o)= 1, o e .9}, then
F

__
.(2, /2o t2 0, -90 21= t2, and both 20 and 9 are compact.

Hence it suffices to prove that F is a retract of 1. By this reason,
in the following we shall designate 2 by .2, and consider R as a
subring of C(2) containing the unit element of C(2).

(2) Now we are going to prove that R satisfies the condition (*)
of the Lemma. Let x’(o’) be an arbitrary element of C(F) which is
real.valued on F. Then the corresponding x e R is also real-valued on. In fact, if at a certain point p e J2, x(p)= +iz,/-0, and if we
put y=(x-e)+(/e), then y(p)=O. On the other hand, y corresponds
to y’= (x’-e’)+ (/e’) and, since y’ has the inverse element y,-1 e C(F)"
y’y’-l=e’ (because y’(o’) /? 0 on F), so there must exist y- e R"
y(,o)y-X()=l, which is a contradiction.

By the preceding argument, we can easily prove that if y’(o’)=
x’(’) on F, then y(o)=(-) on 2. For, x’(o’)+y’(o’) and (x’(o’)-y’(o’))/i

both real-valued on F, hence x(o)+y(o) and (x(o)-y())/i are alsoare

both real-valued on Z2, showing that y()=x() on
(3) By the considerations of (2) and Lemma, R is equivalent to

C(2"), where 2" is the set of all maximal ideals of R and is a con-
tinuous image of /2"2"=g(’2). Since, as is easily seen, the corres-
pondence between the points of F and the maximal ideals of R is one-
to-one, F is homeomorphically embedded in Z2*" F. g(F)=--F*__

We shall now show that F* 2". Let * y*, x*, y* e C(9"), and
let x and y be the elements of R which correspond to x* and y*
respectively by the mapping indicated in the proof of Lemma. Then
there exists a p eF such x(p)-y(p). But, then it follows that
x*(p*) y*(p*), where p* =g(p) e F*. Hence F* cannot be an essential
subset of Z2*. This completes the proof.

Remark. From Lemma and the proof of Theorem, it is easy to
see that the following proposition is true

Corollary. Let Z2 and Z2 be compact Hausdorff spaces. In order
that C(21) contains a subring which is equivalent to C(12), it is neces-
sary and sufficient that 12 is a continuous image of 2.

1) For the proof of this Corollary we need the following well-known result- If
C(1) and C(9,) are algebraically isomorphic, then and 12, are homeomorphic. Con-
cerning this theorem, see, for example, the papers cited in 6).


