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Abstract

This paper investigates three functions fa,ν, ga,ν and ha,ν in the class A con-
sisting of analytic functions f in the unit disk satisfying f (0) = f ′(0)− 1 = 0.
Here a ∈ {1, 2, 3, . . .}, and ν is real. Each function is related to the generalized
Bessel function. The radius of starlikeness of positive order is obtained for
each of the three functions. Further, the best range on ν is determined for a
fixed a to ensure the functions fa,ν and ga,ν are starlike of positive order in the
entire unit disk. When a = 1, the results obtained reduced to earlier known
results.

1 Introduction

There is a vast literature describing the importance and applications of the Bessel
function of the first kind of order p given by

Jp(x) :=
∞

∑
k=0

(−1)k

k! Γ(k + p + 1)

(x

2

)2k+p
,

where Γ is the familiar gamma function. Various generalizations of the Bessel
function have also been studied. Perhaps a more complete generalization is that
given by Baricz in [3]. In this case, the generalized Bessel function takes the form

aBb,p,c(x) :=
∞

∑
k=0

(−c)k

k! Γ
(

ak + p + b+1
2

)

(x

2

)2k+p
(1)

Received by the editors in August 2017.
Communicated by H. De Bie.
2010 Mathematics Subject Classification : 33C10; 30C45.
Key words and phrases : Bessel function; generalized Bessel function; starlike function; radius

of starlikeness.

Bull. Belg. Math. Soc. Simon Stevin 25 (2018), 527–540



528 R. M. Ali – S. K. Lee – S. R. Mondal

for a ∈ N = {1, 2, 3, . . .}, and b, p, c, x ∈ R. It is evident that the function aBb,p,c

converges absolutely at each x ∈ R. This generalized Bessel function was further
investigated in [1,2] for z ∈ D = {z ∈ C : |z| < 1}. It was shown in [2] that
the generalized Bessel function aBb,p,c is a solution of an (a + 1)-order differential
equation

(D − p)
a

∏
j=1

(

D + 2p+b+1−2j
a − p

)

y(x) +
cx2

aa21−a
y(x) = 0,

where the operator D is given by D := x(d/dx). For a = 1, the differential
equation reduces to

x2y′′(x) + bxy′(x) + (cx2 − p2 + (1 − b)p)y(x) = 0.

Thus it yields the classical Bessel differential equation for b = c = 1. Interesting
functional inequalities for aBb,p,−α2 were obtained in [2], particularly for the case
a = 2.

In [4], Baricz et. al investigated geometric properties involving the Bessel func-
tion of the first kind in D for the following three functions :

fν(z) = (2νΓ(ν + 1)Jν(z))
1
ν ,

gν(z) = 2νΓ(ν + 1)z1−νJν(z), (2)

hν(z) = 2νΓ(ν + 1)z1− ν
2Jν(

√
z).

Each function is suitably normalized to ensure that it belongs to the class A con-
sisting of analytic functions f in D satisfying f (0) = f ′(0) − 1 = 0. Here the
principal branch is assumed, which is positive for z positive.

An important geometric feature of a complex-valued function is starlikeness.
For 0 ≤ β < 1, the class of starlike functions of order β, denoted by S∗(β), are
functions f ∈ A satisfying

Re

(

z f ′(z)
f (z)

)

> β for all z ∈ D.

In the case β = 0, these functions are simply said to be starlike (with respect to
the origin). Geometrically f ∈ S∗ := S∗(0) if the linear segment tw, 0 ≤ t ≤ 1,
lies completely in f (D) whenever w ∈ f (D). A starlike function is necessarily
univalent in D.

The three functions given by (2) do not possess the property of starlikeness
in the whole disk D. Thus it is of interest to find the largest subdisk in D that
gets mapped by these functions onto starlike domains. In general, the radius of
starlikeness of order β for a given class G of A, denoted by r∗β, is the largest num-

ber r0 ∈ (0, 1) such that r−1 f (rz) ∈ S∗(β) for 0 < r ≤ r0 and for all f ∈ G.
Analytically,

r∗β(G) := sup

{

r > 0 : Re

(

z f ′(z)
f (z)

)

> β, z ∈ Dr, f ∈ G
}

,
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where Dr = {z : |z| < r}.
In [4], Baricz et. al obtained the radius of starlikeness of order β for each of the

three functions fν, gν, and hν given by (2). This extends the earlier work of Brown
in [7] who obtained the radius of starlikeness (of order 0) for functions fν and gν.

For a ∈ N, we consider the following extension of the three functions in (2)
involving the generalized Bessel function:

fa,ν(z) :=

(

2aν−a+1a−
a(aν−a+1)

2 Γ(aν + 1)aB2a−1,aν−a+1,1(a
a/2z)

)

1
aν−a+1

,

ga,ν(z) := 2aν−a+1a−
a
2 (aν−a+1)Γ(aν + 1)za−aν

aB2a−1,aν−a+1,1(a
a/2z), (3)

ha,ν(z) := 2aν−a+1a−
a
2 (aν−a+1)Γ(aν + 1)z

1
2 (1+a−aν)

aB2a−1,aν−a+1,1(a
a/2

√
z).

Here the function fa,ν is taken to be the principal branch (see section 3). Evidently
for a = 1, these functions are those given by (2) treated by Baricz et. al in [4].
Denote by r∗β( f ) to be the radius of starlikeness of order β for a given function f .

In this paper, we find r∗β( fa) when fa is either one of the three functions in

(3). These are given in Theorem 3.7, Theorem 3.9, and Theorem 3.10 in section
3. Section 4 is devoted to finding the best range on ν corresponding to a fixed a
to ensure the functions fa,ν and ga,ν are starlike of order β in the whole unit disk.
These are presented in Theorem 4.1 and Theorem 4.2. When a = 1, the results
obtained reduced to earlier known results.

2 Preliminaries

The following two results will be required. First, for a = 1, the generalized Bessel
function (1) is simply written as Bb,p,c := 1Bb,p,c. Thus

Bb,p,c(z) :=
∞

∑
k=0

(−c)k

k! Γ
(

k + p + b+1
2

)

( z

2

)2k+p
. (4)

Proposition 2.1. [2, Proposition 2.2] Let a ∈ N, and b, p, c,∈ R. Then

aBb,p,c(z) = (2π)
a−1

2 a−p− b
2

( z

2

)p a

∏
j=1

( z

2aa/2

)− p+j−1
a

B b+1−a
a ,

p+j−1
a ,c

( z

aa/2

)

,

where Bb,p,c is given by (4).

In [2], the generalized Bessel function was also shown to satisfy the following
relations:

z
d

dz
aBb,p,c(z) = paBb,p,c(z)− c

( z

2

)1−a
zaBb,p+a,c(z),

and

z
d

dz
aBb,p,c(z) =

z

a
aBb,p−1,c(z)−

(

2p + b − 1

a
− p

)

aBb,p,c(z), (5)

which together lead to the following result.
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Proposition 2.2. [2, Proposition 2.3] Let a ∈ N, b, p, c ∈ R and z ∈ D. Then

z

a
aBb,p−1,c(z) + c

( z

2

)1−a
zaBb,p+a,c(z) =

(

2p+b−1
a

)

aBb,p,c(z).

3 Radius of starlikeness of generalized Bessel functions

The following preliminary result sheds insights into the zeros of the three func-
tions given by (3).

Theorem 3.1. Let ν > (a − 1)/a, a ∈ N. Then all zeros of aB2a−1,aν−a+1,1(a
a/2z) are

real. Further the origin is the only zero of aB2a−1,aν−a+1,1(a
a/2z) in the unit disk D.

Proof. Proposition 2.1 shows that

aB2a−1,aν−a+1,1(a
a/2z) = (2π)

a−1
a a−(aν+

1
2 )a

a
2 (aν−a+1)

( z

2

)aν−a+1

×
a

∏
j=1

( z

2

)−(ν−1)− j
a
B1,(ν−1)+j/a,1(z).

Since
B1,(ν−1)+j/a,1(z) = J(ν−1)+j/a(z),

it readily follows that

aB2a−1,aν−a+1,1(a
a/2z) = (2π)

a−1
a a

1
2 (a

2ν−2aν−a2+a−1)
( z

2

)− 1
2 (a−1)

× J(ν−1)+1/a(z)J(ν−1)+2/a(z) . . . Jν(z).

Now, ν − 1 + (j/a) ≥ ν − 1 + (1/a) > 0, j = 1, . . . , a. Further for p > −1, it is
known [12, p. 483] that the zeros of Jp are all real. If jp,k denotes the k-th positive
zero of Jp, it is also known [12, p. 508] that when p is positive, the positive zeros

of Jp increases as p increases. Thus we infer that the zeros of aB2a−1,aν−a+1,1(a
a/2z)

are all real. Since

jν,1 > jν−1,1 > . . . > jν−1+(1/a),1 > j0,1 ≈ 2.40483,

the only zero in D occurs at the origin.

Theorem 3.1 shows that the function

fa,ν(z) = z

(

1 +
∞

∑
k=1

(−1)kΓ(aν + 1)aak

k!22kΓ(ak + aν + 1)
z2k

)

1
aν−a+1

has only one zero inside D whenever ν − 1 + (1/a) > 0. Thus in this instance,
we may take the principal branch for fa,ν ∈ A. It is also readily verified that the
functions ga,ν and

ha,ν(z) = z − Γ(aν + 1)

1!22Γ(a + aν + 1)
aaz2 +

Γ(aν + 1)

2!24Γ(2a + aν + 1)
a2az3 + · · ·

+ (−1)k Γ(aν + 1)

k!22kΓ(ak + aν + 1)
aakzk+1 + · · ·
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are both analytic and belong to the normalized class A.
The following is another preliminary result required in the sequel.

Lemma 3.2. Let a ∈ N and ν > −1/a. Then

z aB
′
2a−1,aν−a+1,1(a

a/2z)

aB2a−1,aν−a+1,1(aa/2z)
=

zJν−1 (z)

Jν (z)
− (2 − a)ν + 1 − a.

Proof. Since

Bb,p,1(z) =

(

2

z

)

b−1
2

J
p+

b−1
2
(z),

it follows from Proposition 2.1 that

aB2a−1,aν−a+1,1(z) =

(2π)
a−1

a a−
2aν+1

2

( z

2

)aν−a+1 a

∏
j=1

a
aν−a+j

2

(

2

z

)

aν−a+j
a

J aν−a+j
a

( z

aa/2

)

,

and

aB2a−1,aν−a,1(z) =

(2π)
a−1

a a−
2aν−1

2

( z

2

)aν−a a

∏
j=1

a
aν−a+j−1

2

(

2

z

)

aν−a+j−1
a

J aν−a+j−1
a

( z

aa/2

)

.

Expanding the above products, a routine calculation shows that

aB2a−1,aν−a,1(z)

aB2a−1,aν−a+1,1(z)
= a1− a

2
Jν−1

(

z
aa/2

)

Jν

(

z
aa/2

) .

With b = 2a − 1 and p = aν − a + 1, the recurrence relation (5) gives

z
d

dz
aB2a−1,aν−a+1,1(z) =

z

a
aB2a−1,aν−a,1(z)− (ν(2 − a) + a − 1) aB2a−1,aν−a+1,1(z).

Replacing z by aa/2z leads to

z aB
′
2a−1,aν−a+1,1(a

a/2z)

aB2a−1,aν−a+1,1(aa/2z)
=

aa/2z

a
aB2a−1,aν−a,1(a

a/2z)

aB2a−1,aν−a+1,1(aa/2z)
− (2 − a)ν + 1 − a

=
zJν−1 (z)

Jν (z)
− (2 − a)ν + 1 − a,

which proves the assertion.

A result on the modified Bessel function of order p given by

Ip(z) =
∞

∑
k=0

1

k! Γ(k + p + 1)

( z

2

)2k+p

is the final preliminary result required in the sequel.
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Proposition 3.3. Let α, ν ∈ R satisfy −1 < ν < −α. Then the equation rI′ν(r) +
αIν(r) = 0 has a unique root in (0, ∞).

Proof. Consider the function

q(r) :=
rI′ν(r)
Iν(r)

+ α.

It is known from [2, Theorem 3.1(c)] that rI′ν(r)/Iν(r) is increasing on (0, ∞).
Further, the asymptotic properties show that rI′ν(r)/Iν(r) → ν as r → 0, and
rI′ν(r)/Iν(r) → ∞ as r → ∞. This implies that q(r) → ν + α < 0 as r → 0, and
q(r) → ∞ for r → ∞. Thus q has exactly one zero.

We also recall additional facts on the zeros of the Dini functions.

Lemma 3.4. [12, p. 482] If ν > −1 and α, γ ∈ R, then the Dini function z 7→ αJν(z)+
γzJ′ν(z) has all its zeros real whenever ((α/γ) + ν) ≥ 0. In the case ((α/γ) + ν) < 0,
it also has two purely imaginary zeros.

Lemma 3.5. [9, Theorem 6.1] Let α ∈ R, ν > −1 and ν + α > 0. Further let xν,1 be the
smallest positive root of αJν(z) + zJ′ν(z) = 0. Then x2

ν,1 < j2
ν,1.

Lemma 3.6. [8, p. 78] Let −1 < ν < −α, and ±iζ be the single pair of conjugate purely
imaginary zeros of the Dini function z 7→ αJν(z) + zJ′ν(z). Then

ζ2
< − α + ν

2 + α + ν
j2

ν,1.

We are now ready to present the radius of starlikeness for each function given
in (3).

Theorem 3.7. Let 0 ≤ β < 1, and a ∈ N. If ν > (a − 1)/a, then r∗β( fa,ν) = j
a,f
ν,β,1,

where ja,f
ν,β,1 is the smallest positive root of the equation

raa/2J′ν(r)−
(

(ν − 1)(1 − a)aa/2 + β(aν − a + 1)
)

Jν(r) = 0. (6)

If ν ∈ (−1/a, (a − 1)/a) and

(aν − a + 1)
(

aa/2 − β
)

2aa/2 + (aν − a + 1)
(

aa/2 − β
) > −1, (7)

then r∗β( fa,ν) = i
a,f
ν,β, where ia,f

ν,β is the unique positive root of the equation

raa/2I′ν(r)−
(

(ν − 1)(1 − a)aa/2 + β(aν − a + 1)
)

Iν(r) = 0. (8)

Proof. Differentiating logarithmically, Lemma 3.2 shows that

zf′a,ν(z)

fa,ν(z)
=

aa/2

aν − a + 1

z aB
′
2a−1,aν−a+1,1(a

a/2z)

aB2a−1,aν−a+1,1(aa/2z)

=
aa/2

aν − a + 1

(

zJν−1 (z)

Jν (z)
− ν(2 − a) + 1 − a

)

. (9)
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Since 1B1,ν,1(z) = Jν(z), the relation (5) leads to the well-known recurrence
relation

zJ′ν(z) = zJν−1(z)− νJν(z),

and whence (9) reduces to

zf′a,ν(z)

fa,ν(z)
=

aa/2

aν − a + 1

(

zJ′ν(z)
Jν(z)

− (ν − 1)(1 − a)

)

. (10)

With jν,n as the n-th positive zero of the Bessel function Jν, the Bessel function
Jν admits the Weierstrassian decomposition [12, p.498]

Jν(z) =
zν

2νΓ(ν + 1)

∞

∏
n=1

(

1 − z2

j2
ν,n

)

.

Thus

z J′ν(z)
Jν(z)

= ν −
∞

∑
n=1

2z2

j2
ν,n − z2

,

which reduces (10) to

zf′a,ν(z)

fa,ν(z)
= aa/2 − aa/2

aν − a + 1

∞

∑
n=1

2z2

j2
ν,n − z2

. (11)

For ν > (a − 1)/a and |z| < jν,n, evidently

Re
zf′a,ν(z)

fa,ν(z)
= aa/2 − aa/2

aν − a + 1
Re

∞

∑
n=1

2z2

j2
ν,n − z2

≥ aa/2 − aa/2

aν − a + 1

∞

∑
n=1

2|z|2
j2

ν,n − |z|2 =
|z|f′a,ν(|z|)
fa,ν(|z|)

.

Equality holds for |z| = r, and by the minimum principle for harmonic functions,

Re
zf′ν(z)
fν(z)

≥ β ⇐⇒ |z| ≤ j
a,f
ν,β,1,

where j
a,f
ν,β,1 is the smallest positive root of equation (6). Since

ν −
(

(ν − 1)(1 − a) + β(aν−a+1)
aa/2

)

= (aν − a + 1)
(

1 − β

aa/2

)

> 0

for all ν > (a− 1)/a, we infer from Lemma 3.4 and Lemma 3.5 that ja,f
ν,β,1 < jν,1 <

jν,n.
Consider next the case −1/a < ν < (a − 1)/a. It is known from [4, p. 2023]

that for z ∈ C and α ∈ R with α ≥ |z|, then

Re

(

z

α − z

)

≥ − |z|
α + |z| ,
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which in turn implies that

Re

(

z2

j2
ν,n − z2

)

≥ − |z|2
j2

ν,n + |z|2

whenever |z| < jν,1 < jν,n.
The expression (11) yields

Re
zf′a,ν(z)

fa,ν(z)
≥ aa/2 +

aa/2

aν − a + 1

∞

∑
n=1

2|z|2
j2

ν,n + |z|2 =
i|z|f′a,ν(i|z|)
fa,ν(i|z|)

.

Equality holds for |z| = i|z| = ir. Hence

Re
zf′a,ν(z)

fa,ν(z)
≥ β

if |z| ≤ i
a, f
ν,β, where i

a, f
ν,β is a root of i|z|f′a,ν(i|z|) = βfa,ν(i|z|), that is, i

a, f
ν,β is a root

of
aa/2

aν − a + 1

(

i|z|J′ν(i|z|)
Jν(i|z|)

− (ν − 1)(1 − a)

)

= β.

Since Iν(z) = i−νJν(iz), the above equation is equivalent to (8). It also follows

from Proposition 3.3 that the root i
a, f
ν,β is unique. Finally, that i

a, f
ν,β < jν,n is a

consequence of Lemma 3.6 and assumption (7). Indeed,

(

i
a, f
ν,β

)2
< − (aν − a + 1)

(

aa/2 − β
)

2aa/2 + (aν − a + 1)
(

aa/2 − β
)j2

ν,1 < j2
ν,1 < j2

ν,n,

which completes the proof.

Interestingly, Theorem 3.7 reduces to earlier known result for a = 1.

Corollary 3.8. [4, Theorem 1(a)] Let 0 ≤ β < 1. If ν > 0, then r∗β( f1,ν) is the smallest

positive root j1,f
ν,β,1 of the equation

rJ′ν(r)− βνJν(r) = 0.

In the case ν ∈ (−1, 0), then r∗β( f1,ν) is the unique positive root i1,f
ν,β of the equation

rI′ν(r)− βνIν(r) = 0.

The next two results find the radius of starlikeness of order β for the functions
ga,ν and ha,ν given in (3).

Theorem 3.9. Let β ∈ [0, 1), a ∈ N, and ν > −1/a. If a(ν − 1)(aa/2 − 1) + aa/2 −
β ≥ 0, then r∗β(ga,ν) = j

a,g
ν,β,1, where j

a,g
ν,β,1 is the smallest positive root of the equation

raa/2J′ν(r)−
(

(ν − 1)(1 − a)aa/2 − a(1 − ν) + β
)

Jν(r) = 0. (12)
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Proof. It follows from (3) that

zg′a,ν(z)

ga,ν(z)
= a(1 − ν) + aa/2

z aB
′
2a−1,aν−a+1,1(a

a/2z)

aB2a−1,aν−a+1,1(aa/2z)
.

As in the proof of Theorem 3.7 (see (9) and (10)), it is readily shown that

zg′a,ν(z)

ga,ν(z)
= a(1 − ν) + aa/2

(

zJν−1 (z)

Jν (z)
− ν(2 − a) + 1 − a

)

= a(1 − ν) + aa/2

(

zJ′ν (z)
Jν (z)

− (ν − 1)(1 − a)

)

= a(1 − ν) + aa/2

[

aν + 1 − a −
∞

∑
n=1

2z2

j2
ν,n − z2

]

. (13)

This implies that

Re
zg′a,ν(z)

ga,ν(z)
≥ a(1 − ν) + aa/2

[

aν + 1 − a −
∞

∑
n=1

2|z|2
j2

ν,n − |z|2

]

=
|z|g′a,ν(|z|)
ga,ν(|z|)

provided |z| < jν,n. Equality holds at |z| = r. The minimum principle for
harmonic functions leads to

Re
zg′a,ν(z)

ga,ν(z)
≥ β ⇐⇒ |z| ≤ r∗β(ga,ν).

The exact value of r∗β(ga,ν) is obtained from the equation rg′a,ν(r) = βga,ν(r).

From (13), this is equivalent to determining the root of (12).
If a(ν − 1)(aa/2 − 1) + aa/2 − β ≥ 0, then Lemma 3.4 shows that all roots of

(12) are real. In this case, r∗β(ga,ν) is its smallest positive root j
a,g
ν,β,1. Finally, Lemma

3.5 shows that j
a,g
ν,β,1 < jν,1, and whence |z| < r∗β(ga,ν) < jν,1.

Theorem 3.10. Let β ∈ [0, 1), a ∈ N, and ν > −1/a. If (aa/2 − 1)(1 − a + aν) +
2(1 − β) > 0, then r∗β(ha,ν) = j

a,h
ν,β,1, where j

a,h
ν,β,1 is the smallest positive root of the

equation

aa/2rJ′ν(r) +
(

(aa/2 − 1)(1 − a + aν)− aa/2ν + 2(1 − β)
)

Jν(r) = 0. (14)

Proof. It follows from (3) that

h′a,ν(z)

ha,ν(z)
=

1 + a − aν

2z
+

aa/2

2
√

z

aB
′
2a−1,aν−a+1,1(a

a/2
√

z)

aB2a−1,aν−a+1,1(aa/2
√

z)
,

and thus Lemma 3.2 yields

zh′a,ν(z)

ha,ν(z)
=

1 + a − aν

2
+

aa/2
√

z

2

aB
′
2a−1,aν−a+1,1(a

a/2
√

z)

aB2a−1,aν−a+1,1(aa/2
√

z)

=
1 + a − aν

2
+

aa/2

2

(√
zJ′ν(

√
z)

Jν(
√

z)
− (ν − 1)(1 − a)

)

= 1 − (aν + 1 − a)(1 − aa/2)

2
− aa/2

∞

∑
n=1

z

j2
ν,n − z

.
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Proceeding similarly as in the proof of Theorem 3.7, it is readily shown that

Re
zh′a,ν(z)

ha,ν(z)
≥ 1 − (aν + 1 − a)(1 − aa/2)

2
− aa/2

∞

∑
n=1

|z|
j2

ν,n − |z| =
|z|h′a,ν(|z|)
ha,ν(|z|)

= β

if and only if |z| ≤ r∗(hν,β) < jν,n. Here r∗(hν,β) is the smallest root of the
equation rh′a,ν(r)/ha,ν(r) = β, that is, a root of

1 + a − aν

2
+

aa/2

2

(√
rJ′ν(

√
r)

Jν(
√

r)
− (ν − 1)(1 − a)

)

= β,

or equivalently, of the equation

aa/2rJ′ν(r) +
(

(aa/2 − 1)(1 − a + aν)− aa/2ν + 2(1 − β)
)

Jν(r) = 0.

Thus by Lemma 3.4, r∗(hν,β) is the smallest positive root j
a,h
ν,β,1 of (14) when

(aa/2 − 1)(1 − a + aν) + 2(1 − β) > 0.

Remark 1. In the case a = 1, the condition a(ν − 1)
(

aa/2 − 1
)

+ aa/2 − β = 1− β >

0 and
(

aa/2 − 1
)

(1 − a + aν) + 2(1 − β) = 2(1 − β) > 0 both hold trivially for all
β ∈ [0, 1). Both theorems therefore coincide with the earlier results in [4].

Further, it is of interest to determine the radius of starlikeness r∗β(ga,ν) in The-

orem 3.9 in the event that a(ν − 1)(aa/2 − 1) + aa/2 − β < 0, as well as that of
r∗β(ha,ν) in Theorem 3.10 when (aa/2 − 1)(1 − a + aν) + 2(1 − β) < 0.

4 Starlikeness of the generalized Bessel function

In this final section, the best range on ν is obtained for a fixed a ∈ N to ensure the
functions fa,ν and ga,ν given by (3) are starlike of order β in D.

Theorem 4.1. For a fixed a ∈ N, the function fa,ν given by (3) is starlike of order
β ∈ [0, 1) in D if and only if ν ≥ ν f (a, β), where ν f (a, β) is the unique root of

(aν − a + 1)(aa/2 − β)Jν(1) = aa/2Jν+1(1)

in ((a − 1)/a, ∞).

Proof. For ν > (a − 1)/a and |z| = r ∈ [0, 1), it follows from (11) that

Re

(

zf′a,ν(z)

fa,ν(z)

)

≥ rf′a,ν(r)

fa,ν(r)
= aa/2 − aa/2

aν − a + 1

∞

∑
n=1

2r2

j2
ν,n − r2

.

The above inequality holds since r < 1 and it is known ([12, p. 508], [11, p. 236])
that the function ν 7→ jν,n is increasing on (0, ∞) for each fixed n ∈ N, and
whence jν,1 ≥ j(a−1)/a,1 ≥ j0,1 ≈ 2.40483 . . ..

A computation yields

d

dr

(

rf′a,ν(r)

fa,ν(r)

)

= − 2aa/2

aν − a + 1

∞

∑
n=1

2rj2
ν,n

(

j2
ν,n − r2

)2
≤ 0.
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Hence

Re

(

zf′a,ν(z)

fa,ν(z)

)

≥ aa/2 − aa/2

aν − a + 1

∞

∑
n=1

2

j2
ν,n − 1

=
f′a,ν(1)

fa,ν(1)
.

The monotonicity property of ν 7→ jν,n leads to

f′a,µ(1)

fa,µ(1)
= aa/2 − aa/2

aµ − a + 1

∞

∑
n=1

2

j2
µ,n − 1

≥ aa/2 − aa/2

aν − a + 1

∞

∑
n=1

2

j2
ν,n − 1

=
f′a,ν(1)

fa,ν(1)
,

µ ≥ ν > −1. Since ν 7→ f′a,ν(1)/fa,ν(1) is increasing in ((a − 1)/a, ∞) , and from
consideration of the asymptotic behavior of f′a,ν(1)/fa,ν(1), evidently
f′a,ν(1)/fa,ν(1) ≥ β if and only if ν ≥ ν f (a, β), where ν f (a, β) is the unique root of
the equation f′a,ν(1) = βfa,ν(1). From (9), the latter equation is equivalent to

aa/2Jν−1(1) =
(

aa/2(ν(2 − a) + a − 1) + β(aν − a + 1)
)

Jν(1).

The recurrence relation in Proposition 2.2 now shows that ν f (a, β) is a unique root

of (aν − a + 1)(aa/2 − β)Jν(1) = aa/2Jν+1(1). Since all inequalities are sharp, it
follows that the value ν f (a, β) is best.

Remark 2. With regards to Theorem 4.1, we tabulate the best value ν for a fixed β
and a for which fa,ν is starlike of order β. These values are given in Table 1.

β = 0 β = 0.5 β = 0.95
a = 1 ν = 0.39001 ν = 0.645715 ν = 2.72421
a = 2 ν = 0.659908 ν = 0.706779 ν = 0.781815
a = 3 ν = 0.766251 ν = 0.776181 ν = 0.786989

Table 1 Values of ν for fa,ν to be starlike

Using (6), we tabulate the radius of starlikeness for fa,ν in Theorem 3.7 for a
fixed ν = 0.7, a = 1, 2, 3, and respectively β = 0, β = 0.5, and β = 0.95. These are
given in Table 2. Here the value of jν,1 at ν = 0.7 is j0.7,1 = 3.42189. With reference
to Table 1, we expect the radius of starlikeness to be less than 1 whenever ν = 0.7
is less than the given values of ν in Table 1.

β = 0 β = 0.5 β = 0.95
a = 1 r∗0( f1,0.7) = 1.44678 r∗1/2( f1,0.7) = 1.05621 r∗0.95( f1,0.7) = 0.343848

a = 2 r∗0( f2,0.7) = 1.12397 r∗1/2( f2,0.7) = 0.982365 r∗0.95( f2,0.7) = 0.828745

a = 3 r∗0( f3,0.7) = 0.577726 r∗1/2( f3,0.7) = 0.549716 r∗0.95( f3,0.7) = 0.523133

Table 2 Radius of starlikeness for fa,ν when ν = 0.7

Letting

F(r) :=
rJ′ν(r)
Jν(r)

,
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then (6) takes the form F(r) = −α, where

α := α(a, β, ν) = −
(

(ν − 1)(1 − a) +
β(aν − a + 1)

aa/2

)

.

For ν > 0, it is known [6] that F(r) is strictly decreasing on (0, ∞) except at the
zeros of Jν(r). Differentiating with respect to β, it is clear that α is decreasing with
respect to β so long as aν − a + 1 > 0, and thus r∗β is decreasing. Further, for a

fixed ν < 1 and β = 0, then α is monotonically decreasing with respect to a, that
is, r∗0 is decreasing as a function of a. However, for β near 1, then α is no longer
monotonic. For instance, choosing ν = 0.7 and β = 0.95, Table 2 illustrates the
fact that r∗0.95 is not monotonic with respect to the parameter a.

Theorem 4.2. Let a ∈ N, ν > −1/a, and jν,1 be the first positive zero of Jν. Then the
function ga,ν given by (3) is starlike of order β ∈ [0, 1) in D if and only if ν ≥ νg(a, β),
where νg(a, β) is the unique root in (max{ν̃,−1/a}, ∞) of

(

a(ν − 1)(aa/2 − 1) + aa/2 − β
)

Jν(1) = aa/2Jν+1(1),

and ν̃ ≃ −0.7745 . . . is the unique root of jν,1 = 1.

Proof. It follows from (13) that

zg′a,ν(z)

ga,ν(z)
= a(1 − ν) + aa/2

(

zJ′ν (z)
Jν (z)

− (ν − 1)(1 − a)

)

= a(1 − ν) + aa/2

(

aν − a + 1 −
∞

∑
n=1

2z2

j2
ν,n − z2

)

,

and

Re

(

zg′a,ν(z)

ga,ν(z)

)

≥ rg′a,ν(r)

ga,ν(r)
= a(1 − ν) + aa/2

(

aν − a + 1 −
∞

∑
n=1

2r2

j2
ν,n − r2

)

for |z| < jν,1. The function r 7→ rg′a,ν(r)/ga,ν(r) is decreasing on [0, 1). Since
jν,1 > 1 for ν > max{ν̃,−1/a}, it follows that jν,n > 1 for each n, and conse-
quently

Re

(

zg′a,ν(z)

ga,ν(z)

)

≥ rg′a,ν(r)

ga,ν(r)
>

g′a,ν(1)

ga,ν(1)
=

a(1 − ν) + aa/2

(

aν − a + 1 −
∞

∑
n=1

2

j2
ν,n − 1

)

.

Further, for µ ≥ ν > max{ν̃,−1/a},

g′a,µ(1)

ga,µ(1)
= a

(

aa/2 − 1
)

(µ − 1) + aa/2 −
∞

∑
n=1

2aa/2

j2
µ,n − 1

≥ a
(

aa/2 − 1
)

(ν − 1) + aa/2 −
∞

∑
n=1

2aa/2

j2
ν,n − 1

=
g′a,ν(1)

ga,ν(1)
.
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This implies that ν 7→ g′a,ν(1)/ga,ν(1) is increasing on (max{ν̃,−1/a}, ∞).
Thus

Re

(

zg′a,ν(z)

ga,ν(z)

)

>
g′a,ν(1)

ga,ν(1)
≥ β

if and only if ν ≥ νg(a, β), where νg(a, β) is the unique root of g′a,ν(1) = βga,ν(1),
or equivalently,

a(1 − ν) + aa/2

(

J′ν (1)
Jν (1)

− (ν − 1)(1 − a)

)

= β.

Finally, Proposition 2.2 implies that νg(a, β) is a unique root of

(

a(ν − 1)(aa/2 − 1) + aa/2 − β
)

Jν(1) = aa/2Jν+1(1).

Remark 3. The best value ν obtained from Theorem 4.2 for a fixed β and a for
which ga,ν is starlike of order β is given in Table 3.

β = 0 β = 0.5 β = 0.95
a = 1 ν = −0.340092 ν = 0.122499 ν = 9.02272
a = 2 ν = 0.39002 ν = 0.586273 ν = 0.772587
a = 3 ν = 0.714616 ν = 0.751407 ν = 0.784626

Table 3 Values of ν for ga,ν to be starlike

The radius of starlikeness for ga,ν drawn from Theorem 3.9 is tabulated in
Table 4 for a fixed ν = 0.7, a = 1, 2, 3, and respectively β = 0, β = 0.5 and
β = 0.95. Here the radius of starlikeness is expectedly less than 1 whenever
ν = 0.7 is less than the given values of ν in Table 3. A similar situation occurs as
for the function fa,ν with regard to the monotonicity of the radius of starlikeness
with respect to either parameter β or a.

β = 0 β = 0.5 β = 0.95
a = 1 r∗0(g1,0.7) = 1.68326 r∗1/2(g1,0.7) = 1.24519 r∗0.95(g1,0.7) = 0.410407

a = 2 r∗0(g2,0.7) = 1.44678 r∗1/2(g2,0.7) = 1.1867 r∗0.95(g2,0.7) = 0.856647

a = 3 r∗0(g3,0.7) = 0.939782 r∗1/2(g3,0.7) = 0.763126 r∗0.95(g3,0.7) = 0.549716

Table 4 The radius of starlikeness for ga,ν when ν = 0.7

Remark 4. For a = 1, Theorem 4.1 and Theorem 4.2, respectively reduces to Theo-
rem 1 and Theorem 2 in [5].
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