Starlikeness of a generalized Bessel function

Rosihan M. Ali See Keong Lee Saiful R. Mondal

Abstract

This paper investigates three functions $\mathrm{f}_{a, v}, \mathrm{~g}_{a, v}$ and $\mathrm{h}_{a, v}$ in the class \mathcal{A} consisting of analytic functions f in the unit disk satisfying $f(0)=f^{\prime}(0)-1=0$. Here $a \in\{1,2,3, \ldots\}$, and v is real. Each function is related to the generalized Bessel function. The radius of starlikeness of positive order is obtained for each of the three functions. Further, the best range on v is determined for a fixed a to ensure the functions $f_{a, v}$ and $g_{a, v}$ are starlike of positive order in the entire unit disk. When $a=1$, the results obtained reduced to earlier known results.

1 Introduction

There is a vast literature describing the importance and applications of the Bessel function of the first kind of order p given by

$$
\mathrm{J}_{p}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+p+1)}\left(\frac{x}{2}\right)^{2 k+p}
$$

where Γ is the familiar gamma function. Various generalizations of the Bessel function have also been studied. Perhaps a more complete generalization is that given by Baricz in [3]. In this case, the generalized Bessel function takes the form

$$
\begin{equation*}
{ }_{a} \mathrm{~B}_{b, p, c}(x):=\sum_{k=0}^{\infty} \frac{(-c)^{k}}{k!\Gamma\left(a k+p+\frac{b+1}{2}\right)}\left(\frac{x}{2}\right)^{2 k+p} \tag{1}
\end{equation*}
$$

Received by the editors in August 2017.
Communicated by H. De Bie.
2010 Mathematics Subject Classification : 33C10;30C45.
Key words and phrases : Bessel function; generalized Bessel function; starlike function; radius of starlikeness.
for $a \in \mathbb{N}=\{1,2,3, \ldots\}$, and $b, p, c, x \in \mathbb{R}$. It is evident that the function ${ }_{a} \mathrm{~B}_{b, p, c}$ converges absolutely at each $x \in \mathbb{R}$. This generalized Bessel function was further investigated in [1,2] for $z \in \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. It was shown in [2] that the generalized Bessel function ${ }_{a} \mathrm{~B}_{b, p, c}$ is a solution of an $(a+1)$-order differential equation

$$
(D-p) \prod_{j=1}^{a}\left(D+\frac{2 p+b+1-2 j}{a}-p\right) y(x)+\frac{c x^{2}}{a^{a} 2^{1-a}} y(x)=0
$$

where the operator D is given by $D:=x(d / d x)$. For $a=1$, the differential equation reduces to

$$
x^{2} y^{\prime \prime}(x)+b x y^{\prime}(x)+\left(c x^{2}-p^{2}+(1-b) p\right) y(x)=0
$$

Thus it yields the classical Bessel differential equation for $b=c=1$. Interesting functional inequalities for ${ }_{a} \mathrm{~B}_{b, p,-\alpha^{2}}$ were obtained in [2], particularly for the case $a=2$.

In [4], Baricz et. al investigated geometric properties involving the Bessel function of the first kind in \mathbb{D} for the following three functions :

$$
\begin{align*}
& \mathrm{f}_{v}(z)=\left(2^{v} \Gamma(v+1) \mathrm{J}_{v}(z)\right)^{\frac{1}{v}} \\
& \mathrm{~g}_{v}(z)=2^{v} \Gamma(v+1) z^{1-v} \mathrm{~J}_{v}(z), \tag{2}\\
& \mathrm{h}_{v}(z)=2^{v} \Gamma(v+1) z^{1-\frac{v}{2}} \mathrm{~J}_{v}(\sqrt{z})
\end{align*}
$$

Each function is suitably normalized to ensure that it belongs to the class \mathcal{A} consisting of analytic functions f in \mathbb{D} satisfying $f(0)=f^{\prime}(0)-1=0$. Here the principal branch is assumed, which is positive for z positive.

An important geometric feature of a complex-valued function is starlikeness. For $0 \leq \beta<1$, the class of starlike functions of order β, denoted by $\mathcal{S}^{*}(\beta)$, are functions $f \in \mathcal{A}$ satisfying

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \quad \text { for all } \quad z \in \mathbb{D}
$$

In the case $\beta=0$, these functions are simply said to be starlike (with respect to the origin). Geometrically $f \in \mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ if the linear segment $t w, 0 \leq t \leq 1$, lies completely in $f(\mathbb{D})$ whenever $w \in f(\mathbb{D})$. A starlike function is necessarily univalent in \mathbb{D}.

The three functions given by (2) do not possess the property of starlikeness in the whole disk \mathbb{D}. Thus it is of interest to find the largest subdisk in \mathbb{D} that gets mapped by these functions onto starlike domains. In general, the radius of starlikeness of order β for a given class \mathcal{G} of \mathcal{A}, denoted by r_{β}^{*}, is the largest number $r_{0} \in(0,1)$ such that $r^{-1} f(r z) \in \mathcal{S}^{*}(\beta)$ for $0<r \leq r_{0}$ and for all $f \in \mathcal{G}$. Analytically,

$$
r_{\beta}^{*}(\mathcal{G}):=\sup \left\{r>0: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad z \in \mathbb{D}_{r}, f \in \mathcal{G}\right\}
$$

where $\mathbb{D}_{r}=\{z:|z|<r\}$.
In [4], Baricz et. al obtained the radius of starlikeness of order β for each of the three functions $\mathrm{f}_{v}, \mathrm{~g}_{v}$, and h_{v} given by (2). This extends the earlier work of Brown in [7] who obtained the radius of starlikeness (of order 0) for functions f_{v} and g_{v}.

For $a \in \mathbb{N}$, we consider the following extension of the three functions in (2) involving the generalized Bessel function:

$$
\begin{align*}
& \mathrm{f}_{a, v}(z):=\left(2^{a v-a+1} a^{-\frac{a(a v-a+1)}{2}} \Gamma(a v+1)_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)\right)^{\frac{1}{a v-a+1}}, \\
& \mathrm{~g}_{a, v}(z):=2^{a v-a+1} a^{-\frac{a}{2}(a v-a+1)} \Gamma(a v+1) z^{a-a v}{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right), \tag{3}\\
& \mathrm{h}_{a, v}(z):=2^{a v-a+1} a^{-\frac{a}{2}(a v-a+1)} \Gamma(a v+1) z^{\frac{1}{2}(1+a-a v)}{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} \sqrt{z}\right) .
\end{align*}
$$

Here the function $f_{a, v}$ is taken to be the principal branch (see section 3). Evidently for $a=1$, these functions are those given by (2) treated by Baricz et. al in [4]. Denote by $r_{\beta}^{*}(f)$ to be the radius of starlikeness of order β for a given function f.

In this paper, we find $r_{\beta}^{*}\left(f_{a}\right)$ when f_{a} is either one of the three functions in (3). These are given in Theorem 3.7, Theorem 3.9, and Theorem 3.10 in section 3. Section 4 is devoted to finding the best range on v corresponding to a fixed a to ensure the functions $\mathrm{f}_{a, v}$ and $\mathrm{g}_{a, v}$ are starlike of order β in the whole unit disk. These are presented in Theorem 4.1 and Theorem 4.2. When $a=1$, the results obtained reduced to earlier known results.

2 Preliminaries

The following two results will be required. First, for $a=1$, the generalized Bessel function (1) is simply written as $B_{b, p, c}:={ }_{1} \mathrm{~B}_{b, p, c}$. Thus

$$
\begin{equation*}
\mathrm{B}_{b, p, c}(z):=\sum_{k=0}^{\infty} \frac{(-c)^{k}}{k!\Gamma\left(k+p+\frac{b+1}{2}\right)}\left(\frac{z}{2}\right)^{2 k+p} \tag{4}
\end{equation*}
$$

Proposition 2.1. [2, Proposition 2.2] Let $a \in \mathbb{N}$, and $b, p, c, \in \mathbb{R}$. Then

$$
{ }_{a} \mathrm{~B}_{b, p, c}(z)=(2 \pi)^{\frac{a-1}{2}} a^{-p-\frac{b}{2}}\left(\frac{z}{2}\right)^{p} \prod_{j=1}^{a}\left(\frac{z}{2 a^{a / 2}}\right)^{-\frac{p+j-1}{a}} \mathrm{~B}_{\frac{b+1-a}{a}, \frac{p+j-1}{a}, c}\left(\frac{z}{a^{a / 2}}\right),
$$

where $\mathrm{B}_{b, p, c}$ is given by (4).
In [2], the generalized Bessel function was also shown to satisfy the following relations:

$$
z \frac{d}{d z}{ }^{a} \mathrm{~B}_{b, p, c}(z)=p_{a} \mathrm{~B}_{b, p, c}(z)-c\left(\frac{z}{2}\right)^{1-a} z_{a} \mathrm{~B}_{b, p+a, c}(z)
$$

and

$$
\begin{equation*}
z \frac{d}{d z}{ }^{a} \mathrm{~B}_{b, p, c}(z)=\frac{z}{a}{ }_{a} \mathrm{~B}_{b, p-1, c}(z)-\left(\frac{2 p+b-1}{a}-p\right){ }_{a} \mathrm{~B}_{b, p, c}(z) \tag{5}
\end{equation*}
$$

which together lead to the following result.

Proposition 2.2. [2, Proposition 2.3] Let $a \in \mathbb{N}, b, p, c \in \mathbb{R}$ and $z \in \mathbb{D}$. Then

$$
\frac{z}{a^{a}} \mathrm{~B}_{b, p-1, c}(z)+c\left(\frac{z}{2}\right)^{1-a} z_{a} \mathrm{~B}_{b, p+a, c}(z)=\left(\frac{2 p+b-1}{a}\right){ }_{a} \mathrm{~B}_{b, p, c}(z) .
$$

3 Radius of starlikeness of generalized Bessel functions

The following preliminary result sheds insights into the zeros of the three functions given by (3).
Theorem 3.1. Let $v>(a-1) / a, a \in \mathbb{N}$. Then all zeros of ${ }_{a} B_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)$ are real. Further the origin is the only zero of ${ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)$ in the unit disk \mathbb{D}.
Proof. Proposition 2.1 shows that

$$
\begin{aligned}
{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)= & (2 \pi)^{\frac{a-1}{a}} a^{-\left(a v+\frac{1}{2}\right)} a^{\frac{a}{2}(a v-a+1)}\left(\frac{z}{2}\right)^{a v-a+1} \\
& \times \prod_{j=1}^{a}\left(\frac{z}{2}\right)^{-(v-1)-\frac{j}{a}} \mathrm{~B}_{1,(v-1)+j / a, 1}(z) .
\end{aligned}
$$

Since

$$
\mathrm{B}_{1,(v-1)+j / a, 1}(z)=\mathrm{J}_{(v-1)+j / a}(z),
$$

it readily follows that

$$
\begin{aligned}
{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)= & (2 \pi)^{\frac{a-1}{a}} a^{\frac{1}{2}\left(a^{2} v-2 a v-a^{2}+a-1\right)}\left(\frac{z}{2}\right)^{-\frac{1}{2}(a-1)} \\
& \times \mathrm{J}_{(v-1)+1 / a}(z) \mathrm{J}_{(v-1)+2 / a}(z) \ldots \mathrm{J}_{v}(z) .
\end{aligned}
$$

Now, $v-1+(j / a) \geq v-1+(1 / a)>0, j=1, \ldots, a$. Further for $p>-1$, it is known [12, p. 483] that the zeros of J_{p} are all real. If $\mathrm{j}_{p, k}$ denotes the k-th positive zero of J_{p}, it is also known [12, p. 508] that when p is positive, the positive zeros of J_{p} increases as p increases. Thus we infer that the zeros of ${ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)$ are all real. Since

$$
\mathrm{j}_{v, 1}>\mathrm{j}_{v-1,1}>\ldots>\mathrm{j}_{v-1+(1 / a), 1}>\mathrm{j}_{0,1} \approx 2.40483,
$$

the only zero in \mathbb{D} occurs at the origin.
Theorem 3.1 shows that the function

$$
\mathrm{f}_{a, v}(z)=z\left(1+\sum_{k=1}^{\infty} \frac{(-1)^{k} \Gamma(a v+1) a^{a k}}{k!2^{2 k} \Gamma(a k+a v+1)} z^{2 k}\right)^{\frac{1}{a v-a+1}}
$$

has only one zero inside \mathbb{D} whenever $v-1+(1 / a)>0$. Thus in this instance, we may take the principal branch for $\mathrm{f}_{a, v} \in \mathcal{A}$. It is also readily verified that the functions $\mathrm{g}_{a, v}$ and

$$
\begin{aligned}
\mathrm{h}_{a, v}(z)= & z-\frac{\Gamma(a v+1)}{1!2^{2} \Gamma(a+a v+1)} a^{a} z^{2}+\frac{\Gamma(a v+1)}{2!2^{4} \Gamma(2 a+a v+1)} a^{2 a} z^{3}+\cdots \\
& +(-1)^{k} \frac{\Gamma(a v+1)}{k!2^{2 k} \Gamma(a k+a v+1)} a^{a k} z^{k+1}+\cdots
\end{aligned}
$$

are both analytic and belong to the normalized class \mathcal{A}.
The following is another preliminary result required in the sequel.
Lemma 3.2. Let $a \in \mathbb{N}$ and $v>-1 / a$. Then

$$
\frac{z_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} z\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)}=\frac{z \mathrm{~J}_{v-1}(z)}{\mathrm{J}_{v}(z)}-(2-a) v+1-a .
$$

Proof. Since

$$
\mathrm{B}_{b, p, 1}(z)=\left(\frac{2}{z}\right)^{\frac{b-1}{2}} \mathrm{~J}_{p+\frac{b-1}{2}}(z)
$$

it follows from Proposition 2.1 that

$$
\begin{aligned}
& a \mathrm{~B}_{2 a-1, a v-a+1,1}(z)= \\
& \quad(2 \pi)^{\frac{a-1}{a}} a^{-\frac{2 a v+1}{2}}\left(\frac{z}{2}\right)^{a v-a+1} \prod_{j=1}^{a} a^{\frac{a v-a+j}{2}}\left(\frac{2}{z}\right)^{\frac{a v-a+j}{a}} \mathrm{~J}_{\frac{a v-a+j}{a}}\left(\frac{z}{a^{a / 2}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& { }_{a} \mathrm{~B}_{2 a-1, a v-a, 1}(z)= \\
& \qquad(2 \pi)^{\frac{a-1}{a}} a^{-\frac{2 a v-1}{2}}\left(\frac{z}{2}\right)^{a v-a} \prod_{j=1}^{a} a^{\frac{a v-a+j-1}{2}}\left(\frac{2}{z}\right)^{\frac{a v-a+j-1}{a}} \mathrm{~J}_{\frac{a v-a+j-1}{a}}\left(\frac{z}{a^{a / 2}}\right) .
\end{aligned}
$$

Expanding the above products, a routine calculation shows that

$$
\frac{{ }_{a} \mathrm{~B}_{2 a-1, a v-a, 1}(z)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}(z)}=a^{1-\frac{a}{2}} \frac{\mathrm{~J}_{v-1}\left(\frac{z}{a^{a / 2}}\right)}{\mathrm{J}_{v}\left(\frac{z}{a^{a / 2}}\right)}
$$

With $b=2 a-1$ and $p=a v-a+1$, the recurrence relation (5) gives

$$
z \frac{d}{d z} a^{a} \mathrm{~B}_{2 a-1, a v-a+1,1}(z)=\frac{z}{a}{ }_{a} \mathrm{~B}_{2 a-1, a v-a, 1}(z)-(v(2-a)+a-1)_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}(z) .
$$

Replacing z by $a^{a / 2} z$ leads to

$$
\begin{aligned}
\frac{z{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} z\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)} & =\frac{a^{a / 2} z}{a} \frac{{ }_{a} \mathrm{~B}_{2 a-1, a v-a, 1}\left(a^{a / 2} z\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)}-(2-a) v+1-a \\
& =\frac{z \mathrm{~J}_{v-1}(z)}{\mathrm{J}_{v}(z)}-(2-a) v+1-a
\end{aligned}
$$

which proves the assertion.
A result on the modified Bessel function of order p given by

$$
I_{p}(z)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(k+p+1)}\left(\frac{z}{2}\right)^{2 k+p}
$$

is the final preliminary result required in the sequel.

Proposition 3.3. Let $\alpha, v \in \mathbb{R}$ satisfy $-1<v<-\alpha$. Then the equation $r \mathrm{I}_{v}^{\prime}(r)+$ $\alpha \mathrm{I}_{v}(r)=0$ has a unique root in $(0, \infty)$.
Proof. Consider the function

$$
q(r):=\frac{r \mathrm{I}_{v}^{\prime}(r)}{\mathrm{I}_{v}(r)}+\alpha
$$

It is known from [2, Theorem 3.1(c)] that $r \mathrm{I}_{v}^{\prime}(r) / I_{v}(r)$ is increasing on $(0, \infty)$. Further, the asymptotic properties show that $r \mathrm{I}_{v}^{\prime}(r) / \mathrm{I}_{v}(r) \rightarrow v$ as $r \rightarrow 0$, and $r \mathrm{I}_{v}^{\prime}(r) / \mathrm{I}_{v}(r) \rightarrow \infty$ as $r \rightarrow \infty$. This implies that $q(r) \rightarrow v+\alpha<0$ as $r \rightarrow 0$, and $q(r) \rightarrow \infty$ for $r \rightarrow \infty$. Thus q has exactly one zero.

We also recall additional facts on the zeros of the Dini functions.
Lemma 3.4. [12, p. 482] If $v>-1$ and $\alpha, \gamma \in \mathbb{R}$, then the Dinifunction $z \mapsto \alpha \mathrm{~J}_{v}(z)+$ $\gamma z \mathrm{~J}_{v}^{\prime}(z)$ has all its zeros real whenever $((\alpha / \gamma)+v) \geq 0$. In the case $((\alpha / \gamma)+v)<0$, it also has two purely imaginary zeros.

Lemma 3.5. [9, Theorem 6.1] Let $\alpha \in \mathbb{R}, v>-1$ and $v+\alpha>0$. Further let $x_{v, 1}$ be the smallest positive root of $\alpha \mathrm{J}_{v}(z)+z \mathrm{~J}_{v}^{\prime}(z)=0$. Then $x_{v, 1}^{2}<\mathrm{j}_{v, 1}^{2}$.

Lemma 3.6. [8, p. 78] Let $-1<v<-\alpha$, and $\pm i \zeta$ be the single pair of conjugate purely imaginary zeros of the Dini function $z \mapsto \alpha \mathrm{~J}_{v}(z)+z \mathrm{~J}_{v}^{\prime}(z)$. Then

$$
\zeta^{2}<-\frac{\alpha+v}{2+\alpha+v} \mathrm{j}_{v, 1}^{2}
$$

We are now ready to present the radius of starlikeness for each function given in (3).
Theorem 3.7. Let $0 \leq \beta<1$, and $a \in \mathbb{N}$. If $v>(a-1) / a$, then $r_{\beta}^{*}\left(f_{a, v}\right)=j_{v, \beta, 1}^{\mathrm{a}, \mathrm{f}}$, where $\mathrm{j}_{v, \beta, 1}^{\mathrm{a}, \mathrm{f}}$ is the smallest positive root of the equation

$$
\begin{equation*}
r a^{a / 2} \mathrm{~J}_{v}^{\prime}(r)-\left((v-1)(1-a) a^{a / 2}+\beta(a v-a+1)\right) \mathrm{J}_{v}(r)=0 \tag{6}
\end{equation*}
$$

If $v \in(-1 / a,(a-1) / a)$ and

$$
\begin{equation*}
\frac{(a v-a+1)\left(a^{a / 2}-\beta\right)}{2 a^{a / 2}+(a v-a+1)\left(a^{a / 2}-\beta\right)}>-1 \tag{7}
\end{equation*}
$$

then $r_{\beta}^{*}\left(f_{a, v}\right)=\mathrm{i}_{v, \beta}^{\mathrm{a}, \mathrm{f}}$, where $\mathrm{i}_{v, \beta}^{\mathrm{a}, \mathrm{f}}$ is the unique positive root of the equation

$$
\begin{equation*}
r a^{a / 2} I_{v}^{\prime}(r)-\left((v-1)(1-a) a^{a / 2}+\beta(a v-a+1)\right) \mathrm{I}_{v}(r)=0 \tag{8}
\end{equation*}
$$

Proof. Differentiating logarithmically, Lemma 3.2 shows that

$$
\begin{align*}
\frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)} & =\frac{a^{a / 2}}{a v-a+1} \frac{z_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} z\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)} \\
& =\frac{a^{a / 2}}{a v-a+1}\left(\frac{z \mathrm{~J}_{v-1}(z)}{\mathrm{J}_{v}(z)}-v(2-a)+1-a\right) \tag{9}
\end{align*}
$$

Since ${ }_{1} \mathrm{~B}_{1, v, 1}(z)=J_{v}(z)$, the relation (5) leads to the well-known recurrence relation

$$
z \mathrm{~J}_{v}^{\prime}(z)=z \mathrm{~J}_{v-1}(z)-v \mathrm{~J}_{v}(z)
$$

and whence (9) reduces to

$$
\begin{equation*}
\frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)}=\frac{a^{a / 2}}{a v-a+1}\left(\frac{z \mathrm{~J}_{v}^{\prime}(z)}{\mathrm{J}_{v}(z)}-(v-1)(1-a)\right) . \tag{10}
\end{equation*}
$$

With $\mathrm{j}_{v, n}$ as the n -th positive zero of the Bessel function J_{v}, the Bessel function J_{v} admits the Weierstrassian decomposition [12, p.498]

$$
\mathrm{J}_{v}(z)=\frac{z^{v}}{2^{v} \Gamma(v+1)} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\mathrm{j}_{v, n}^{2}}\right) .
$$

Thus

$$
\frac{z \mathrm{~J}_{v}^{\prime}(z)}{\mathrm{J}_{v}(z)}=v-\sum_{n=1}^{\infty} \frac{2 z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}}
$$

which reduces (10) to

$$
\begin{equation*}
\frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)}=a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2 z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}} \tag{11}
\end{equation*}
$$

For $v>(a-1) / a$ and $|z|<j_{v, n}$, evidently

$$
\begin{aligned}
\operatorname{Re} \frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)} & =a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \operatorname{Re} \sum_{n=1}^{\infty} \frac{2 z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}} \\
& \geq a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2|z|^{2}}{\mathrm{j}_{v, n}^{2}-|z|^{2}}=\frac{|z| \mathrm{f}_{a, v}^{\prime}(|z|)}{\mathrm{f}_{a, v}(|z|)} .
\end{aligned}
$$

Equality holds for $|z|=r$, and by the minimum principle for harmonic functions,

$$
\operatorname{Re} \frac{z \mathrm{f}_{v}^{\prime}(z)}{\mathrm{f}_{v}(z)} \geq \beta \Longleftrightarrow|z| \leq \mathrm{j}_{v, \beta, 1^{\prime}}^{\mathrm{a}, \mathrm{f}}
$$

where $j_{v, \beta, 1}^{\mathrm{a}, \mathrm{f}}$ is the smallest positive root of equation (6). Since

$$
v-\left((v-1)(1-a)+\frac{\beta(a v-a+1)}{a^{a / 2}}\right)=(a v-a+1)\left(1-\frac{\beta}{a^{a / 2}}\right)>0
$$

for all $v>(a-1) / a$, we infer from Lemma 3.4 and Lemma 3.5 that $\mathrm{j}_{v, \beta, 1}^{\mathrm{a}, \mathrm{f}}<\mathrm{j}_{v, 1}<$ $j_{v, n}$.

Consider next the case $-1 / a<v<(a-1) / a$. It is known from [4, p. 2023] that for $z \in \mathbb{C}$ and $\alpha \in \mathbb{R}$ with $\alpha \geq|z|$, then

$$
\operatorname{Re}\left(\frac{z}{\alpha-z}\right) \geq-\frac{|z|}{\alpha+|z|}
$$

which in turn implies that

$$
\operatorname{Re}\left(\frac{z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}}\right) \geq-\frac{|z|^{2}}{\mathrm{j}_{v, n}^{2}+|z|^{2}}
$$

whenever $|z|<j_{v, 1}<j_{v, n}$.
The expression (11) yields

$$
\operatorname{Re} \frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)} \geq a^{a / 2}+\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2|z|^{2}}{\mathrm{j}_{v, n}^{2}+|z|^{2}}=\frac{i|z| \mathrm{f}_{a, v}^{\prime}(i|z|)}{\mathrm{f}_{a, v}(i|z|)}
$$

Equality holds for $|z|=i|z|=i r$. Hence

$$
\operatorname{Re} \frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)} \geq \beta
$$

if $|z| \leq \mathrm{i}_{v, \beta^{\prime}}^{a, f}$ where $\mathrm{i}_{v, \beta}^{a, f}$ is a root of $i|z| \mathrm{f}_{a, v}^{\prime}(i|z|)=\beta \mathrm{f}_{a, v}(i|z|)$, that is, $\mathrm{i}_{v, \beta}^{a, f}$ is a root of

$$
\frac{a^{a / 2}}{a v-a+1}\left(\frac{i|z| \mathrm{J}_{v}^{\prime}(i|z|)}{\mathrm{J}_{v}(i|z|)}-(v-1)(1-a)\right)=\beta
$$

Since $I_{v}(z)=i^{-v} \mathrm{~J}_{v}(i z)$, the above equation is equivalent to (8). It also follows from Proposition 3.3 that the root $i_{v, \beta}^{a, f}$ is unique. Finally, that $i_{v, \beta}^{a, f}<j_{v, n}$ is a consequence of Lemma 3.6 and assumption (7). Indeed,

$$
\left(\mathrm{i}_{v, \beta}^{a, f}\right)^{2}<-\frac{(a v-a+1)\left(a^{a / 2}-\beta\right)}{2 a^{a / 2}+(a v-a+1)\left(a^{a / 2}-\beta\right)} \mathrm{j}_{v, 1}^{2}<\mathrm{j}_{v, 1}^{2}<\mathrm{j}_{v, n}^{2}
$$

which completes the proof.
Interestingly, Theorem 3.7 reduces to earlier known result for $a=1$.
Corollary 3.8. [4, Theorem 1(a)] Let $0 \leq \beta<1$. If $v>0$, then $r_{\beta}^{*}\left(f_{1, v}\right)$ is the smallest positive root $\mathrm{j}_{v, \beta, 1}^{1, \mathrm{f}}$ of the equation

$$
r \mathrm{~J}_{v}^{\prime}(r)-\beta v \mathrm{~J}_{v}(r)=0
$$

In the case $v \in(-1,0)$, then $r_{\beta}^{*}\left(f_{1, v}\right)$ is the unique positive root $\mathrm{i}_{v, \beta}^{1, \mathrm{f}}$ of the equation

$$
r I_{v}^{\prime}(r)-\beta \nu I_{v}(r)=0
$$

The next two results find the radius of starlikeness of order β for the functions $\mathrm{g}_{a, v}$ and $\mathrm{h}_{a, v}$ given in (3).

Theorem 3.9. Let $\beta \in[0,1), a \in \mathbb{N}$, and $v>-1 / a$. If $a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-$ $\beta \geq 0$, then $r_{\beta}^{*}\left(\mathrm{~g}_{a, v}\right)=\mathrm{j}_{v, \beta, 1}^{\mathrm{a,g}}$, where $\mathrm{j}_{v, \beta, 1}^{\mathrm{a,g}}$ is the smallest positive root of the equation

$$
\begin{equation*}
r a^{a / 2} \mathrm{~J}_{v}^{\prime}(r)-\left((v-1)(1-a) a^{a / 2}-a(1-v)+\beta\right) \mathrm{J}_{v}(r)=0 \tag{12}
\end{equation*}
$$

Proof. It follows from (3) that

$$
\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)}=a(1-v)+a^{a / 2} \frac{z_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} z\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} z\right)}
$$

As in the proof of Theorem 3.7 (see (9) and (10)), it is readily shown that

$$
\begin{align*}
\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)} & =a(1-v)+a^{a / 2}\left(\frac{z \mathrm{~J}_{v-1}(z)}{\mathrm{J}_{v}(z)}-v(2-a)+1-a\right) \\
& =a(1-v)+a^{a / 2}\left(\frac{z \mathrm{~J}_{v}^{\prime}(z)}{\mathrm{J}_{v}(z)}-(v-1)(1-a)\right) \\
& =a(1-v)+a^{a / 2}\left[a v+1-a-\sum_{n=1}^{\infty} \frac{2 z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}}\right] . \tag{13}
\end{align*}
$$

This implies that

$$
\operatorname{Re} \frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)} \geq a(1-v)+a^{a / 2}\left[a v+1-a-\sum_{n=1}^{\infty} \frac{2|z|^{2}}{\mathrm{j}_{v, n}^{2}-|z|^{2}}\right]=\frac{|z| \mathrm{g}_{a, v}^{\prime}(|z|)}{\mathrm{g}_{a, v}(|z|)}
$$

provided $|z|<j_{v, n}$. Equality holds at $|z|=r$. The minimum principle for harmonic functions leads to

$$
\operatorname{Re} \frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)} \geq \beta \Longleftrightarrow|z| \leq r_{\beta}^{*}\left(\mathrm{~g}_{a, v}\right)
$$

The exact value of $r_{\beta}^{*}\left(\mathrm{~g}_{a, v}\right)$ is obtained from the equation $r \mathrm{~g}_{a, v}^{\prime}(r)=\beta \mathrm{g}_{a, v}(r)$. From (13), this is equivalent to determining the root of (12).

If $a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-\beta \geq 0$, then Lemma 3.4 shows that all roots of (12) are real. In this case, $r_{\beta}^{*}\left(\mathrm{~g}_{a, v}\right)$ is its smallest positive root $\mathrm{j}_{v, \beta, 1}^{a, g}$. Finally, Lemma 3.5 shows that $j_{v, \beta, 1}^{a, g}<j_{v, 1}$, and whence $|z|<r_{\beta}^{*}\left(g_{a, v}\right)<j_{v, 1}$.

Theorem 3.10. Let $\beta \in[0,1), a \in \mathbb{N}$, and $v>-1 / a$. If $\left(a^{a / 2}-1\right)(1-a+a v)+$ $2(1-\beta)>0$, then $r_{\beta}^{*}\left(\mathrm{~h}_{a, v}\right)=\mathrm{j}_{v, \beta, 1}^{\mathrm{a}, \mathrm{h}}$, where $\mathrm{j}_{v, \beta, 1}^{\mathrm{a}, \mathrm{h}}$ is the smallest positive root of the equation

$$
\begin{equation*}
a^{a / 2} r \mathrm{~J}_{v}^{\prime}(r)+\left(\left(a^{a / 2}-1\right)(1-a+a v)-a^{a / 2} v+2(1-\beta)\right) \mathrm{J}_{v}(r)=0 \tag{14}
\end{equation*}
$$

Proof. It follows from (3) that

$$
\frac{\mathrm{h}_{a, v}^{\prime}(z)}{\mathrm{h}_{a, v}(z)}=\frac{1+a-a v}{2 z}+\frac{a^{a / 2}}{2 \sqrt{z}} \frac{{ }_{\mathrm{a}} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} \sqrt{z}\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} \sqrt{z}\right)},
$$

and thus Lemma 3.2 yields

$$
\begin{aligned}
\frac{z \mathrm{~h}_{a, v}^{\prime}(z)}{\mathrm{h}_{a, v}(z)} & =\frac{1+a-a v}{2}+\frac{a^{a / 2} \sqrt{z}}{2} \frac{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}^{\prime}\left(a^{a / 2} \sqrt{z}\right)}{{ }_{a} \mathrm{~B}_{2 a-1, a v-a+1,1}\left(a^{a / 2} \sqrt{z}\right)} \\
& =\frac{1+a-a v}{2}+\frac{a^{a / 2}}{2}\left(\frac{\sqrt{z} \mathrm{~J}_{v}^{\prime}(\sqrt{z})}{\mathrm{J}_{v}(\sqrt{z})}-(v-1)(1-a)\right) \\
& =1-\frac{(a v+1-a)\left(1-a^{a / 2}\right)}{2}-a^{a / 2} \sum_{n=1}^{\infty} \frac{z}{\mathrm{j}_{v, n}^{2}-z}
\end{aligned}
$$

Proceeding similarly as in the proof of Theorem 3.7, it is readily shown that

$$
\operatorname{Re} \frac{z \mathrm{~h}_{a, v}^{\prime}(z)}{\mathrm{h}_{a, v}(z)} \geq 1-\frac{(a v+1-a)\left(1-a^{a / 2}\right)}{2}-a^{a / 2} \sum_{n=1}^{\infty} \frac{|z|}{\mathrm{j}_{v, n}^{2}-|z|}=\frac{|z| \mathrm{h}_{a, v}^{\prime}(|z|)}{\mathrm{h}_{a, v}(|z|)}=\beta
$$

if and only if $|z| \leq r^{*}\left(\mathrm{~h}_{v, \beta}\right)<\mathrm{j}_{v, n}$. Here $r^{*}\left(\mathrm{~h}_{v, \beta}\right)$ is the smallest root of the equation $r \mathrm{~h}_{a, v}^{\prime}(r) / \mathrm{h}_{a, v}(r)=\beta$, that is, a root of

$$
\frac{1+a-a v}{2}+\frac{a^{a / 2}}{2}\left(\frac{\sqrt{r} \mathrm{~J}_{v}^{\prime}(\sqrt{r})}{\mathrm{J}_{v}(\sqrt{r})}-(v-1)(1-a)\right)=\beta
$$

or equivalently, of the equation

$$
a^{a / 2} r \mathrm{~J}_{v}^{\prime}(r)+\left(\left(a^{a / 2}-1\right)(1-a+a v)-a^{a / 2} v+2(1-\beta)\right) \mathrm{J}_{v}(r)=0
$$

Thus by Lemma 3.4, $r^{*}\left(h_{v, \beta}\right)$ is the smallest positive root $j_{v, \beta, 1}^{a, h}$ of (14) when $\left(a^{a / 2}-1\right)(1-a+a v)+2(1-\beta)>0$.
Remark 1. In the case $a=1$, the condition $a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-\beta=1-\beta>$ 0 and $\left(a^{a / 2}-1\right)(1-a+a v)+2(1-\beta)=2(1-\beta)>0$ both hold trivially for all $\beta \in[0,1)$. Both theorems therefore coincide with the earlier results in [4].

Further, it is of interest to determine the radius of starlikeness $r_{\beta}^{*}\left(\mathrm{~g}_{a, v}\right)$ in Theorem 3.9 in the event that $a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-\beta<0$, as well as that of $r_{\beta}^{*}\left(\mathrm{~h}_{a, v}\right)$ in Theorem 3.10 when $\left(a^{a / 2}-1\right)(1-a+a v)+2(1-\beta)<0$.

4 Starlikeness of the generalized Bessel function

In this final section, the best range on v is obtained for a fixed $a \in \mathbb{N}$ to ensure the functions $\mathrm{f}_{a, v}$ and $\mathrm{g}_{a, v}$ given by (3) are starlike of order β in \mathbb{D}.

Theorem 4.1. For a fixed $a \in \mathbb{N}$, the function $\mathrm{f}_{a, v}$ given by (3) is starlike of order $\beta \in[0,1)$ in \mathbb{D} if and only if $v \geq v_{f}(a, \beta)$, where $v_{f}(a, \beta)$ is the unique root of

$$
(a v-a+1)\left(a^{a / 2}-\beta\right) \mathrm{J}_{v}(1)=a^{a / 2} \mathrm{~J}_{v+1}(1)
$$

in $((a-1) / a, \infty)$.
Proof. For $v>(a-1) / a$ and $|z|=r \in[0,1)$, it follows from (11) that

$$
\operatorname{Re}\left(\frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)}\right) \geq \frac{r \mathrm{f}_{a, v}^{\prime}(r)}{\mathrm{f}_{a, v}(r)}=a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2 r^{2}}{\mathrm{j}_{v, n}^{2}-r^{2}}
$$

The above inequality holds since $r<1$ and it is known ([12, p. 508], [11, p. 236]) that the function $v \mapsto j_{v, n}$ is increasing on $(0, \infty)$ for each fixed $n \in \mathbb{N}$, and whence $\mathrm{j}_{v, 1} \geq \mathrm{j}_{(a-1) / a, 1} \geq \mathrm{j}_{0,1} \approx 2.40483 \ldots$..

A computation yields

$$
\frac{d}{d r}\left(\frac{r \mathrm{f}_{a, v}^{\prime}(r)}{\mathrm{f}_{a, v}(r)}\right)=-\frac{2 a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2 r \mathrm{j}_{v, n}^{2}}{\left(\mathrm{j}_{v, n}^{2}-r^{2}\right)^{2}} \leq 0
$$

Hence

$$
\operatorname{Re}\left(\frac{z \mathrm{f}_{a, v}^{\prime}(z)}{\mathrm{f}_{a, v}(z)}\right) \geq a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2}{\mathrm{j}_{v, n}^{2}-1}=\frac{\mathrm{f}_{a, v}^{\prime}(1)}{\mathrm{f}_{a, v}(1)}
$$

The monotonicity property of $v \mapsto \mathrm{j}_{v, n}$ leads to
$\frac{\mathrm{f}_{a, \mu}^{\prime}(1)}{\mathrm{f}_{a, \mu}(1)}=a^{a / 2}-\frac{a^{a / 2}}{a \mu-a+1} \sum_{n=1}^{\infty} \frac{2}{\mathrm{j}_{\mu, n}^{2}-1} \geq a^{a / 2}-\frac{a^{a / 2}}{a v-a+1} \sum_{n=1}^{\infty} \frac{2}{\mathrm{j}_{v, n}^{2}-1}=\frac{\mathrm{f}_{a, v}^{\prime}(1)}{\mathrm{f}_{a, v}(1)}$,
$\mu \geq v>-1$. Since $v \mapsto \mathrm{f}_{a, v}^{\prime}(1) / \mathrm{f}_{a, v}(1)$ is increasing in $((a-1) / a, \infty)$, and from consideration of the asymptotic behavior of $f_{a, v}^{\prime}(1) / f_{a, v}(1)$, evidently $\mathrm{f}_{a, v}^{\prime}(1) / \mathrm{f}_{a, v}(1) \geq \beta$ if and only if $v \geq v_{f}(a, \beta)$, where $v_{f}(a, \beta)$ is the unique root of the equation $f_{a, v}^{\prime}(1)=\beta f_{a, v}(1)$. From (9), the latter equation is equivalent to

$$
a^{a / 2} \mathrm{~J}_{v-1}(1)=\left(a^{a / 2}(v(2-a)+a-1)+\beta(a v-a+1)\right) \mathrm{J}_{v}(1)
$$

The recurrence relation in Proposition 2.2 now shows that $v_{f}(a, \beta)$ is a unique root of $(a v-a+1)\left(a^{a / 2}-\beta\right) \mathrm{J}_{v}(1)=a^{a / 2} \mathrm{~J}_{v+1}(1)$. Since all inequalities are sharp, it follows that the value $v_{f}(a, \beta)$ is best.
Remark 2. With regards to Theorem 4.1, we tabulate the best value v for a fixed β and a for which $\mathrm{f}_{a, v}$ is starlike of order β. These values are given in Table 1.

	$\beta=0$	$\beta=0.5$	$\beta=0.95$
$a=1$	$v=0.39001$	$v=0.645715$	$v=2.72421$
$a=2$	$v=0.659908$	$v=0.706779$	$v=0.781815$
$a=3$	$v=0.766251$	$v=0.776181$	$v=0.786989$

Table 1 Values of v for $\mathrm{f}_{a, v}$ to be starlike
Using (6), we tabulate the radius of starlikeness for $f_{a, v}$ in Theorem 3.7 for a fixed $v=0.7, a=1,2,3$, and respectively $\beta=0, \beta=0.5$, and $\beta=0.95$. These are given in Table 2. Here the value of $\mathrm{j}_{v, 1}$ at $v=0.7$ is $\mathrm{j}_{0.7,1}=3.42189$. With reference to Table 1, we expect the radius of starlikeness to be less than 1 whenever $v=0.7$ is less than the given values of v in Table 1.

	$\beta=0$	$\beta=0.5$	$\beta=0.95$
$a=1$	$r_{0}^{*}\left(f_{1,0.7}\right)=1.44678$	$r_{1 / 2}^{*}\left(f_{1,0.7}\right)=1.05621$	$r_{0.95}^{*}\left(f_{1,0.7}\right)=0.343848$
$a=2$	$r_{0}^{*}\left(f_{2,0.7}\right)=1.12397$	$r_{1 / 2}^{*}\left(f_{2,0.7}\right)=0.982365$	$r_{0.95}^{*}\left(f_{2,0.7}\right)=0.828745$
$a=3$	$r_{0}^{*}\left(f_{3,0.7}\right)=0.577726$	$r_{1 / 2}^{*}\left(f_{3,0.7}\right)=0.549716$	$r_{0.95}^{*}\left(f_{3,0.7}\right)=0.523133$

Table 2 Radius of starlikeness for $\mathrm{f}_{a, v}$ when $v=0.7$
Letting

$$
F(r):=\frac{r \mathrm{~J}_{v}^{\prime}(r)}{\mathrm{J}_{v}(r)}
$$

then (6) takes the form $F(r)=-\alpha$, where

$$
\alpha:=\alpha(a, \beta, v)=-\left((v-1)(1-a)+\frac{\beta(a v-a+1)}{a^{a / 2}}\right)
$$

For $v>0$, it is known [6] that $F(r)$ is strictly decreasing on $(0, \infty)$ except at the zeros of $\mathrm{J}_{v}(r)$. Differentiating with respect to β, it is clear that α is decreasing with respect to β so long as $a v-a+1>0$, and thus r_{β}^{*} is decreasing. Further, for a fixed $v<1$ and $\beta=0$, then α is monotonically decreasing with respect to a, that is, r_{0}^{*} is decreasing as a function of a. However, for β near 1 , then α is no longer monotonic. For instance, choosing $v=0.7$ and $\beta=0.95$, Table 2 illustrates the fact that $r_{0.95}^{*}$ is not monotonic with respect to the parameter a.

Theorem 4.2. Let $a \in \mathbb{N}, v>-1 / a$, and $j_{v, 1}$ be the first positive zero of J_{v}. Then the function $\mathrm{g}_{a, v}$ given by (3) is starlike of order $\beta \in[0,1)$ in \mathbb{D} if and only if $v \geq v_{g}(a, \beta)$, where $v_{g}(a, \beta)$ is the unique root in $(\max \{\tilde{v},-1 / a\}, \infty)$ of

$$
\left(a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-\beta\right) \mathrm{J}_{v}(1)=a^{a / 2} \mathrm{~J}_{v+1}(1),
$$

and $\tilde{v} \simeq-0.7745 \ldots$ is the unique root of $j_{v, 1}=1$.
Proof. It follows from (13) that

$$
\begin{aligned}
\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)} & =a(1-v)+a^{a / 2}\left(\frac{z \mathrm{~J}_{v}^{\prime}(z)}{\mathrm{J}_{v}(z)}-(v-1)(1-a)\right) \\
& =a(1-v)+a^{a / 2}\left(a v-a+1-\sum_{n=1}^{\infty} \frac{2 z^{2}}{\mathrm{j}_{v, n}^{2}-z^{2}}\right)
\end{aligned}
$$

and

$$
\operatorname{Re}\left(\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)}\right) \geq \frac{r \mathrm{~g}_{a, v}^{\prime}(r)}{\mathrm{g}_{a, v}(r)}=a(1-v)+a^{a / 2}\left(a v-a+1-\sum_{n=1}^{\infty} \frac{2 r^{2}}{\mathrm{j}_{v, n}^{2}-r^{2}}\right)
$$

for $|z|<j_{v, 1}$. The function $r \mapsto r g_{a, v}^{\prime}(r) / g_{a, v}(r)$ is decreasing on $[0,1)$. Since $\mathrm{j}_{v, 1}>1$ for $v>\max \{\tilde{v},-1 / a\}$, it follows that $\mathrm{j}_{v, n}>1$ for each n, and consequently

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)}\right) \geq \frac{r \mathrm{~g}_{a, v}^{\prime}(r)}{\mathrm{g}_{a, v}(r)}>\frac{\mathrm{g}_{a, v}^{\prime}(1)}{\mathrm{g}_{a, v}(1)} & = \\
& a(1-v)+a^{a / 2}\left(a v-a+1-\sum_{n=1}^{\infty} \frac{2}{\mathrm{j}_{v, n}^{2}-1}\right) .
\end{aligned}
$$

Further, for $\mu \geq v>\max \{\tilde{v},-1 / a\}$,

$$
\begin{aligned}
\frac{\mathrm{g}_{a, \mu}^{\prime}(1)}{\mathrm{g}_{a, \mu}(1)} & =a\left(a^{a / 2}-1\right)(\mu-1)+a^{a / 2}-\sum_{n=1}^{\infty} \frac{2 a^{a / 2}}{\mathrm{j}_{\mu, n}^{2}-1} \\
& \geq a\left(a^{a / 2}-1\right)(v-1)+a^{a / 2}-\sum_{n=1}^{\infty} \frac{2 a^{a / 2}}{\mathrm{j}_{v, n}^{2}-1}=\frac{\mathrm{g}_{a, v}^{\prime}(1)}{\mathrm{g}_{a, v}(1)}
\end{aligned}
$$

This implies that $v \mapsto \mathrm{~g}_{a, v}^{\prime}(1) / \mathrm{g}_{a, v}(1)$ is increasing on $(\max \{\tilde{v},-1 / a\}, \infty)$.
Thus

$$
\operatorname{Re}\left(\frac{z \mathrm{~g}_{a, v}^{\prime}(z)}{\mathrm{g}_{a, v}(z)}\right)>\frac{\mathrm{g}_{a, v}^{\prime}(1)}{\mathrm{g}_{a, v}(1)} \geq \beta
$$

if and only if $v \geq v_{g}(a, \beta)$, where $v_{g}(a, \beta)$ is the unique root of $\mathrm{g}_{a, v}^{\prime}(1)=\beta \mathrm{g}_{a, v}(1)$, or equivalently,

$$
a(1-v)+a^{a / 2}\left(\frac{\mathrm{~J}_{v}^{\prime}(1)}{\mathrm{J}_{v}(1)}-(v-1)(1-a)\right)=\beta
$$

Finally, Proposition 2.2 implies that $v_{g}(a, \beta)$ is a unique root of

$$
\left(a(v-1)\left(a^{a / 2}-1\right)+a^{a / 2}-\beta\right) \mathrm{J}_{v}(1)=a^{a / 2} \mathrm{~J}_{v+1}(1)
$$

Remark 3. The best value v obtained from Theorem 4.2 for a fixed β and a for which $g_{a, v}$ is starlike of order β is given in Table 3.

	$\beta=0$	$\beta=0.5$	$\beta=0.95$
$a=1$	$v=-0.340092$	$v=0.122499$	$v=9.02272$
$a=2$	$v=0.39002$	$v=0.586273$	$v=0.772587$
$a=3$	$v=0.714616$	$v=0.751407$	$v=0.784626$

Table 3 Values of v for $g_{a, v}$ to be starlike
The radius of starlikeness for $g_{a, v}$ drawn from Theorem 3.9 is tabulated in Table 4 for a fixed $v=0.7, a=1,2,3$, and respectively $\beta=0, \beta=0.5$ and $\beta=0.95$. Here the radius of starlikeness is expectedly less than 1 whenever $v=0.7$ is less than the given values of v in Table 3. A similar situation occurs as for the function $f_{a, v}$ with regard to the monotonicity of the radius of starlikeness with respect to either parameter β or a.

	$\beta=0$	$\beta=0.5$	$\beta=0.95$
$a=1$	$r_{0}^{*}\left(g_{1,0.7}\right)=1.68326$	$r_{1 / 2}^{*}\left(g_{1,0.7}\right)=1.24519$	$r_{0.95}^{*}\left(g_{1,0.7}\right)=0.410407$
$a=2$	$r_{0}^{*}\left(g_{2,0.7}\right)=1.44678$	$r_{1 / 2}^{*}\left(g_{2,0.7}\right)=1.1867$	$r_{0.95}^{*}\left(g_{2,0.7}\right)=0.856647$
$a=3$	$r_{0}^{*}\left(g_{3,0.7}\right)=0.939782$	$r_{1 / 2}^{*}\left(g_{3,0.7}\right)=0.763126$	$r_{0.95}^{*}\left(g_{3,0.7}\right)=0.549716$

Table 4 The radius of starlikeness for $\mathrm{g}_{a, v}$ when $v=0.7$

Remark 4. For $a=1$, Theorem 4.1 and Theorem 4.2, respectively reduces to Theorem 1 and Theorem 2 in [5].

Funding

The work of the first author was supported by a FRGS 203/PMATHS/6711568 research grant, and the second author from a USM-RUI 1001/PMATHS/8011015 grant.

References

[1] R. M. Ali, S. R. Mondal, K. S. Nisar, Monotonicity properties of the generalized Struve functions. J. Korean Math. Soc. 2017. 54, no. 2: 575-598.
[2] R. M. Ali, S. K. Lee, S. R. Mondal, Inequalities on a extended Bessel functions, submitted.
[3] Á. Baricz, Functional inequalities for Galué's generalized modified Bessel functions, J. Math. Inequal. 2007. 1 no. 2, 183-193.
[4] Á. Baricz, P. A. Kupán, R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 2014. 142 , no. 6, 2019-2025.
[5] Á. Baricz, M. Çağlar, E. Deniz, Starlikeness of Bessel functions and their derivations, Math. Inequal. Appl. 2016. 19 , no. 2, 439-449
[6] Á. Baricz, S. Ponnusamy, S. Singh, Turán type inequalities for general Bessel functions, Math. Inequal. Appl. 2016. 19, no. 2, 709-719.
[7] R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 1960. 11, 278-283.
[8] M. E. H. Ismail, M. E. Muldoon, Zeros of combinations of Bessel functions and their derivatives, Appl. Anal. 1988. 31, no. 1-2, 73-90.
[9] M. E. H. Ismail, M. E. Muldoon, Bounds for the small real and purely imaginary zeros of Bessel and related functions, Methods Appl. Anal. 1995. 2 , no. 1, 1-21.
[10] L. J. Landau, Ratios of Bessel functions and roots of $\alpha J_{v}(x)+x J_{v}^{\prime}(x)=0$, J. Math. Anal. Appl. 1999. 240, no. 1, 174-204.
[11] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010.
[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, England, 1944.

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
emails : rosihan@usm.my, sklee@usm.my
Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Hasa 31982, Hofuf, Saudi Arabia email : smondal@kfu.edu.sa

