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1. By a space of type AP we mean a Banach space in which
there exist a linearly independent sequence {f.} of elements of unit
norm and a double sequence {L,.(f)} of bounded linear functionals
such that for every f

@ =3 Laf1=0.

It will be seen that the conception of a space of type A is a
generalization of the idea of a Banach space with a denumerable base?.

Let T denote the space of all completely continuous transformations
of a Hilbert space $ into itself, that is, the space of all bounded linear
transformations which earry every bounded set of § into a compact
set.

In this note we will prove that the space £ is a separable space
of type A.

2. We prove now the following theorem :

Theorem 1. In the space ¥, there exist a linearly independent
double sequence {T;;} of elements of unit norm and a double sequence
{a;{(T)} of bounded linear fumctionals such that for any Te<

oo 00

T=> ld.'_-,'(T)Tij .

=1 7j=

Proof. Let {¢,} denote the complete orthonormal set of the space
$. We define {T;;} as follows;

T;ix)=(x, pj)p; for all xze, (3,5=1,2,..).

Then it is evident that T;;eZ, | T:;l=1 and the sequence {T;;}
is linearly independent. Let 9M; be the closed linear manifold deter-
mined by {¢i, ¢ ---, #;}. Then we can prove that every bounded linear
transformation 7' with domain $ and with range I, is expressed in

the form T=§jl a1/(T)Ty; where a,;(T') are bounded linear functionals.
=

In fact, by use of F. Riesz’ theorem® it can be easily shown that

1) The notion of a space of type A was introduced by 1. Maddaus. I. Maddaus;
Completely continuous linear transformations, Bull. Amer. Math. Soc. Vol. 44 (1938),
279-282.

2) S. Banach; Théories des opérations linéaires, p. 110.

3) M.H. Stone; Linear transformations in Hilbert space and their applications
to analysis, p. 62, Theorem 2. 27.
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T is expressed in the form T(x)=(x,y)y; where y is uniquely deter-
mined corresponding to 7. Let y=21 a;¢;, then we have
=

T(x) =§ a;i(x, ps)pr= ,5__.; a;T15(x)
where a; denotes the conjugate complex number of a;.
Let T,.(x)=21 djle(x), then
=

| T(@) = To@) =1, 3} 8,750 1=1 @, y— 3} asp)en

=|(x, y—g a;ps) | §|lelolly—;:amll.
Therefore for every [z]| <1
1 7@~ To@) | < ly =3 aspil,

so that we have
Iim|T-T,|=0.
n->o0

Now let a;5(T) denote the number a@; which corresponds to T,
then we have

Since a;(T)=(p;, y) and | T lI=l.‘g§;. | (2, ) |, we have | Tl = | (95, 9) |

and hence | T = | a;(T) |.

On the other hand, from the definition of a;;(T) it is easily seen
that a,;(T') are additive functionals. Therefore a,;(T) are bounded
linear functionals.

By the similar argument we can prove that every bounded linear
transformation 7' with domain  and with range I, (n=1,2,...) can
be expressed in the form T=3] Zia;,-(T)T,-j where a;;(T) are bounded

=1 j=
linear functionals.
Now let T be an arbitrary element of the space T, then

T(w) =(x, yl)?’l'*' (x, ?12)9"2+ o
=.:21 g ai,‘(T)Tij(x) .

Form the proof of I. Maddaus’ theorem?, that is, every completely
continuous transformation of a Banach space into a space of type A
18 the strong limit of a sequence of singular transformations®, we can
prove that T'=3>)> a:;(T)T;; and every a;i(T) is a bounded linear

i=1j=1

1) I. Maddaus; loc. cit.
2) A Singular transformation is, by definition, a. bounded linear transformation
which transforms its domain into a space of a finite number of dimensions.
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functional. Thus the proof of the theorem is completed.
Remark. Since Z}_,a,,(T)Tu is contained in T for each =, it

=1 5=1

follows from Theorem 1 that elements T of ¥ are characterized by
being expressed in the form T= ZZaz,(T)T,,

i=1j=1

Theorem 2. The space T is a separable space of type A.

Proof. Let T be an arbitrary element of the space T and let
e>0 any prescribed number. In view of Theorem 1, there exist
positive integers m,n such that

“ T g g au(T)Tu “ < E
On the other hand, there exists a sequence {r;;} of complex num-
bers, each with rational real and imaginary parts, such that

I % ﬁ {a:(T) =153 T < £
i=1j=1 2

Therefore | T—f]ilr,-,-T.-j | <e, hence the space £ is a separable

=1 5=
space.
Let {T.} (k=1,2,...) denote the denumerable set which is every-
where dense in £ and let {¢} be a decreasing sequence of positive
numbers such that %l_gl e=0. Then it can be shown that there exists

an increasing” sequence {(m{®,n{¥} of pairs of positive integers such
that

m$k) 5k

ITe=3} SaulTITsl <a for kl=12,..,

and miEY > mP, n >n®  for k,1=1,2, ...

Let {(m;, m)} be a sequence such that m;=m{, m;=n{’. Then

my
ll{g.} || T —iz_l ’gl a:i(Te)Ts51=0

for every k.
Since {T} is everywhere dense in ¥, for any TeZ
hm | T— gga@:(T)Tuy =0 1)

By the method of diagonal process we renumber the double sequence
{a;{(T)T;;} into a simple sequence {a.(T)T.}. We express each of
the expression (1) in the form with terms of {a.(T)T,} and denote
by (1)* the new expressions. Let [, be the greatest integer in the
expression (1)* for each 1=1,2,... When the term a (T)T, (« <l,)
is not contained in (1)* for each I, we define a,(T)=0 for all TegZ.
Let L, (T)=a.(T) in the expression (1)* which corresponds to I.

1) A sequence {(m{®, n{¥)} is said to be increasing if m{®,>m{® and n{¥;>n{¥
for 1=1,2, ...
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Then we have
my oy I
gl ’2_1 aii(T)Tii =§1 Ly (T)T.,

for each .
Therefore for every Tel

lﬂ
lim || T—3) Li(T)T.)=0.
> n=1

Thus the space T satisfies the condition (A).

Since the fact that the space £ is a Banach space is easily shown
by means of the property that the space $ is complete, we omit the
proof. Thus we have established the theorem.

As an immediate consequence of Theorem 2 and I. Maddaus’
theorem we get the following theorem :

Theorem 3. Every completely continuous transformation of the
space T into itself is the strong limit of a sequence of singular trans-
formations.



