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126. On the Osculating Representation for a Dynamical
System with Slow Variation.

First Note.

By Yusuke HAGIHARA, M.LA.
Astronomical Department, Tokyo Imperial University.
(Comm. Nov. 13, 1944.)

In a preceding note” the present author has given a theorem
concerning the dynamical systems with slow variation and obtained
the maximum time interval in which a semi-convergent representation
of the solution deviates by less than a given amount from the true
solution of the differential equations for the dynamical system in ques-
tion. In the present note I have the privilege to report one of the
results I have been able to reach in the case when the differential
equations can be approximated, not necessarily convergently, by a
quasi-periodic function of Bohl’s class, as the general integrals usually
adopted for the solution in the planetary theory, although not uni-
formly convergent as has been proved by Poincaré, are taken to be
such a class of functions”. The dynamical system under consideration
is meant for a simplification of the planetary and satellite systems
existing in nature. I intend in future to extend the research towards
the theory of the general form of the integrals and the stability of
the planetary motion in general.

Consider a system of differential equations

dz; _ 0H dy; _ _ 0H

dt  oy; dt o
d&; _ 0H dy; _ _ 6H
dt  o7; dt 05;

where H is a function of 2m+2n+1 variables x;, v;, &5, 75, 0=1,2, .. , m;
7j=1,2,...,m), and ¢, and, together with its partial derivatives of the
first and the second orders with respect to ;, ¥s, &; and 7;, is Lipschitzian
with regard to &; and 7;, and is analytic with regard to «;,y; and ¢
for all values of &;,7; and ¢ and for all values of #; and y; in a domain

(2) lw:|, lv:| <D, (¢=12,...,m),

with a finite positive constant D, and is periodic in ¢ with period 2r.
Assume that we have a solution x;=y;=0, £&,=A4;, 7,=B;, (1=1,2, ..., m;

’ (i=1;2""’m)’

®
(j=1’ 2, tets %) ’

1) Y. Hagihara, Proc. 7 (1931), 44.

2) See, for example, Delaunay, Théorie du Mouvement de la Lune. Mém. Acad.
Sc. Inst. Imp. France. 27 (1860), 29 (1867); Newcomb, Journ. de Math. pure et appl.,
[ii] 16 (1871), 821 ; Smithsonian Contr. to Knowledge, 1874, 281 ; Lindstedt, Ann. Ecole
Norm. Sup., [iii] 1 (1884), 85; Bohlin, Bihang til Svenska Vet. Acad. Handlingar. 14
(1888) ; Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste. 2 (1893),
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i=1,2,...,n), for all values of ¢, where A; and B; are arbitrary con-
stants. Assume further that the expansion of H in powers of x; and
y; begins with quadratic terms and the coefficients of these quadratic
terms are constants, that the m pairs of the characteristic numbers

-;J,-, (1=1,2,...,m), for the matrix formed of these coefficients are

real, distinct and non-zero®, and that there is no linear homogeneous
relation with rational coefficients among these 1; ’s and 1.

By a linear canonical transformation the system (1) can be trans-
formed into a system for pairs of conjugate imaginary variables
and ¥; accompanied by an associated system for real pairs &; and 7;:

da; _ oF dy; oF .

R , 2T = , =1’ 2, e, M),

dt oy dt o g )

dé; _+v =1 oF dy,__+v -1 oF .
3 L=V 7 = =Y T =1,2,...,m),
( ) dt 2 07; dt 2 65,- (‘7 )

F=—2V—"1H—-=vV -1 lﬁl: Al Fot Fyt oo,

where Fy, F, ... are respectively the terms of the third, the fourth, ...
degree in «; and y; of which the coefficients are functions of &, 7;
and t. F is also convergent.

Next apply the contact transformation®

- _0G oG
4 Ti=—, yi= o,

’ i=17 27 eey M),
o7, ( )
with

G=§lw$cyk+aa+G4+---+Gu+ G,

Gs, Gy, -+, G, are homogeneous functions of %; and «; of degree indicated
by the suffixes and G™ is the remainder term as yet undetermined
but does not contain terms of degree 8,4, ...,u in %; and x;. By s—2
times’ repetition of this transformation for w=3,4,...,s we can bring
F in the form

K=K(8)+R(s)’ R(s)=F3+1+F3+2+'”,
K®=-v -1 - 23 Mt 2 f BT @) - (8,7, )

where the last sum extends to all integral values, positive or zero, of
ay, ag, +«+, Oy, Satisfying

2 <2m+otta) s, if s is even,

2 < Aqtapt-tan) Zs—1, if s is odd,
and fua..q, 'S are functions of &;,7; and ¢. Then (3) is transformed
into

3) For such a transformation refer to: Whittaker, Analytical Dynamics. 1937.
Chap. XVI.
4) G.D, Birkhoff, Dynamical Systems. 1927.
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‘dﬂi - 6K(8) + aR(s) dy - K(s) _ R(S)
dt oy, oy~ dt oF; 0%
(i=1y 2, ccry m) )
(5) Eléj_= v -1 (aK(s) + aR(s))
t 2 \ oy oy /]

dy; _ v/ =1 (0K® |, §R® :

PV ) =ly 2, °cy .
a2 ( oz, o, ). G "

Denote the result of substituting a system of arbitrary constants ec;
for #; (1=1,2,...,m), in K®, subtracted by its first degree terms
with regard to ¢;, by a parenthesis. And consider a curtailed system

i‘@——{ V-1 z+( ;‘;“)} x,

LI IH(@K" )} B, G=1,2,...,m),

6) dt

8- /IO, gm0
(1=1,2,...,m),

in which K® is a finite power series arranged in ascending powers
of the constants ¢, ¢, ..., Cn, beginning with the terms of the second
degree, the coefficients of the various powers of ¢; ’s being Lipschitzian
functions of &; and 7; and periodic with period 27 in ¢. The system
(6) is said to be mormalised.

Take the associated curtailed system

d¢; _ v/ =1 (0K® dy; v/ =1 (0K®
2 == Mo ) = -
@ dt 2 ( 07; ) dt 2 < 0%; )
(j=192’ "‘,n)’

and carry out the transformation
(8) T_TO'_'qu(t—tO)’ C;=po;, (7:=1: 2, seey m)’

where ¢ is a small constant parameter of the order of magnitude of
|2; |2 or |y;|% or of the order of magnitude of D% Then we get

. (s) . 8)
o iﬁa:@_d’_, a7 _00® (19 .. m),

dr 07; dr 0;
PO =@+ p@P + (POP o+ DD,
with
v=~;——2, if s is even,
v= 3“2’1 ~2, if s is odd,

where @®, (r=0,1,2,...,9), is a homogeneous polynomial of degree
r+2 in oy, 02 ..., 04, and Lipschitzian with regard to &; and 7; (=
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1,2,...,n), and analytic and periodic in v with period 2x/u
We have to integrate this system with the initial condition that

(10) §&,=4;, 7,=B;, for =7, (j=1,2,...,n),
or, by a further transformation

(11) wy=&—A4;, pi=7,—B; (G=1,2,...,m),
to integrate the system

, da: oY d,B . o .
9 '—_'7=—‘y S ’ =1’2y seey ’
( ) d‘L’ 8[3] d‘( Oaj (j n)
with the initial condition that
(10)’ aj=,Bj=O; for T=Tp, (j=1)2’ "'yn)’

where @ is the function @® after the transformation (11).
Definition. Consider a system of differential equations

(12) B D720 t) w,  (i=1,2, m),
dt =0

in which the right hand members are either convergent or formal series
arranged in ascending powers of a parameter . We cut short at
the terms with the power & of ¢ on the right hand side and integrate
this curtailed system of differential equations. Let the solution of
the latter curtailed system be 2®(t; p), (1=1,2, ..., m). Suppose that
there exists a sequence of sets of functions &@(t; 1), :=1,2,...,m;
k=1,2,...), converging uniformly to a limiting set of functions £i(t; »),
(z=1, 2, ..., m), respectively, as k— o, and reducing to the same set
of functions 2¥(¢t; p), (:1=1,2, ..., m), for t=t, and further that for
a given positive constant ¢« we have inequalities

|80(t3 1) =23 )| < Np - [ 4=ty P,

for any finite positive integral value of k in a non-vanishing interval
of ¢ with finite positive constants a,b and N and with a positive
integer p, all depending on the nature of ¢P(t; #) and zP(t; ),
(2=1,2,...,m). Then we say that the solution of the system of differ-
ential equations (12) is osculatingly represented by the set of functions
Ct; 1) to the class p and to the genus ak+b. This idea is a gene-
ralisation of Birkhoff’s in his theory of divergent series at a singular
point of an ordinary differential equations®.

By repeating the method of proof in the preceding note” and by
referring to Bohl-Esclangon’s theorem® for the necessary and sufficient
condition for a function to be represented by a quasi-periodic function,

5) G.D. Birkhoff, Sitzungsber. preuss. Akad. Wiss. Berlin. 1929, 171. Cf., Bochner,
Math. Ann., 96 (1926), 119.

6) P. Bohl, Dorpat Dissertation, 1893; Crelle Journ., 131 (1906), 268; Esclangon,
Thése Paris, 1904 ; Comptes Rendus Acad. Sc. Paris. 135 (1902), 891; 137 (1903), 305;
Ann. Obs. Bordeaux 16 (1917), 53.
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to Bohl’s theorem® on the integrals of quasi-periodic functions, and
to Kronecker’s theorem on the diophantine approximation, we get the
following theorem.

Theorem. If the solution of the associated curtailed system of
differential equations is osculatingly represented by a set of quasi-
periodic functions of Bohl’s class with the corpus of periods 7j, 7g, -+ Tu
and 27 with respect to ¢ to the class 1 and to the genus I/, where
s = 1+5, then the solution of the original system of differential equa-
tions (1) can be osculatingly represented to the class 2 and to the
genus [+6 by the set of quasi-periodic functions of Bohl’s class with
the corpus of periods <y, 73, ..., 7, and 27, superposed on the corpus of
periods, t, tp, ..., t, In t with

2n
where —1 —1 h; is the secular constant” in (AK®/6c;) expressed in
the form of the first of these two quasi-periodic functions.

Here it is assumed that there is no linear homogeneous relation
with rational coefficients among these two sets of periods and 2z and
that for any term in —v' —1 2;+(6K®[oc;) expressed in the form of
a quasi-periodic function we have inequalities

LR PR

tl tZ tm
for all integral values, negative or positive or zero, of ky, ks, ..., kn
satisfying

=li+hiy ('i=19 2;"', m)y

Ve |+ a4+ e | =

were p is the sum of the absolute values of the powers of ¢"-1t¢/m,
e ~ltle, ..., ¢"-Tt7m in the term under consideration, and L is a finite
positive constant.

The theorem can be extended to the case when the coefficients of
the quadratic terms of H are functions of & and 7; in which case
the genus of the osculating representation should be written 144
instead of [4+6. The proof is then carried out by referring to the
theory of a system of linear differential equations with quasi-periodic
coefficients by Bohl®. Naturally the theorem can easily be generalised
from the case of osculating representation by a quasi-periodic function
to the case of an almost periodic function of Bohr’s class by referring
to the works of Bohr, Neugebauer and Favard®.

7) P. Bohl, Crelle Journ.,, 131 (1906), 268. For almost periodic functions refer
to: H. Bohr, Det Danske Videnskabernes Selskab. Math.-fys. Medd., 10 (1930); Com-
mentarii Math. Helvet., 4 (1932), 51; Bohr u. Jessen, Ann. Scuola Norm. Sup. Pisa.
[ii] 1 (1932), 385; Jessen, Math. Ann., 111 (1935), 355.

8) H. Bohr and Neugebauer, Géttinger Nachrichten. 1926, 23; Favard, Acta Math.,
51 (1927), 31; Comptes Rendus Acad. Se. Paris. 182 (1926), 757, 1122; Walther, Go6tt-
inger Nachrichten. 1927, 196; Landau, Math. Ann., 102 (1929), 177; Bochner, Math.
Ann., 102 (1929), 489 ; 103 (1930), 538 ; 104 (1931), 579.




