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Abstract

This paper solves a problem that was stated by M. A. Harrison in 1973.
The problem has remained open since then, and it is concerned with counting
equivalence classes of n × r binary matrices under row and column permu-
tations. Let I and O denote two sets of vertices, where I ∩ O = ∅, |I| = n,
|O| = r, and Bu(n, r) denote the set of unlabeled graphs whose edges con-
nect vertices in I and O. Harrison established that the number of equivalence
classes of n× r binary matrices is equal to the number of unlabeled graphs in
Bu(n, r). He also computed the number of such matrices (hence such graphs)
for small values of n and r without providing an asymptotic formula for
|Bu(n, r)|. Here, such an asymptotic formula is provided by proving the fol-
lowing two-sided inequality using Polya’s Counting Theorem.

(r+2n−1
r )

n!
≤ |Bu(n, r)| ≤ 2

(r+2n−1
r )

n!
, n < r. (1)

1 Introduction

Asymptotic counting of graphs has been an active area of research in graph
theory [1–13]. Several of these efforts focused on the problem of counting un-
labelled graphs with a given number of vertices and edges [3, 4, 6–8, 11]. In this
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paper, we explore asymptotic counting of bipartite graphs. Clearly, the set of
bipartite graphs with n vertices in one part, and r vertices in the other part forms
a subset of all graphs with n + r vertices. Hence, any upper bound on the num-
ber of graphs with n + r vertices and up to (n + r)(n + r − 1)/2 edges provides
an upper bound on the number of bipartite graphs with n vertices in one part
and r vertices in the other part with up to nr edges. Nonetheless, the known
asymptotic formulas for unlabelled graphs are valid only when the number of
edges satisfies certain inequalities, see for example, (1.2) and (1.4) in [3]. Similar
constraints were imposed on the number of edges in [4, 6]. Other results on the
number of unlabelled graphs are related to particular types of unlabelled graphs
such as regular graphs [11] or Hamiltonian graphs [9]. As we are interested in
asymptotic bounds on the number of unlabeled bipartite graphs without any
restrictions on n and r, and the number of edges, the known asymptotic bounds
for unlabelled graphs cannot be applied to obtain such bounds. Instead, we use
Polya’s counting theorem to obtain our main result1 in this paper.

The bipartite graph counting problem that is considered in this paper has been
investigated in connection with the enumeration of unlabeled bipartite graphs
and binary matrices [5]. Let (I, O, E) denote a graph with two disjoint sets of
vertices, I, called left vertices and a set of vertices, O, called right vertices, where
each edge in E connects a left vertex with a right vertex. We let n = |I|, r = |O|,
and refer to such a graph as an (n, r)-bipartite graph. Let G1 = (I, O, E1) and
G2 = (I, O, E2) be two (n, r)-bipartite graphs, and α : I → I and β : O → O be
both bijections. The pair (α, β) is an isomorphism between G1 and G2 provided
that ((α(v1), β(v2)) ∈ E2 if and only if (v1, v2) ∈ E1, ∀v1 ∈ I, ∀v2 ∈ O. It is easy
to establish that this mapping induces an equivalence relation, and partitions the
set of 2nr (n, r)-bipartite graphs into equivalence classes. This equivalence re-
lation captures the fact that the vertices in I and O are unlabeled, and so each
class of (n, r)-bipartite graphs can be represented by any one of the graphs in
that class without identifying the vertices in I and O. Let Bu(n, r) denote any
set of (n, r)-bipartite graphs that contains exactly one such graph from each of
the equivalence classes of (n, r)-bipartite graphs induced by the isomorphism we
defined. It is easy to see that determining |Bu(n, r)| amounts to an enumeration
of non-isomorphic (n, r)-bipartite graphs that will henceforth be referred to as
unlabeled (n, r)-bipartite graphs.

In [5], Harrison used Pólya’s counting theorem to obtain an expression to com-
pute the number of non-equivalent n × r binary matrices. This expression con-
tains a nested sum, in which one sum is carried over all partitions of n while the
other is carried over all partitions of r, where the argument of the nested sum
involves factorial, exponentiation and greatest common divisor (gcd) computa-
tions. He further established that this formula also enumerates the number of
unlabeled (n, r)-bipartite graphs, i.e., |Bu(n, r)|. A number of results indirectly
related to Harrison’s work and our result appeared in the literature [1, 2, 10]. In
particular, the set Bu(n, r) in our work coincides with the set of bicolored graphs
described in Section 2 in [1]. Whereas [1] provides a counting polynomial for the

1Note that a two-sided inequality for r < n directly follows from the fact that |Bu(n, r)| =
|Bu(r, n)|.
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number of bicolored graphs, we focus on the asymptotic behavior of |Bu(n, r)|
in this paper. Counting polynomials for other families of bipartite graphs were
also reported in [2]. Likewise, [10] provides generating functions for related
bipartite graph counting problems without an asymptotic analysis as provided
in this paper. It should also be mentioned that Polya’s theorem has been used
more recently in [14–21] to count various combinatorial classes of objects. To the
best of our knowledge, our work provides the first asymptotic enumeration of
unlabelled bipartite graphs.

Let Sn denote the symmetric group of permutations of degree n acting on
set N = {1, 2, · · · , n}. Suppose that the n! permutations in Sn are indexed by
1, 2, · · · , n! in some arbitrary, but fixed manner. The cycle index polynomial of Sn

is defined as follows( [22],see p.35, (2.2.1)):

ZSn(x1, x2, · · · , xn) =
1

n!

n!

∑
m=1

n

∏
k=1

x
pm,k

k (2)

where pm,k denotes the number of cycles of length k in the disjoint cycle represen-

tation of the mth permutation in Sn, and ∑
n
k=1 kpm,k = n, ∀m = 1, 2, · · · , n!.

Let Sn × Sr denote the direct product of symmetric groups Sn and Sr acting on
N = {1, 2, · · · , n} and R = {1, 2, · · · , r}, respectively, where n and r are positive
integers such that n < r. It can be inferred from Harrison ( [23],Lemma 4.1 and
Theorem 4.2) that the cycle index polynomial of Sn × Sr is given by [23]

ZSn×Sr(x1, x2, · · · , xnr) = ZSn(x1, x2, · · · , xn)⊠ ZSr(x1, x2, · · · , xr), (3)

where ⊠ is a particular polynomial multiplication that distributes over ordi-
nary addition, and in which the multiplication Xm

⊙
Xt of two product terms2,

Xm = x
pm,1

1 x
pm,2

2 · · · x
pm,n
n and Xt = x

qt,1

1 x
qt,2

2 · · · x
qt,r
r in ZSn

and ZSr
, respectively, is

defined as3

Xm

⊙

Xt =
n

∏
k=1

r

∏
j=1

x
pm,kqt,jgcd(k,j)

lcm(k,j)
. (4)

Harrison further proved that [5]:

|Bu(n, r)| = ZSn×Sr(2, 2, .., 2
︸ ︷︷ ︸

nr

) (5)

when4 n 6= r.

We need one more fact that can be found in Harary ( [22], p.36) in order to com-
pute the stated lower and upper bound in (1):

ZSr(x1, x2, . . . . . . , xr) =
1

r

r

∑
i=1

xiZSr−i
(x1, x2, . . . . . . , xr−i) (6)

where ZS0
() = 1.

2Note that we will not display the zero powers of x1, x2, · · · in a cycle index polynomial. We
will use the same convention for all other cycle index polynomials throughout the paper.

3The lcm(a,b) and gcd(a,b) denote least common multiple and greatest common divisor of a
and b.

4As noted in [5], n = r case involves a different cycle index polynomial. Bounding |Bu(n, n)|
will be considered separately at the end of the paper.
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2 An Upper Bound for |Bu(n, r)|

We first note that |Bu(1, r)| = r + 1 = (r+21−1
r )/1! ≤ 2(r+21−1

r )/1!. Hence the
upper bound that is claimed in the abstract holds for n = 1. Proving that it also
holds for n ≥ 2 requires a more careful analysis of the terms in

ZSn
(x1, x2, · · · , xn)⊠ ZSr

(x1, x2, · · · , xr). (7)

We first express ZSn(x1, x2, · · · , xn) as

ZSn
(x1, x2, . . . , xn) = ZSn

[1] + ZSn
[2] + . . . + ZSn

[n!], (8)
where

ZSn [1] =
1

n!
xn

1 , (9)

ZSn
[2] =

1

n!
xn−2

1 x2. (10)

The first term is associated with the identity permutation and the second term
is associated with any one of the permutations in which all but two of the
elements in N = 1, 2, · · · , n are fixed to themselves. The remaining ZSn

[i] =
1
n! ∏

n
k=1 x

pi,k

k , 3 ≤ i ≤ n! terms represent all the other product terms in the cycle
index polynomial of Sn with no particular association with the permutations in

Sn. Similarly, we set ZSr
(x1, x2, . . . , xr) =

1
r! ∑

r!
t=1 ∏

r
j=1 x

qt,j

j without identifying the

actual product terms with any particular permutation in Sr.

The following equations obviously hold as the sum of the lengths of all the cycles
in any cycle disjoint representation of a permutation in Sn and Sr must be n and
r, respectively.

n

∑
k=1

kpi,k = n, 1 ≤ i ≤ n!, (11)

r

∑
j=1

jqt,j = r, 1 ≤ t ≤ r! (12)

Now we can proceed with the computation of the upper bound for |Bu(n, r)|.
First, using (3) and (5) we note that

|Bu(n, r)| =ZSn×Sr(2, 2, 2, . . . , 2),

= [ZSn(x1, x2, . . . , xn)⊠ ZSr(x1, x2, · · · , xr)] (2, 2, . . . , 2),

= [(ZSn
[1] + ZSn

[2] + . . . + ZSn
[n!])⊠ ZSr

(x1, x2, . . . , xr)] (2, 2, . . . , 2),

= [ZSn [1]⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ [ZSn [2]⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . . + [ZSn
[n!]⊠ ZSr

(x1, x2, . . . , xr)] (2, 2, . . . , 2). (13)

The first term in (13) is directly computed from (9) and the following proposition.
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Proposition 1.

[(
1

n!
xn

1

)

⊠ ZSr
(x1, x2, · · · , xr)

]

(2, 2, . . . , 2) =
1

n!

(
r + 2n − 1

r

)

.

Proof.

[(
1

n!
xn

1

)

⊠ ZSr(x1, x2, · · · , xr)

]

(2, 2, . . . , 2)

=
1

n!

{
[

xn
1 ⊠

1

r!

r!

∑
t=1

r

∏
j=1

x
qt,j

j

]

(2, 2, ..., 2)

}

,

=
1

n!

{
[ 1

r!

r!

∑
t=1

xn
1

⊙ r

∏
j=1

x
qt,j

j

]

(2, 2, ..., 2)

}

,

=
1

n!

{
[ 1

r!

r!

∑
t=1

r

∏
j=1

x
nqt,jgcd(1,j)

lcm(1,j)

]

(2, 2, ..., 2)

}

,

=
1

n!

{
[ 1

r!

r!

∑
t=1

r

∏
j=1

x
nqt,j

j

]

(2, 2, ..., 2)

}

,

=
1

n!

{

1

r!

r!

∑
t=1

r

∏
j=1

2nqt,j

}

,

=
1

n!

{

1

r!

r!

∑
t=1

r

∏
j=1

(2n)qt,j

}

,

=
1

n!

{

ZSr
(2n, 2n, . . . , 2n)

}

. (14)

Using (6), we have

rZSr
(2n, 2n, . . . , 2n) =

r

∑
i=1

2nZSr−i
(2n, 2n, . . . , 2n),

and
(r − 1)ZSr−1

(2n, 2n, . . . , 2n) =
r−1

∑
i=1

2nZSr−1−i
(2n, 2n, . . . , 2n).

Subtracting the second equation from the first one gives

rZSr(2
n, 2n, . . . , 2n)− (r − 1)ZSr−1

(2n, 2n, . . . , 2n) = 2nZSr−1
(2n, 2n, . . . , 2n),

rZSr(2
n, 2n, . . . , 2n) = (r + 2n − 1)ZSr−1

(2n, 2n, . . . , 2n),

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)ZSr−1

(2n, 2n, . . . , 2n).

Expanding the last equation inductively, we obtain

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(

r + 2n − 2

r − 1
)ZSr−2

(2n, 2n, . . . , 2n),

ZSr(2
n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(

r + 2n − 2

r − 1
)(

r + 2n − 3

r − 2
)ZSr−3

(2n, 2n, . . . , 2n),

ZSr
(2n, 2n, . . . , 2n) = (

r + 2n − 1

r
)(

r + 2n − 2

r − 1
)(

r + 2n − 3

r − 2
) . . . (

2n

1
)ZS0

().
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Noting that ZS0
() = 1, and combining the product terms together, we obtain

ZSr(2
n, 2n, . . . , 2n) =

(
r + 2n − 1

r

)

.

The proposition follows from the substitution of this last equation into (14).

Thus, it suffices to upper bound each of the remaining terms in (13) to upper
bound |Bu(n, r)|. This will be established by proving [ZSn

[2]⊠ ZSr
(x1, x2, . . . , xr)]

(2, 2, . . . , 2) ≥ [ZSn [i]⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), ∀i, 3 ≤ i ≤ n!. We first
need some preliminary facts.

Lemma 1. For all i, 1 ≤ i ≤ n!,

[ZSn [i]⊠ ZSr(x1, x2, . . . , xr)](2, . . . , 2) = 1
n! ZSr(2

∑
n
k=1 pi,kgcd(k,1), . . . , 2∑

n
k=1 pi,kgcd(k,r)).

Proof.
[ZSn [i]⊠ ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2)

=

[

1

n!

n

∏
k=1

x
pi,k

k ⊠

(

1

r!

r!

∑
t=1

r

∏
j=1

x
qt,j

j

)]

(2, 2, . . . , 2),

=

[

1

n!r!

r!

∑
t=1

n

∏
k=1

x
pi,k

k

⊙ r

∏
j=1

x
qt,j

j

]

(2, 2, . . . , 2),

=

[

1

n!r!

r!

∑
t=1

r

∏
j=1

n

∏
k=1

x
pi,kqt,jgcd(k,j)

lcm(k,j)

]

(2, 2, . . . , 2),

=
1

n!r!

r!

∑
t=1

r

∏
j=1

n

∏
k=1

2pi,kqt,jgcd(k,j),

=
1

n!

[

1

r!

r!

∑
t=1

r

∏
j=1

(2∑
n
k=1 pi,kgcd(k,j))qt,j

]

,

=
1

n!
ZSr(2

∑
n
k=1 pi,kgcd(k,1), . . . , 2∑

n
k=1 pi,kgcd(k,r)).

Corollary 1.

[ZSn
[2]⊠ ZSr

(x1, x2, . . . , xr)](2, . . . , 2) = 1
n! ZSr

(2n−1, 2n, 2n−1, 2n, . . .).

Proof. By definition, p2,1 = n − 2, p2,2 = 1, p2,k = 0, 3 ≤ k ≤ n. Substituting these
into the last equation in Lemma 1 proves the statement.

Lemma 2.
∑

n
k=1 pi,k ≤ n − 1, ∀i, 2 ≤ i ≤ n!.

Proof. Recall from (11) that ∑
n
k=1 kpi,k = n, ∀i, 1 ≤ i ≤ n!. Hence

∑
n
k=1 pi,k = n − ∑

n
k=1(k − 1)pi,k, and so the maximum value of ∑

n
k=1 pi,k occurs

when ∑
n
k=1(k− 1)pi,k is minimized. Furthermore, at least one of pi,k, ∀i, 2 ≤ i ≤ n!

must be ≥ 1 for some k ≥ 2 since none of the permutations we consider is the
identity. Thus, ∑

n
k=1(k − 1)pi,k ≥ 1 and the statement follows.
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Lemma 3. If ∑
n
k=1 pi,kgcd(k, α + 1) = n, then ∑

n
k=1 pi,kgcd(k, α) ≤ n − 1,

∀i, 2 ≤ i ≤ n! and for any integer α ≥ 2.

Proof. If ∑
n
k=1 pi,kgcd(k, α + 1) = n as stated in the lemma, then we must have

gcd(k, α + 1) = k where pi,k ≥ 1, ∀i, 2 ≤ i ≤ n!. Therefore k ≤ α + 1. Now
if k = α + 1, then trivially gcd(k, α) < k. On the other hand if k < α + 1, then
α + 1 must be a multiple of k. Therefore, α can not be a multiple of k for any
k ≥ 2. At this point we find that gcd(k, α) < k, ∀k, 2 ≤ k ≤ n. Since as in the
previous lemma, none of the permutations we consider is the identity, at least
one of pi,k, ∀i, 2 ≤ i ≤ n! must be ≥ 1 for some k ≥ 2 and so we conclude that

∑
n
k=1 pi,kgcd(k, α) ≤ n − 1.

Lemma 4. ZSr(2
n−1, 2n, . . .) ≥ ZSr−1

(2n−1, 2n, . . .), for 2 ≤ n.

Proof. Using (6), we get

rZSr
(2n−1, 2n, . . .) =

r−β1

∑
odd i

2n−1ZSr−i
(2n−1, 2n, . . .) +

r−β2

∑
even i

2nZSr−i
(2n−1, 2n, . . .),

(15)

where β1 = 1, β2 = 0 if r is even and β1 = 0, β2 = 1 if r is odd. Similarly, for r − 1,

(r − 1)ZSr−1
(2n−1, 2n, . . .) =

r−1−β2

∑
odd i

2n−1ZSr−1−i
(2n−1, 2n, . . .)+

r−1−β1

∑
even i

2nZSr−1−i
(2n−1, 2n, . . .). (16)

Subtracting 16 from 15 gives

rZSr(2
n−1, 2n, . . .)− (r − 1)ZSr−1

(2n−1, 2n, . . .)

=
r−β2

∑
even i

2nZSr−i
(2n−1, 2n, . . .)−

r−1−β2

∑
odd i

2n−1ZSr−1−i
(2n−1, 2n . . .)

+
r−β1

∑
odd i

2n−1ZSr−i
(2n−1, 2n, . . .)−

r−1−β1

∑
even i

2nZSr−1−i
(2n−1, 2n, . . .), (17)

rZSr
(2n−1, 2n, . . .)− (r − 1)ZSr−1

(2n−1, 2n, . . .)

=
r−β2

∑
even i

2n−1ZSr−i
(2n−1, 2n, . . .) + 2n−1ZSr−1

(2n−1, 2n, . . .)−

r−1−β1

∑
even i

2n−1ZSr−1−i
(2n−1, 2n, . . .),

rZSr
(2n−1, 2n, . . .) = (r − 1 + 2n−1)ZSr−1

(2n−1, 2n . . .)

+ 2n−1

(
r−β2

∑
even i

ZSr−i
(2n−1, 2n, . . .)−

r−1−β1

∑
even i

ZSr−1−i
(2n−1, 2n, . . .)

)

. (18)

We now prove the lemma by induction on r.

Basis r = 1. By (6), ZS1
(2n−1) = 2n−1ZS0

() = 2n−1. So we have ZS1
(2n−1) =

2n−1 ≥ ZS0
() = 1 for 2 ≤ n.
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Induction Step. Suppose that the lemma holds from 1 to r − 1. That is,
ZSr−i

− ZSr−i−1
≥ 0, 1 ≤ i ≤ r − 1. Now recall that if r is even then β1 =

1, and β2 = 0, and hence the difference of the two sums in (18) becomes
(ZSr−2

− ZSr−3
) + (ZSr−4

− ZSr−5
) . . . + (ZS2

− ZS1
) + ZS0

, which is clearly ≥ 0 by
the induction hypothesis. Therefore,

rZSr(2
n−1, 2n, . . .) ≥ (r − 1 + 2n−1)ZSr−1

(2n−1, 2n, . . .), (19)

ZSr(2
n−1, 2n, . . .) ≥ ZSr−1

(2n−1, 2n, . . .), n ≥ 2. (20)

On the other hand, if r is odd then β1 = 0, and β2 = 1, and hence the difference of
the two sums in the same equation becomes (ZSr−2

−ZSr−3
)+ (ZSr−4

−ZSr−5
) . . .+

(ZS2
− ZS1

) + (ZS1
− ZS0

), which is again ≥ 0, and the statement follows in this
case as well.

We now are ready to prove that

[ZSn[2]⊠ ZSr(x1, x2, . . . , xr)](2,. . . ,2) ≥ [ZSn [i]⊠ ZSr(x1, x2, . . . , xr)](2,. . . ,2),
∀i, 2 ≤ i≤n!.

Theorem 1.

[ZSn [2]⊠ ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2) ≥ [ZSn [i]⊠ ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2)
(21)

∀i, 2 ≤ i ≤ n! and ∀n, n < r.

Proof. Using Lemma 1 and Corollary 1 it suffices to show that

ZSr(2
n−1, 2n, . . .) ≥ ZSr(2

∑
n
k=1 pi,kgcd(k,1), . . . , 2∑

n
k=1 pi,kgcd(k,r)). (22)

We prove the statement by induction on r.

Basis: (r = 1). By (6), ZS1
(2n−1) = 2n−1ZS0

() = 2n−1. Similarly, by (6),

ZS1
(2∑

n
k=1 pi,kgcd(k,1)) = 2∑

n
k=1 pi,kgcd(k,1)ZS0

() = 2∑
n
k=1 pi,k . Given that ∑

n
k=1 pi,k ≤

n − 1 by Lemma 2, we have 2∑
n
k=1 pi,k ≤ 2n−1, and hence the statement holds in

this case.

Induction Step: First, by (6),

ZSr(2
n−1, 2n, . . .) =

1

r










2n−1ZSr−1
(2n−1, 2n, . . .)

+2nZSr−2
(2n−1, 2n, . . .)

+2n−1ZSr−3
(2n−1, 2n, . . .)
...

+2βZS0
()










, (23)

where β = n if r is even and β = n − 1 if r is odd. Similarly,

ZSr(2
∑

n
k=1 pi,kgcd(k,1), . . . , 2∑

n
k=1 pi,kgcd(k,r)) =

1

r










2∑
n
k=1 pi,kgcd(k,1)ZSr−1

(2∑
n
k=1 pi,kgcd(k,1), . . .)

+2∑
n
k=1 pi,kgcd(k,2)ZSr−2

(2∑
n
k=1 pi,kgcd(k,1), . . .)

+2∑
n
k=1 pi,kgcd(k,3)ZSr−3

(2∑
n
k=1 pi,kgcd(k,1), . . .)

...

+2∑
n
k=1 pi,kgcd(k,r)ZS0

()










(24)
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Subtracting (24) from (23), we have

ZSr(2
n−1, 2n, . . .)− ZSr(2

∑
n
k=1 pi,kgcd(k,1), . . . , 2∑

n
k=1 pi,kgcd(k,r))

=
1

r










2n−1ZSr−1
(2n−1, 2n, . . .)

+2nZSr−2
(2n−1, 2n, . . .)

+2n−1ZSr−3
(2n−1, 2n, . . .)
...

+2βZS0
()










−
1

r










2∑
n
k=1 pi,kgcd(k,1)ZSr−1

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .)

+2∑
n
k=1 pi,kgcd(k,2)ZSr−2

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .)

+2∑
n
k=1 pi,kgcd(k,3)ZSr−3

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .)

...

+2∑
n
k=1 pi,kgcd(k,r)ZS0

()










(25)

Thus, it suffices to show that the right hand side of the above equation is ≥ 0, or

2n−1ZSr−1
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,1)ZSr−1

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .)

+2nZSr−2
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,2)ZSr−2

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .

+2n−1ZSr−3
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,3)ZSr−3

(2∑
n
k=1 pi,kgcd(k,1), 2∑

n
k=1 pi,kgcd(k,2), . . .)

...

+2βZS0
()− 2∑

n
k=1 pi,kgcd(k,r)ZS0

() ≥ 0.

(26)

Now by induction hypothesis, (22) holds for 1, 2, · · · , r − 1. Thus, (26) can be
replaced by

2n−1ZSr−1
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,1)ZSr−1

(2n−1, 2n, . . .)

+2nZSr−2
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,2)ZSr−2

(2n−1, 2n, . . .)

+2n−1ZSr−3
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,3)ZSr−3

(2n−1, 2n, . . .)
...

+2βZS0
()− 2∑

n
k=1 pi,kgcd(k,r)ZS0

() ≥ 0.

(27)

Moreover, invoking Lemma 2 gives

2n−1ZSr−1
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,1)ZSr−1

(2n−1, 2n . . .)

≥ 2n−1ZSr−1
(2n−1, 2n, . . .)− 2n−1ZSr−1

(2n−1, 2n, . . .) = 0.

(28)

Hence the difference in the first line in (27) ≥ 0, and therefore it is sufficient to
show that

2nZSr−2
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,2)ZSr−2

(2n−1, 2n, . . .)

+2n−1ZSr−3
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,3)ZSr−3

(2n−1, 2n, . . .)
...

+2βZS0
()− 2∑

n
k=1 pi,kgcd(k,r)ZS0

() ≥ 0.

(29)
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To prove this inequality, we will combine four terms in pairs of consecutive lines
for the remaining r − 1 lines by considering two cases. If r is odd then β = n − 1
and no extra line remains in this pairing. Thus, for all even α, 2 ≤ α ≤ r − 1, it
suffices to prove

2nZSr−α
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,α)ZSr−α

(2n−1, 2n . . .),

+2n−1ZSr−α−1
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,α+1)ZSr−α−1

(2n−1, 2n . . .) ≥ 0.
(30)

or,

2nZSr−α
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kkZSr−α

(2n−1, 2n . . .)

+2n−1ZSr−α−1
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kgcd(k,α+1)ZSr−α−1

(2n−1, 2n . . .) ≥ 0.

Now if ∑
n
k=1 pi,kgcd(k, α + 1) ≤ n − 1, then

2nZSr−α
(2n−1, 2n, . . .)− 2∑

n
k=1 pi,kkZSr−α

(2n−1, 2n, . . .)
+2n−1ZSr−α−1

(2n−1, 2n, . . .)− 2n−1ZSr−α−1
(2n−1, 2n, . . .) ≥

2nZSr−α
(2n−1, 2n, . . .)− 2nZSr−α

(2n−1, 2n, . . .)
+2n−1ZSr−α−1

(2n−1, 2n, . . .)− 2n−1ZSr−α−1
(2n−1, 2n, . . .) = 0.

On the other hand, if ∑
n
k=1 pi,kgcd(k, α + 1) = n, then we prove (30) by noting

that ∑
n
k=1 pi,kgcd(k, α) ≤ n − 1 by Lemma 3. Thus,

2nZSr−α
(2n−1, 2n, . . .)− 2n−1ZSr−α

(2n−1, 2n, . . .)

+ 2n−1ZSr−α−1
(2n−1, 2n, . . .)− 2nZSr−α−1

(2n−1, 2n, . . .)

= 2n−1ZSr−α
(2n−1, 2n, . . .)− 2n−1ZSr−α−1

(2n−1, 2n, . . .)

2n−1
[

ZSr−α
(2n−1, 2n, . . .)− ZSr−α−1

(2n−1, 2n, . . .)
]

Now by Lemma 4, ZSr−α
(2n−1, 2n, . . .) ≥ ZSr−α−1

(2n−1, 2n, . . .) and the statement is
proved for odd r, n < r. For even r, the last line in (29) is left out in the pairing of

consecutive lines and β = n. In this case we have 2nZS0
()− 2∑

n
k=1 pi,kgcd(k,r)ZS0

() ≥

2nZS0
()− 2∑

n
k=1 pi,kkZS0

() = 2nZS0
()− 2nZS0

() = 0 and the statement follows.

Theorem 2.

[ZSn [2]⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) ≤
(r+2n−1

r )

n!(n! − 1)
. (31)

where 2 ≤ n < r.

Proof. By Corollary 1

[ZSn [2]⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) =
1

n!
ZSr(2

n−1, 2n, . . .). (32)

Thus, to prove the theorem, it is sufficient to show

1

n!
ZSr(2

n−1, 2n, 2n−1, 2n, . . .) ≤
(r+2n−1

r )

n!(n! − 1)
(33)

where 2 ≤ n < r.
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Now, using (6), we get

rZSr
(2n−1, 2n, . . .) =

r−β1

∑
odd i

2n−1ZSr−i
(2n−1, 2n, . . .) +

r−β2

∑
even i

2nZSr−i
(2n−1, 2n, . . .)

(34)

where β1 = 1, β2 = 0 if r is even and β1 = 0, β2 = 1 if r is odd. Similarly, for r − 2,

(r − 2)ZSr−2
(2n−1, 2n, . . .) =

r−2−β1

∑
odd i

2n−1ZSr−2−i
(2n−1, 2n, . . .) +

r−2−β2

∑
even i

2nZSr−2−i
(2n−1, 2n, . . .). (35)

Subtracting (35) from (34) gives

rZSr(2
n−1, 2n, . . .)− (r − 2)ZSr−2

(2n−1, 2n, . . .)

= 2n−1ZSr−1
(2n−1, 2n, . . .) + 2nZSr−2

(2n−1, 2n, . . .),

rZSr
(2n−1, 2n, . . .) = 2n−1ZSr−1

(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2
(2n−1, 2n, . . .),

ZSr(2
n−1, 2n, . . .) =

1

r

[

2n−1ZSr−1
(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2

(2n−1, 2n, . . .)
]

.

(36)

We will use induction on r and the recurrence given in (36) to prove this
inequality.

Basis. Case r = 3: Recall that

ZSn [2] =
1

n!
xn−2

1 x2,

ZS3
(x1, x2, x3) =

1

3!
(x3

1 + 3x1x2 + 2x3).

Thus,
[
ZSn

[2]⊠ ZS3
(x1, x2, x3)

]
(2, 2, . . . , 2)

=

[
1

n!
(xn−2

1 x2)⊠
1

3!
(x3

1 + 3x1x2 + 2x3)

]

(2, 2, . . . , 2),

=
1

3!n!

[

(xn−2
1 x2)

⊙

x3
1 + (xn−2

1 x2)
⊙

(3x1x2) + (xn−2
1 x2)

⊙

2x3

]

(2, 2, . . . , 2),

=
1

3!n!

[

x
3(n−2)
1 x3

2 + 3xn−2
1 x2xn−2

2 x2
2 + 2xn−2

3 x6

]

(2, 2, . . . , 2),

=
1

3!n!

[

23n−3 + 3 × 22n−1 + 2n
]

≤
(r+2n−1

r )

n!(n! − 1)
.

for n = 2 and r = 3.
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Case r = 4. In this case we have

[
ZSn [2]⊠ ZS4

(x1, x2, x3, x4)
]
(2, . . . , 2)

=

[
1

n!
(xn−2

1 x2)⊠
1

4!
(x4

1 + 6x2
1x2 + 3x2

2 + 8x1x3 + 6x4)

]

(2, . . . , 2),

=
1

4!n!

[

(xn−2
1 x2)

⊙

x4
1 + (xn−2

1 x2)
⊙

(6x2
1x2) + (xn−2

1 x2)
⊙

3x2
2

+ (xn−2
1 x2)

⊙

(8x1x3) + (xn−2
1 x2)

⊙

6x4

]

(2, . . . , 2),

=
1

4!n!

[

x
4(n−2)
1 x4

2 + 6x
2(n−2)
1 xn−2

2 x2
2x2

2 + 3x
2(n−2)
1 x4

2 + 8xn−2
1 xn−2

3 x2x6 + 6xn−2
4 x2

4

]

(2, . . . , 2),

=
1

4!n!

[

24n−4 + 6 × 23n−2 + 3 × 22n + 8 × 22n−2 + 6 × 2n
]

,

=
1

4!n!

[

24n−4 + 6 × 23n−2 + 5 × 22n + 6 × 2n
]

.

Now, given that r = 4, the only possible values of n are 2 and 3. If n = 2 then:

[
ZSn [2]⊠ ZS4

(x1, x2, x3, x4)
]
(2, 2, . . . , 2)

=
1

4!n!

[

24n−4 + 6 × 23n−2 + 5 × 22n + 6 × 2n
]

,

=
1

4!2!

[

24 + 6 × 24 + 5 × 24 + 6 × 22
]

,

=
16 + 96 + 80 + 24

4!2!
= 4.5,

≤
(r+2n−1

r )

n!(n! − 1)
=

(7
4)

2!(2! − 1)
=

35

2
= 17.5.

On the other hand, if n = 3 then:

[
ZSn [2]⊠ ZS4

(x1, x2, x3, x4)
]
(2, 2, . . . , 2)

=
1

4!n!

[

24n−4 + 6 × 23n−2 + 5 × 22n + 6 × 2n
]

,

=
1

4!3!

[

28 + 6 × 27 + 5 × 26 + 6 × 23
]

,

=
256+ 768 + 320 + 48

4!3!
=

29

3
,

≤
(r+2n−1

r )

n!(n! − 1)
=

(11
4 )

3!(3! − 1)
=

330

30
= 11.

Induction Step: Suppose that (33) holds for all values from 3 to r − 1. Using the
recurrence given in (36) and the induction hypothesis for r − 1 and r − 2 we get:
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1

n!
ZSr(2

n−1, 2n, . . .) =
1

n!r

[

2n−1ZSr−1
(2n−1, 2n, . . .) + (r − 2 + 2n)ZSr−2

(2n−1, 2n, . . .)
]

,

=
2n−1

n!r
ZSr−1

(2n−1, 2n, . . .) +
r − 2 + 2n

n!r
ZSr−2

(2n−1, 2n, . . .),

≤
2n−1

r

(r+2n−2
r−1 )

n!(n! − 1)
+

r − 2 + 2n

r

(r+2n−3
r−2 )

n!(n! − 1)
,

≤
2n−1

n!(n! − 1)r

(r + 2n − 2)!

(r − 1)!(2n − 1)!
+

r − 2 + 2n

n!(n! − 1)r

(r + 2n − 3)!

(r − 2)!(2n − 1)!
,

≤
2n−1

n!(n! − 1)r

(r + 2n − 2)!

(r − 1)!(2n − 1)!
+

(r − 1)(r + 2n − 2)!

n!(n! − 1)r!(2n − 1)!
,

≤
(r + 2n − 2)!(r + 2n−1 − 1)

n!(n! − 1)r!(2n − 1)!
≤

(r + 2n − 2)!(r + 2n − 1)

n!(n! − 1)r!(2n − 1)!
,

≤
(r + 2n − 1)!

n!(n! − 1)r!(2n − 1)!
=

1

n!(n! − 1)

(
r + 2n − 1

r

)

,

≤
1

n!(n! − 1)

(
r + 2n − 1

r

)

.

This completes the proof.

Combining Theorems 1 and 2 concludes the upper bound calculation.

Theorem 3. |Bu(n, r)| ≤
2(r+2n−1

r )
n! .

Proof. By (13),

|Bu(n, r)| = [(ZSn
[1])⊠ ZSr

(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ [(ZSn
[2])⊠ ZSr

(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . . + [(ZSn [n!])⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2),

and by Theorem 1,

|Bu(n, r)| ≤ [(ZSn [1])⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)+

[(ZSn
[2])⊠ ZSr

(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . . + [(ZSn [2])⊠ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2).

Finally by Theorem 2,

|Bu(n, r)| ≤
(r+2n−1

r )

n!
+ (n! − 1)

(r+2n−1
r )

n!(n! − 1)
=

2(r+2n−1
r )

n!
.

3 The Lower Bound for |Bu(n, r)|

Using (9) and (13) gives

|Bu(n, r)| ≥

[(
1

n!
xn

1

)

⊠ ZSr(x1, x2, · · · , xr)

]

(2, 2, . . . , 2). (37)

Thus the following lower bound trivially follows from Proposition 1 and
Eqn. (37):

|Bu(n, r)| ≥
1

n!
ZSr

(2n, 2n, . . . , 2n) ≥
(r+2n−1

r )

n!
. (38)
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4 Remarks

1. It should be mentioned that, if r < n, the obtained lower and upper bounds
together with the relation |Bu(n, r)| = |Bu(r, n)| give

(n+2r−1
n )

r!
≤ |Bu(n, r)| ≤ 2

(n+2r−1
n )

r!
, r < n.

Furthermore, if r = n, using the cycle index representation of bi-colored
graphs provided in Section 3 in [1] and Theorem 3 gives

|Bu(n, n)| ≥
(n+2n−1

n )

2n!
.

The Z′ term in the cycle index representation of bi-colored graphs in [1]
prevents us from deriving an upper bound for |Bu(n, n)| that is a constant
multiple of the lower bound in this case. On the other hand, an obvious up-
per bound for |Bu(n, n)| can be derived by setting r = n+ 1 in the inequality
in Theorem 3.

2. It may be worthwhile to mention that the proof of the upper bound on
|Bu(n, r)| hinges on identifying the largest term in the cycle index poly-

nomial of |Bu(n, r)|, i.e., [
(

1
n! x

n
1

)

⊠ ZSr(x1, x2, · · · , xr)](2, 2, . . . , 2), and the

second largest term, [
(

1
n! x

n−2
1 x2

)

⊠ ZSr
(x1, x2, · · · , xr)](2, 2, . . . , 2). Identi-

fying the second largest term turned out to be the most complex step in our
proof. Establishing an upper bound (Theorem 2) leads to the upper bound
for |Bu|(n, r)|. Improving this upper bound significantly will likely require
identifying the third and possibly fourth largest term, and obtaining upper
bounds for each.

3. The novelty of our proof rests in combining Harrison’s cycle index rep-
resentation of the number of unlabelled bipartite graphs in Bu(n, r) with
Harary’s recursive formula (Eqn. 6). More specifically, we transform the
terms in Harrison’s cycle index representation into a form that allows us to
use Harary’s recurrence to carry out the computations in our theorems.

4. It is noted that when n = 2 or n = 3, exact values of |B(n, r)| were reported
in [13], but computing the exact values of |Bu(n, r)| for n ≥ 4 remains open.

5. It is also noted that one can provide a simple combinatorial proof of the
lower bound on |Bu(n, r)|, by counting r-selections of all subsets of n left
vertices with repetition, and dividing it by n!. However, a similar combina-
torial proof for the upper bound does not appear to be within our reach.
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Appendix:

Table 1 lists ln |Bu(n, r)| along with the natural logarithms of lower and upper
bounds for 1 ≤ n < r ≤ 15.

      n      r 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

1.09861

1.09861

1.79176

1.38629

1.38629

2.07944

1.60944

1.60944

2.30259

1.79176

1.79176

2.48491

1.94591

1.94591

2.63906

2.07944

2.07944

2.77259

2.19722

2.19722

2.89037

2.30259

2.30259

2.99573

2.3979

2.3979

3.09104

2.48491

2.48491

3.17805

2.56495

2.56495

3.2581

2.63906

2.63906

3.3322

2.70805

2.70805

3.4012

2.77259

2.77259

3.46574

2

2.30259

2.56495

2.99573

2.83321

3.09104

3.55535

3.3322

3.52636

4.02535

3.73767

3.91202

4.43082

4.09434

4.2485

4.78749

4.40672

4.55388

5.10595

4.70048

4.82831

5.39363

4.96284

5.0814

5.65599

5.20401

5.31321

5.89715

5.42495

5.52943

6.1203

5.63479

5.7301

6.32794

5.82895

5.91889

6.52209

6.01127

6.09582

6.70441

3

4.00733

4.46591

4.70048

4.8828

5.24702

5.57595

5.65599

5.95584

6.34914

6.34914

6.59851

7.04229

6.97728

7.18841

7.67089

7.55276

7.73368

8.24617

8.08364

8.24012

8.77678

8.57622

8.71276

9.26936

9.03575

9.1562

9.7289

9.46653

9.57345

10.1597

9.872

9.96754

10.5651

10.255

10.3409

10.9481

4

6.4708

6.9594

7.16395

7.72356

8.08641

8.41671

8.86869

9.14238

9.56184

9.92471

10.1349

10.6179

10.9056

11.0692

11.5987

11.8219

11.9512

12.515

12.6821

12.7855

13.3752

13.493

13.5767

14.1861

14.2603

14.3287

14.9534

14.9885

15.045

15.6816

15.6816

15.7287

16.3748

5

9.87164

10.2603

10.5648

11.5633

11.826

12.2565

13.1474

13.3276

13.8406

14.6391

14.7645

15.3322

16.0501

16.1388

16.7432

17.3899

17.4535

18.083

18.6662

18.7124

19.3593

19.8854

19.9195

20.5785

21.053

21.0784

21.7461

22.1736

22.1927

22.8667

6

14.3253

14.5771

15.0185

16.5086

16.6637

17.2017

18.588

18.6849

19.2811

20.5759

20.6372

21.269

22.482

22.5215

23.1752

24.3146

24.3403

25.0078

26.0804

26.0974

26.7736

27.7852

27.7965

28.4783

29.4338

29.4415

30.127

7

19.9011

20.0463

20.5942

22.6165

22.6996

23.3097

25.2339

25.282

25.927

27.7633

27.7915

28.4564

30.2128

30.2295

30.906

32.5895

32.5995

33.2827

34.8992

34.9053

35.5924

37.147

37.1507

37.8401

8

26.6393

26.7201

27.3324

29.9164

29.9604

30.6096

33.102

33.1261

33.7952

36.2043

36.2177

36.8975

39.2304

39.2378

39.9235

42.186

42.1902

42.8792

45.0764

45.0788

45.7696

9

34.5644

34.6096

35.2575

38.4241

38.4479

39.1173

42.1988

42.2114

42.892

45.8953

45.902

46.5885

49.5197

49.5233

50.2128

53.0769

53.0789

53.7701

10

43.693

43.7187

44.3861

48.1502

48.1635

48.8434

52.5284

52.5353

53.2216

56.8335

56.837

57.5266

61.0705

61.0723

61.7636

11

54.0381

54.0528

54.7312

59.1036

59.1111

59.7967

64.0955

64.0993

64.7886

69.0189

69.0208

69.712

12

65.6106

65.6191

66.3038

71.2925

71.2968

71.9856

76.9056

76.9078

77.5988

13

78.4205

78.4254

79.1137

84.7251

84.7275

85.4182

14

92.4768

92.4797

93.17

Table 1: Exact values of ln |Bu(n, r)|, 1 ≤ n < r ≤ 15, and natural logarithms of
lower and upper bounds.
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