132. On Simultaneous Extension of Continuous Functions.

By Hisa-aki Yoshizawa.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Nov. 13, 1944.)

1. Let \mathcal{Q} be a compact (=bicompact) Hausdorff space, and F a closed subset of \mathcal{Q} . Let $C(\mathcal{Q})$ be the normed ring of all complex-valued continuous functions on \mathcal{Q} , and let C(F) be analogously defined. For any $x \in C(\mathcal{Q})$ and $x' \in C(F)$, their norms are defined by $||x||_{\mathcal{Q}} = \max_{\omega \in \mathcal{Q}} |x(\omega)|$ and $||x'||_F = \max_{\omega' \in F} |x'(\omega')|$, respectively.

Then, by Urysohn's extension theorem, to any $x' \in C(F)$ there corresponds an $x \in C(\mathcal{Q})$ such that $x'(\omega') = x(\omega')$ for any $\omega' \in F$. (When F is an essential subset of $\mathcal{Q}, x(\omega)$ is, of course, not unique). Thus a mapping $x = \varphi(x')$ of C(F) into $C(\mathcal{Q})$ is defined. The purpose of this paper is to prove that we can take as φ a linear $(\varphi(x'+y') = \varphi(x') + \varphi(y'))$ and $\varphi(ax') = a\varphi(x')$, where a is a complex number), multiplicative $(\varphi(x'y') = \varphi(x')\varphi(y'))$ and isometric $(\|\varphi(x') - \varphi(y')\|_{\mathcal{Q}} = \|x' - y'\|_F)$ mapping, if and only if F is a retract of \mathcal{Q} in the sense of K. Borsuk¹, i.e. if there exists a continuous mapping $\omega' = f(\omega)$ of \mathcal{Q} onto F such that $f(\omega') = \omega'$ on F.

2. Lemma.²⁾ Let R be a closed subring³⁾ of $C(\Omega)$ containing the unit element of $C(\Omega)$ and satisfying the following condition:

(*) $x(\omega) \in R \text{ implies } \overline{x(\omega)} \in R^{4}$

Then R is equivalent⁵⁾ to $C(\Omega^*)$, where Ω^* is a certain continuous image of Ω . Conversely, if Ω^* is a continuous image of Ω , then $C(\Omega^*)$ is equivalent to some closed subring of $C(\Omega)$ which contains the unit of $C(\Omega)$ and satisfies the condition (*).

We shall sketch the proof: To any maximal ideal⁶⁾ of R there corresponds at least one point of \mathcal{Q} and to any point of \mathcal{Q} there corresponds one maximal ideal of R. From this follows easily that the set \mathcal{Q}^* of all maximal ideals of R, which is topologized by the weak topology, is a continuous image of $\mathcal{Q}: \mathcal{Q}^* = g(\mathcal{Q})$. Then R is equivalent to $C(\mathcal{Q}^*)$ by the correspondence $x(\omega) \to x^*(\omega^*)$, where $x^*(g(\omega)) = x(\omega)$.

¹⁾ K. Borsuk, Sur les rétractes, Fund. Math., 17 (1931), 152-170.

²⁾ G. Šilov, Ideals and subrings of the ring of continuous functions, C. R. URSS, 22 (1939), 7-10.

³⁾ If not mentioned explicitly, we do not assume that a subring of R contains the unit element of R.

⁴⁾ \bar{z} denotes the conjugate complex number of z.

⁵⁾ Two normed rings are *equivalent* if there exists an isometric isomorphism between them.

⁶⁾ Concerning these notions, see I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological spaces, C. R. URSS, **22** (1939), 11–15, and I. Gelfand and G. Šilov, Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Recueil Math., **9** (1941), 25–39.

Theorem. Let Ω be a compact Hausdorff space, and F a closed subset of Ω . In order that, for any element $x' \in C(F)$, there exists an extension $x = \varphi(x') \in C(\Omega)$ of x' such that the mapping φ is linear, multiplicative and isometric, it is necessary and sufficient that F is a retract of Ω in the sense of K. Borsuk.

Proof. Since the sufficiency of the condition is almost evident, we shall only prove that it is necessary. We shall divide our proof into three steps:

(1) Let R be the set of all $x \in C(\mathcal{Q})$ which correspond to $x' \in C(F)$ in the required manner: $x' \to x$. Then R is a closed subring of $C(\mathcal{Q})$ and is equivalent to C(F). Let e' be the unit element of C(F) and $e' \to e \in R$. Then, since $e'^2 = e'$, we must have $e(\omega) = 0$ or 1 on \mathcal{Q} . Therefore, if we put $\mathcal{Q}_0 = \{\omega \mid e(\omega) = 0, \ \omega \in \mathcal{Q}\}$ and $\mathcal{Q}_1 = \{\omega \mid e(\omega) = 1, \ \omega \in \mathcal{Q}\}$, then $F \subseteq \mathcal{Q}_1, \ \mathcal{Q}_0 \cap \mathcal{Q}_1 = \theta, \ \mathcal{Q}_0 \cup \mathcal{Q}_1 = \mathcal{Q}$, and both \mathcal{Q}_0 and \mathcal{Q}_1 are compact. Hence it suffices to prove that F is a retract of \mathcal{Q}_1 . By this reason, in the following we shall designate \mathcal{Q}_1 by \mathcal{Q} , and consider R as a subring of $C(\mathcal{Q})$ containing the unit element of $C(\mathcal{Q})$.

(2) Now we are going to prove that R satisfies the condition (*) of the Lemma. Let $x'(\omega')$ be an arbitrary element of C(F) which is real-valued on F. Then the corresponding $x \in R$ is also real-valued on Ω . In fact, if at a certain point $p \in \Omega$, $x(p) = \lambda + i\mu$, $\mu \neq 0$, and if we put $y = (x - \lambda e)^2 + (\mu e)^2$, then y(p) = 0. On the other hand, y corresponds to $y' = (x' - \lambda e')^2 + (\mu e')^2$; and, since y' has the inverse element $y'^{-1} \in C(F)$: $y'y'^{-1} = e'$ (because $y'(\omega') \geq \mu^2 > 0$ on F), so there must exist $y^{-1} \in R$: $y(\omega)y^{-1}(\omega) = 1$, which is a contradiction.

By the preceding argument, we can easily prove that if $y'(\omega') = \overline{x'(\omega')}$ on F, then $y(\omega) = \overline{x(\omega)}$ on \mathcal{Q} . For, $x'(\omega') + y'(\omega')$ and $(x'(\omega') - y'(\omega'))/i$ are both real-valued on F, hence $x(\omega) + y(\omega)$ and $(x(\omega) - y(\omega))/i$ are also both real-valued on \mathcal{Q} , showing that $y(\omega) = \overline{x(\omega)}$ on \mathcal{Q} .

(3) By the considerations of (2) and Lemma, R is equivalent to $C(\mathcal{Q}^*)$, where \mathcal{Q}^* is the set of all maximal ideals of R and is a continuous image of $\mathcal{Q}: \mathcal{Q}^* = g(\mathcal{Q})$. Since, as is easily seen, the correspondence between the points of F and the maximal ideals of R is one-to-one, F is homeomorphically embedded in $\mathcal{Q}^*: F \approx g(F) \equiv F^* \subseteq \mathcal{Q}^*$.

We shall now show that $F^* = \Omega^*$. Let $x^* \neq y^*, x^*, y^* \in C(\Omega^*)$, and let x and y be the elements of R which correspond to x^* and y^* respectively by the mapping indicated in the proof of Lemma. Then there exists a $p \in F$ such $x(p) \neq y(p)$. But, then it follows that $x^*(p^*) \neq y^*(p^*)$, where $p^* = g(p) \in F^*$. Hence F^* cannot be an essential subset of Ω^* . This completes the proof.

Remark. From Lemma and the proof of Theorem, it is easy to see that the following proposition is true $:^{1}$

Corollary. Let Ω_1 and Ω_2 be compact Hausdorff spaces. In order that $C(\Omega_1)$ contains a subring which is equivalent to $C(\Omega_2)$, it is necessary and sufficient that Ω_2 is a continuous image of Ω_1 .

¹⁾ For the proof of this Corollary we need the following well-known result: If $C(\mathfrak{Q}_1)$ and $C(\mathfrak{Q}_2)$ are algebraically isomorphic, then \mathfrak{Q}_1 and \mathfrak{Q}_2 are homeomorphic. Concerning this theorem, see, for example, the papers cited in 6).