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1. By a space of type M we mean a Banach space in which
there exist a linearly independent sequence {f} of dements of unit
norm and a double sequence {L(f)} of bounded linear functionals
such that for every f

(A) lim llf- L,,,,,(f)f,, O.
m-->oo u-I

It will be seen that the conception of a space of type A is a
generalization of the idea of a Banach space with a denumerable base).

Let denote the space of all completely continuous transformations
of a Hilbert space Y into itself, that is, the space of all bounded linear
transformations which carry every bounded set of ) into a compact
set.

In this note we will prove that the space is a separable space
of type A.

2. We prove now the following theorem:
Theorem 1. In the space , there exist a linearly independent

double sequence {T} of elements of unit norm and a double sequence
{ao(T)} of bounded linear functionals such that for any T e

T , a(T)T.
4-1 j-1

Proof. Let {,,} denote the complete orthonormal set of the space. We define {T#} as follows $

T#(z) (x,) for all x e ), (i, j 1, 2,.. ).

Then it is evident that T# e , !1T# ![= 1 and the sequence {T#}
is linearly independent. Let -!))# be the closed linear manifold deter-
mined by {, ., ..., #}. Then we can prove that every bounded linear
transformation T with domain (C) and with range !IR is expressed in

the form T=, a#(T}T# where a(T) are bounded linear functionals.
-1

In fact, by use of F. Riesz’ theorema) it can be easily shown that

1) The notion of a space of type A was introduced by I. Maddaus. I. Maddaus;
Completely continuous linear transformations, Bull. Amer. Math. Soc. Vol. 44 (1938),
279-282.

2) S. Banach; Theories des olrations linaires, p. 110.
3) M.H. Stone; Linear transformations in Hilbert space and their applications

to analysis, p. 62, Theorem 2. 27.
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T is expressed in the form T(x)=(x, y) where y is uniquely deter-

mined corresponding to T. Let y--, ai, then we have

T(x)-- d(x,):,dT(x)

where d denotes the conjugate complex numr of a.
t T(x)= dT(x), then

T(x) T(x)i T.-(x) (x, y- a)
=n+l

Therefore for every lix 1

so that we have

im T-T 0.

Now let a.(T) denote the number 5 which corresponds to T,
then we have

T , a,.(T)T

Since a,#(T)= (, y) and Tll=l.u.b. ](x, y)I, we have Tll > I(#, Y)
|zl<_l

and hence !1T > a(T) I.
On the other hand, from the definition of a.(T) it is easily seen

that a(T) are additive functionals. Therefore a(T) are bounded
linear functionals.

By the similar argument we can prove that every bounded linear
transformation T with domain @ and with range . (n=l, 2, ...) can

be expressed in the form T=,a.(T)T. where a.(T) are bounded
i=1 --1

linear functionals.
Now let T be an arbitrary element of the space , then

T(x) (x, y)v+ (x, y.).+--.. a(T)T,(x)
i-1 -1

Form the proof of I. Maddaus’ theorem), that is, every completely
continuous transformation of a Banach space into a space of type A
is the strong limit of a sequence of singular transformations), we can

prove that T=.,a(T)T, and every a(T) is a bounded linear
-1 .-1

1) I. Maddaus; loc. cit.
2) A Singular transformation is, by definition, a. bounded linear transformation

which transforms its domain into a space of a finite number of dimensions.
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functiona|. Thus the proof of the theorem is completed.

Renark. Since ,
_
a(T)T is contained in for each , it

-1

follows from Theorem 1 that elements T of are characterized by

being expressed in the form T=J ’. a(T)T.
-I =I

Theorem . The space is a separable space of Sype A.
Proof. Let T be an arbitrary element of the space and let

e 0 any prescribed number. In view of Theorem 1, there exist
positive integers n, n such that

T-,, a.(T)T. <

On the other hand. there exists a sequence {r} of complex num-
bers, each with rational real and imaginary parts, such that

Therefore T-,,rT e, hence the space is a separable

space.
Let {T} (k-l, 2, ...) denote the denuerable set which is every-

where dense in and let {} be a decreasing sequence o positive
numbers such th3t lira =0. Then it can be shown that there exists

an increasing sequence {(,} of pairs of positive integers such
that

and

T- ,a(T)T < for k, l= 1, 2,...,
i-1 j-1

m/>- n/" > n for k, l= 1, 2,
_<t) <) Thent ((m, n)) a sequence such that m=-,,o n=-,+

m n

lim Tk--, a,(Tk)TlI=O
l->o i=l

for every k.
Since {T} is everywhere dense in , for any T e

lim T-,] a(T)T. 0. (1)
l-->oo i=1

By the method of diagonal process we renumber the double sequence
{a(T)T+} into a simple sequence {a,(T)T,}. We express each of
the expression (1) in the form with terms of {a:(T)T:} and denote
by (1)* the new expressions. Let l: be the greatest integer in the
expression (1)* for each l= 1, 2,... When the term a:(T)T: (a < l:)
is not contained in (1)* for each l, we define a:(T)=O for all T e .
Let Lt.(T) a,(T) in the expression (1)* which corresponds to 1.

1) A sequence {(mk), .n))} is said to be increasing if --(k)’-<),,o+,,t and
for l=1, 2
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Then we have

, a,(T)T=] L(T)T

for each 1.
Therefore for every T e

lira T- L(T)TII-O

Thus the space T satisfies the condition (A).
Since the fact that the space is a Banach space is easily shown

by means of the property that the space is complete, we omit the
proof. Thus we have established the theorem.

As an immediate consequence of Theorem 2 and I. Maddaus’
theorem we get the following theorem"

Theorem 3. Every completely continuous transformation of the
space into itself is th srong limi of a sequence of singular trans-
formations.


