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Abstract

We give characterizations of P-frames and extremally disconnected
P-frames based on ring-theoretic features of the ring of continuous real-
valued functions on a frame L, i.e. RL. It is shown that L is a P-frame if
and only if RL is an ℵ0-self-injective ring. Consequently for pseudocompact
frames if RL is ℵ0-self-injective, then L is finite. We also prove that L is an
extremally disconnected P-frame iff RL is a self-injective ring iff RL is a Baer
regular ring iff RL is a continuous regular ring iff RL is a complete regular
ring.

1 Introduction

We clarify from the start that, throughout, by the term “ring” we mean a com-
mutative ring with identity. All topological spaces are completely regular and
Hausdorff, and all frames are completely regular.

Recall that a P-space is a topological space in which every cozero set is closed
and also a topological space X is extremally disconnected if every open set has
an open closure. These notions have been extended to pointfree topology in such
a way that a topological space X has one of these features if and only if the frame
of its open sets, i.e. OX, has the corresponding property (see [1], [5]).
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By a reduced ring we mean a ring without nonzero nilpotent elements.
In [10, 11] for a reduced ring A, some internal conditions on A that are equiv-
alent to self-injectivity (ℵ0-self-injective) of A are provided. Since RL is always
a reduced ring, we can use these conditions to investigate the injectivity of the
ring RL. Using these conditions, Estaji and Karamzadeh [7] have shown that for
a space X, the ring of real-valued continuous functions C(X) is ℵ0-self-injective
if and only if X is a P-space. Moreover, they demonstrated that C(X) is self-
injective if and only if X is an extremally disconnected P-space. One of the main
aims of this article is to develop these results to the more general setting of point-
free topology, that is, frames.

To prove the equivalence of RL is ℵ0-self-injective and L is a P-frame, for
an orthogonal countable set T in RL and t =

∨

α∈T coz(α), in Lemma 3.2, we
introduce a frame map αt ∈ RL such that coz(αt) = t, whenever L is a P-frame.
Finally, using the map αt, Lemmas 3.3 and 3.4, and [5, Proposition 3.9], it is shown
that L is a P-frame iff RL is ℵ0-self-injective, see Theorem 3.6.

In Proposition 4.3, we show that for a frame L, it is an extremally disconnected
frame iff RL is a Baer ring or equivalently, iff RL is a CS-ring or equivalently,
iff every nonzero ideal in RL is essential in a principal ideal generated by an
idempotent. This proposition is proved by Dube in [6, Proposition 2.4], but here,
in the proof of this proposition, a different approach is used.

To prove the equivalence of RL is self-injective and L is an extremally
disconnected P-frame, for a set T in RL and t =

∨

α∈T coz(α), in Lemma 4.5, we
construct a frame map µt ∈ RL such that coz(µt) = t∗∗, whenever L is extremally
disconnected P-frame. Using the map µt, Propositions 3.5, 3.6, 4.3, and 4.6, Lem-
mas 3.4 and 4.4, [9, Corollary 13.4], and [12, Proposition 1.7], it is proved that for a
frame L, L is an extremally disconnected P-frame iff RL is a self-injective ring iff
RL is a Baer regular ring iff RL is a continuous regular ring iff RL is a complete
regular ring, see Theorem 4.7.

2 Preliminaries

Here, we recall some definitions and results from the literature on frames and the
pointfree version of the ring of continuous real-valued functions. For undefined
terms and notations see [13] on frame-theoretic concepts, [2] on pointfree function
rings, and see [8] on C(X).

A frame is a complete lattice L in which the distributive law

x ∧
∨

A =
∨

{x ∧ a : s ∈ A}

holds for all x ∈ L and A ⊆ L. The top element and the bottom element of L are
denoted by ⊤L and ⊥L respectively; dropping the subscripts if no confusion may
arise. Throughout this context L will denote a frame. OX is the frame of open
subsets of a topological space X.

The pseudocomplement of an element a ∈ L is denoted by a∗ and for each
a, b ∈ L we have:
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1. a ≤ a∗∗.

2. if a ≤ b, then b∗ ≤ a∗.

3. (a ∨ b)∗ = a∗ ∧ b∗.

4. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

An element a in L is said to be complemented if a ∨ a∗ = ⊤.
L is said to be regular if a =

∨

{x ∈ L : x ≺ a} for each a ∈ L, where x ≺ a
means that x∗ ∨ a = ⊤. This is equivalent to saying there is an element s ∈ L,
called a separating element, such that x ∧ s = ⊥ and s ∨ a = ⊤. It is said to be
completely regular if, for each a ∈ L, a =

∨

{x ∈ L : x ≺≺ a}, where x ≺≺ a means
that there are elements (cq) indexed by the rational numbers Q ∩ [0, 1] such that
c0 = x, c1 = a, and cp ≺ cq for p < q.

As described in [2], the frame of reals, denoted L(R), is the frame generated
by ordered pairs (p, q) of rational numbers p, q ∈ Q subject to the relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨

{(r, s) : p < r < s < q}, and
(R4) ⊤ =

∨

{(p, q) : p, q ∈ Q}.
A frame homomorphism (or frame map) is a map between frames which preserves

finite meets, including the top element, and arbitrary joins, including the bottom
element. A function f : L(R) → L which satisfies the following properties:

(R1′) f ((p, q) ∧ (r, s)) = f (p ∨ r, q ∧ s),
(R2′) f ((p, q) ∨ (r, s)) = f (p, s) whenever p ≤ r < q ≤ s,
(R3′) f (p, q) =

∨

{ f (r, s) : p < r < s < q}, and
(R4′) ⊤ =

∨

{ f (p, q) : p, q ∈ Q}
is a frame map.
Now for any frame L the real-valued continuous functions on L are the homo-

morphisms L(R) → L. The set RL of all frame homomorphisms from L(R) to
L has been studied as an f -ring in [2]. Further, corresponding to every continu-
ous operation ⋄ : Q2 → Q (in particular +, .,∧,∨) we have an operation on RL,
denoted by the same symbol ⋄, defined by:

α ⋄ β(p, q) =
∨

{α(r, s) ∧ β(u, w) : 〈r, s〉 ⋄ 〈u, w〉 ⊆ 〈p, q〉},

where 〈r, s〉 ⋄ 〈u, w〉 = {x ⋄ y : x ∈ 〈r, s〉, y ∈ 〈u, w〉} and 〈p, q〉 = {x ∈ Q :
p < x < q}. For every r ∈ R, define the constant frame map r ∈ RL by r(p, q) =
⊤, whenever p < r < q, and otherwise r(p, q) = ⊥. For any frame L, an element
α ∈ RL is called bounded if α(p, q) = ⊤ for some p, q ∈ Q, and L is called
pseudocompact if RL = R∗L, where the subring of RL consisting of its bounded
element is denoted by R∗L.

Finally an important feature of RL is its cozero map coz : RL → L taking every
α ∈ RL to coz(α) = α((−, 0) ∨ (0,−)), where

(0,−) =
∨

{(0, q)) : q ∈ Q, q > 0}, (−, 0) =
∨

{(p, 0)) : p ∈ Q, p < 0}.

The properties of the cozero map that we use are:
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1. coz(α) = ⊥ iff α = 0,

2. coz(αβ) = coz(α) ∧ coz(β),

3. α(p, q) = coz((α − p)+ ∧ (q − α)+),

4. coz(α + β) ≤ coz(α) ∨ coz(β), and

5. α ∈ RL is invertible iff coz(α) = ⊤.

A cozero element of L is an element of the form coz(α) for some α ∈ RL. The cozero
part of L, denoted by Coz L, is the regular sub-σ-frame consisting of all the cozero
elements of L. It is shown in [2] that a frame L is completely regular if and only if
it is generated by the cozero elements.

3 P-frames

Recall that a P-frame is one in which every cozero element is complemented. This
notion is the exact extension of its point-delicate namesake in that a topological
space X is a P-space if and only if the frame OX is a P-frame. A ring R is said to
be regular (in the sense of Von Neumann) if for every a ∈ R there is b ∈ R with
a = a2b. The following result has been proved by Dube in [5, Proposition 3.9].

Proposition 3.1. L is a P-frame if and only if RL is a regular ring.

A ring R is said to be self-injective (ℵ0-self-injective) if every R-homomorphism
from an ideal (a countably generated ideal) of R to R can be extended to an
R-homomorphism from R to R. In this section the aim is to find a feature of a
frame L that is equivalent to ℵ0-self-injective of RL. For this purpose first we
recall some of these definitions and results known and are making some lemmas.

Suppose R is a commutative ring with unit. A subset S of R is said to be
orthogonal provided xy = 0 for all x, y ∈ S with x 6= y. If S ∩ T = ∅ and S ∪ T is
an orthogonal set in R, then a ∈ R is said to separate S from T if a ∈ Ann(T) and
s2a = s, for every s ∈ S (see [10]). In [11] it is shown that there exists an element
in R which separates S from T if and only if there is an element b in R such that
b ∈ Ann(T) and s2 = sb, for every s ∈ S.

The homomorphism τ : L(R) → OR given by (p, q) 7→Kp, qJ is an isomor-
phism, where

Kp, qJ:= {x ∈ R : p < x < q}.

For convenience, we put v0 := τ−1(τ(v) \ {0}), for every v ∈ LR.
We need the following three lemmas and one proposition which gives an

algebraic characterization of P- frames. But we omit the proof of propositions
for it is achieved by [10, Theorem 2.2] and [11, Proposition 1.2].

Lemma 3.2. Let L be a P-frame. Assume that T is an orthogonal countable set in RL
and t =

∨

α∈T coz(α). If αt : LR → L given by

αt(v) =

{

∨

α∈T α(v0) ∨ t∗ if 0 ∈ τ(v)
∨

α∈T α(v) if 0 6∈ τ(v)

for every v ∈ LR, then αt ∈ RL and coz(αt) = t.
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Proof. We check the conditions (R1′)-(R4′) for αt.
(R1′). Consider p, q, r, s ∈ Q. If 0 ∈ τ(p, q) ∩ τ(r, s), then 0 ∈ τ(p ∨ r, q ∧ s),

which implies that

αt(p, q) ∧ αt(r, s) = [
∨

α∈T α((p, q)0) ∨ t∗]∧
[
∨

α∈T α((r, s)0) ∨ t∗]
=

∨

α,α′∈T(α((p, q)0) ∧ α′((r, s)0) ∨ t∗

=
∨

α∈T(α((p, q)0) ∧ α((r, s)0) ∨ t∗

=
∨

α∈T α((p ∨ r, q ∧ s)0) ∨ t∗

= αt(p ∨ r, q ∧ s),

because

α((p, q)0) ∧ α′((r, s)0) ≤ coz(α) ∧ coz(α′) = coz(αα′) = coz(0) = ⊥

for every α, α′ ∈ S with α 6= α′.
If 0 6∈ τ(p, q) ∪ τ(r, s), then 0 6∈ τ(p ∨ r, q ∧ s), which implies that

αt(p, q) ∧ αt(r, s) =
∨

α∈T α(p, q) ∧
∨

α∈T α(r, s)
=

∨

α,α′∈T α(p, q) ∧ α′(r, s)
=

∨

α∈T α(p, q) ∧ α(r, s)
=

∨

α∈T α(p ∨ r, q ∧ s)
= αt(p ∨ r, q ∧ s),

because

α(p, q) ∧ α′(r, s) ≤ coz(α) ∧ coz(α′) = coz(αα′) = coz(0) = ⊥

for every α, α′ ∈ T with α 6= α′.
If 0 ∈ τ(p, q) \ τ(r, s), then 0 6∈ τ(p ∨ r, q ∧ s), which implies that

αt(p, q) ∧ αt(r, s) = [
∨

α∈T α((p, q)0) ∨ t∗] ∧
∨

α∈T α(r, s)

= [
∨

α,α′∈T α((p, q)0) ∧ α′(r, s)] ∨ [t∗ ∧
∨

α∈T α(r, s)]

= [
∨

α∈T α((p, q)0) ∧ α(r, s)] ∨⊥

= αt(p ∨ r, q ∧ s),

because t∗ ∧
∨

α∈T α(r, s) ≤ t∗ ∧ t = ⊥.
(R2′). Let p, q, r, s ∈ Q with p ≤ r < q ≤ s. If 0 ∈ τ(r, q), then 0 ∈ τ(p, q) and

0 ∈ τ(r, s), which implies that

αt(p, q) ∨ αt(r, s) = [
∨

α∈T α((p, q)0) ∨ t∗] ∨ [
∨

α∈T α((r, s)0) ∨ t∗]
=

∨

α∈T(α(((p, q)0) ∨ α((r, s)0) ∨ t∗

=
∨

α∈T α((p, s)0) ∨ t∗

= αt(p, s).

If p < 0 ≤ r, then 0 ∈ τ(p, q) and 0 6∈ τ(r, s), which implies that

αt(p, q) ∨ αt(r, s) = [
∨

α∈T α((p, q)0) ∨ t∗] ∨
∨

α∈T α(r, s)

= [
∨

α∈T α((p, q)0) ∨ α(r, s)] ∨ t∗

=
∨

α∈T α((p, s)0) ∨ t∗

= αt(p, s).
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The proof of q ≤ 0 < s is similar.
(R3′). If 0 6∈ τ(p, q), then 0 6∈ τ(r, s), for every r, s ∈ Q with p < r < s < q.

Hence
∨

r,s∈Q,
p<r<s<q

αt(r, s) =
∨

r,s∈Q,
p<r<s<q

∨

α∈T

α(r, s) =
∨

α∈T

∨

r,s∈Q,
p<r<s<q

α(r, s) =
∨

α∈T

α(p, q) = αt(p, q).

If 0 ∈ τ(p, q), then
∨

r,s∈Q,
p<r<s<q

αt(r, s) =
∨

r,s∈Q,
p<r<s<q
0∈τ(r,s)

[
∨

α∈T α((r, s)0) ∨ t∗] ∨
∨

r,s∈Q,
p<r<s<q
0 6∈τ(r,s)

∨

α∈T α(r, s)

=
∨

r,s∈Q,
p<r<s<q

∨

α∈T α((r, s)0) ∨ t∗

=
∨

α∈S α((p, q)0) ∨ t∗

= αt(p, q).

(R4′). Since Coz L is a σ-frame and t is the countable subset of RL, we conclude
that t ∈ Coz L, which implies that t ∨ t∗ = ⊤, because L is a P-frame. Therefore,
we have

∨

r,s∈Q αt(r, s) =
∨

r,s∈Q,
0∈τ(r,s)

[
∨

α∈T α((r, s)0) ∨ t∗] ∨
∨

r,s∈Q,
0 6∈τ(r,s)

∨

α∈T α(r, s)

=
∨

r,s∈Q,
∨

α∈T α((r, s)0) ∨ t∗

=
∨

α∈T
∨

r,s∈Q, α((r, s)0) ∨ t∗

=
∨

α∈T coz(α) ∨ t∗

= t ∨ t∗

= ⊤.

Therefore, αt is a real-valued continuous function. To prove the second part, we
have coz(αt) = αt((−, 0) ∨ (0,−)) =

∨

α∈T α((−, 0) ∨ (0,−)) =
∨

α∈T coz(α) =
t.

Lemma 3.3. Let S∪ T ⊆ RL be an orthogonal set with S∩ T = ∅. If s =
∨

α∈S coz(α)
and t =

∨

β∈T coz(β), then t ≤ s∗.

Proof.

s ∧ t =
∨

α∈S

coz(α) ∧
∨

β∈T

coz(β) =
∨

α,β

(

coz(α) ∧ coz(β)
)

=
∨

coz(αβ) = ⊥,

which implies t ≤ s∗.

Lemma 3.4. If L is a P-frame, then the following statements hold.

(1) If α ∈ RL, then (coz(α))∗ = α(r, s) ∧ (coz(α))∗ and α(r, s) = α((r, s)0) ∨
(coz(α))∗ , for every r, s ∈ Q with r < 0 < s.

(2) If T ⊆ RL is an orthogonal set with t =
∨

α∈T coz(α), then

α((r, s)0) ∨ t∗ = α(r, s) ∧
∧

α 6=β∈T

(coz(β))∗ ,

for every α ∈ T and r, s ∈ Q with r < 0 < s.
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Proof. (1). Consider α ∈ RL and r, s ∈ Q with r < 0 < s. Since α(r, s) ∨ coz(α) = ⊤,
we conclude that

(coz(α))∗ = (coz(α))∗ ∧ (α(r, s) ∨ coz(α)) = α(r, s) ∧ (coz(α))∗.

To prove the second part, by hypothesis, coz(α) ∨ (coz(α))∗ = ⊤, then

α(r, s) = (α(r, s) ∧ coz(α)) ∨
(

α(r, s) ∧ (coz(α))∗
)

= α((r, s)0) ∨ (coz(α))∗ .

(2). If α 6= β ∈ T, then α((r, s)0) ≤ coz(α) ≤ (coz(β))∗ , because coz(β) ∧
coz(α) = ⊥. Hence α((r, s)0) ≤

∧

α 6=β∈S(coz(β))∗ , which follows from statement
(1) that

α((r, s)0) ∨ t∗ = α((r, s)0) ∨
∧

β∈T(coz(β))∗

= (α((r, s)0) ∨ (coz(α))∗) ∧ (α((r, s)0) ∨
∧

α 6=β∈T(coz(β))∗

= α(r, s) ∧
∧

α 6=β∈T(coz(β))∗ .

This completes the proof.

Recall that the proof of the following proposition is concluded by [10, Theo-
rem 2.2], and [11, Proposition 1.2].

Proposition 3.5. Let R be a reduced ring, then the following statements are equivalent.

(1) The ring R is self-injective (ℵ0-self-injective).

(2) The ring R is a regular ring and whenever S ∪ T is an orthogonal (countable) set
with S ∩ T = ∅, then there exists an element in R which separates S from T.

For convenience, given any two generators (u, v) and (w, z), we shall write
〈uvwzpq〉 to signify that 〈u, v〉.〈w, z〉 ⊆ 〈p, q〉.

In the proof that follows we shall use the fact that if L is a regular frame and
h, g : L → M are frame homomorphisms such that h(x) ≤ g(x) for every x ∈ L,
then h = g.

Theorem 3.6. Let L be a frame. Then L is a P-frame if and only if RL is an ℵ0-self-
injective ring.

Proof. We begin with the necessity. Let S ∪ T ⊆ RL be an orthogonal countable
set with S ∩ T = ∅ and s =

∨

α∈S coz(α). Now, we show that αs ∈ Ann(T).
Consider β ∈ T and t =

∨

β∈T coz(β). Then, by Lemma 3.2, we have

coz(αsβ) = coz(αs) ∧ coz(β)

= s ∧ coz(β)

≤ s ∧ t

= ⊥

which implies that αsβ = 0. Therefore, αs ∈ Ann(T).
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Now, consider δ ∈ S. We show that δαs = δ2. In order to approach this goal,
let us assume that p, q ∈ Q. If 0 6∈ τ(p, q), then

δαs(p, q) =
∨

{δ(u, v) ∧ αs(w, z) : 〈uvwzpq〉}

=
∨

{δ(u, v) ∧
∨

α∈S α(w, z) : 〈uvwzpq〉}

=
∨

{
∨

α∈S δ(u, v) ∧ α(w, z) : 〈uvwzpq〉}

=
∨

{δ(u, v) ∧ δ(w, z) : 〈uvwzpq〉}

= δ2(p, q),

because, if α ∈ S and δ 6= α, then since 0 6∈ τ(u, v) ∪ τ(w, z),

δ(u, v) ∧ α(w, z) ≤ coz(δ) ∧ coz(α) = coz(δα) = coz(0) = ⊥.

Now, if 0 ∈ τ(p, q), then, by Lemma 3.4, we have

δαs(p, q) =
∨

{δ(u, v) ∧ αs(w, z) : 〈uvwzpq〉}

=
∨

{δ(u, v) ∧
∨

α∈S α(w, z) : 0 6∈ τ(w, z), 〈uvwzpq〉}∨
∨

{δ(u, v) ∧ [
∨

α∈S α((w, z)0) ∨ s∗] : 0 ∈ τ(w, z), 〈uvwzpq〉}

=
∨

{δ(u, v) ∧ δ(w, z) : 0 6∈ τ(w, z), 〈uvwzpq〉}∨
∨

{δ(u, v) ∧ δ(w, z) ∧
∧

δ 6=α∈S(coz(α))∗ : 0 ∈ τ(w, z), 〈uvwzpq〉}

≤
∨

{δ(u, v) ∧ δ(w, z) : 〈uvwzpq〉}

= δ2(p, q).

Since δ and αs are frame maps and LR is a regular frame, we conclude that
δαs = δ2, which means that αs separates S from T. Now, by Proposition 3.5,
we are through.

To prove the sufficiency, consider α ∈ RL, and let I be the ideal of RL gener-
ated by α2. Since f : I → RL given by βα2 7→ βα is a RL-homomorphism, we
conclude from statement (2) that there exists a RL-homomorphism f̄ : RL → RL
such that f̄ |I = f . Hence

α = f (α2) = f̄ (1α2) = f̄ (1)α2.

Then RL is a regular ring. Therefore, by Proposition 3.1, L is a P-frame.

We denote the Hewitt realcompactification and universal Lindelöfication of L
by υL → L and λL → L respectively, (see [3] for details). It is shown in [5] that a
frame L is a P-frame if and only if υL is a P-frame if and only if λL is a P-frame.
We therefore have the following:

Corollary 3.7. The following are equivalent for a frame L.

1. RL is an ℵ0-self-injective ring.

2. R(υL) is an ℵ0-self-injective ring.

3. R(λL) is an ℵ0-self-injective ring.

As remarked in [5, p. 126], every pseudocompact P-frame is finite. We there-
fore have the following corollary.

Corollary 3.8. If L is pseudocompact and RL is ℵ0-self-injective, then L is finite.
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4 extremally disconnected frames

In the first part of this section, our aim is to give alternative proofs of several alge-
braic characterizations of extremally disconnected frames that were established
in [6]. To do this we need two propositions. In the first proposition for a comple-
mented element a in L is defined a idempotent element ea of RL, but we omit its
proof for it can be easily deduced from the proof of [1, Theorem 8. 3. 3]. In the
second proposition, we calculate the multiplication αea for a element α ∈ RL, but
we also omit its proof for it can be easily checked.

Proposition 4.1. Let a be a complemented element of L. Then ea : LR → L by

ea(U) =



















⊤ if 0, 1 ∈ τ(U)

a′ if 0 ∈ τ(U) and 1 6∈ τ(U)

a if 0 6∈ τ(U) and 1 ∈ τ(U)

⊥ if 0 6∈ τ(U) and 1 6∈ τ(U),

is a continuous real-valued function, e2
a = ea, and coz(ea) = a.

Proposition 4.2. If a is complemented in L and α ∈ RL, then

αea(p, q) =

{

α(p, q) ∨ a′ if 0 ∈ τ(p, q)

α(p, q) ∧ a if 0 6∈ τ(p, q).

Before the following proposition is proposed, we first recall some definitions.
If A and B are ideals in a ring R we say A is essential in B if A ⊆ B and every
nonzero ideal inside B intersects A nontrivially, and when we say A is essential,
we mean it is essential in R. An ideal A in a ring R is called closed ideal (com-
plement) if it is not essential in a larger ideal and a ring R is said to be CS-ring if
every closed ideal is a direct summand, see [14]. A ring R is called a Baer ring if
for any subset S of R, we have AnnR(S) = eR, where e2 = e.

As in the introduction it is stated that Dube proved this proposition in
[6, Proposition 2.4], but here, we indicate the different proof about that based
on the foregoing proposition.

Proposition 4.3. The following statements are equivalent.

(1) L is an extremally disconnected frame.

(2) RL is a Baer ring.

(3) Every nonzero ideal in RL is essential in a principal ideal generated by an idempo-
tent.

(4) RL is a CS-ring.

Proof. (1)⇒(2). Let S ⊆ RL be any subset, we are to show that AnnS = eRL,
where e2 = e. We put s =

∨

α∈S coz(α). Since L is extremally disconnected, we
infer that s∗ ∨ s∗∗ = ⊤, which implies that s∗ is a complemented element in L.
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Consider β ∈ Ann(S). Then coz(α) ∧ coz(β) = coz(αβ) = coz(0) = ⊥, which
implies that coz(α) ≤ (coz(β))∗ , for every α ∈ S. Hence s ≤ (coz(β))∗ and so

coz(β) ≤ (coz(β))∗∗ ≤ s∗.

Consider v ∈ LR and α ∈ S. If 0 6∈ τ(v), then, by Proposition 4.2, βes∗(v) =
s∗ ∧ β(v) = β(v), because β(v) ≤ coz(β) ≤ s∗. If 0 ∈ τ(v), then β(v0) ≤ coz(β) ≤
s∗, which implies that βes∗(v) = s∗∗ ∨ β(v) ≥ β(v), by Proposition 4.2. Since β
and es∗ are frame maps and LR is the regular frame, we conclude that βes∗ = β
which means that β ∈ es∗RL. Hence Ann(S) ⊆ es∗RL. Now, suppose that α ∈ S,
then

coz(α) ≤ s ⇒ coz(αes∗) = coz(α) ∧ coz(es∗) ≤ (coz(α))∗∗ ∧ s∗ ≤ s∗∗ ∧ s∗ = ⊥,

it follows that αes∗ = 0. Hence es∗ ∈ Ann(S). Therefore, Ann(S) = es∗RL and so
RL is a Baer ring.

(2)⇒(3). Let I be a nonzero ideal in RL, then there is an idempotent ele-
ment e in RL such that Ann(I) = eRL = Ann((1 − e)RL), which implies that
α = α(1 − e) ∈ (1 − e)RL ∩ I, for every α ∈ I. Hence I is essential in (1 − e)RL.

(3)⇒(4). Let I be a closed ideal in RL, then there is an idempotent element e
in RL such that I is essential in eRL.

(4)⇒(2). Consider S ⊆ RL and I = Ann(S). We claim that the ideal Ann(S)
is a closed ideal in RL. Let Ann(S) be essential in a larger ideal J, then SJ 6= (0)
implies that SJ ∩ Ann(S) 6= (0), but (SJ ∩ Ann(S))2 = (0), which is impossible,
since RL is a reduced ring. This shows that Ann(S) is a closed ideal and by
statement (4), I is generated by an idempotent..

(2)⇒(1). Consider a ∈ L, then there are {αt}t∈T ⊆ RL such that
a =

∨

t∈T coz(αt). Since RL is a Baer ring, we conclude that there is an idem-
potent element e ∈ RL such that Ann({αt}t∈T) = eRL, which implies that for
every t ∈ T

coz(e) ∧ coz(αt) = coz(eαt) = coz(0) = ⊥ ⇒ ∀t ∈ T
(

coz(e) ≤ (coz(αt))
∗
)

,

and so coz(e) ≤
∧

t∈T(coz(αt))∗ = a∗. Since coz(e) ∨ coz(1 − e) = ⊤ and
coz(e)∧ coz(1− e) = ⊥, we conclude that a∗∗ ≤ (coz(e))∗ = coz(1− e). Suppose
that {βk}k∈K ⊆ RL such that a∗ =

∨

k∈K coz(βk). For every (t, k) ∈ T × K, we
have

coz(αtβk) = coz(αt) ∧ coz(βk) ≤ (coz(αt))
∗∗ ∧ a∗ ≤ a∗∗ ∧ a∗ = ⊥,

and so αtβk = 0. Then βk ∈ Ann({αt}t∈T) = eRL, which implies that there is a
γk ∈ RL such that βk = eγk, for every k ∈ K. Therefore, coz(βk) = coz(eγk) ≤
coz(e) and so a∗ =

∨

k∈K coz(βk) ≤ coz(e). Hence a∗ = coz(e) and a∗ ∨ a∗∗ =
coz(e) ∨ coz(1 − e) = ⊤. This completes the proof.

We need the following two lemmas which give algebraic characterizations of
extremally disconnected P-frames, but we omit the proof of the second lemma
for it is similar to the proof of Lemma 3.2.
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Lemma 4.4. Let α, δ ∈ RL and u, v, w, z ∈ Q. If L is a P-frame, then

(δ(u, v))∗∗ = δ(u, v) and (δ(u, v) ∧ α(w, z))∗∗ = δ(u, v) ∧ α(w, z).

Proof. By[2, Lemma 6 ], δ(u, v) = coz((δ − u)+ ∧ (v − δ)+) and α(w, z) =
coz((α − w)+ ∧ (z − α)+). Since L is a P-frame, every cozero element in L is
complemented. Hence (δ(u, v))∗∗ = δ(u, v) and if β1 = (δ − u)+ ∧ (v − δ)+ and
β2 = (α − w)+ ∧ (z − α)+, then

(δ(u, v) ∧ α(w, z))∗∗ = (coz(β1) ∧ coz(β2))
∗∗

= (coz(β1β2))
∗∗

= coz(β1β2)

= coz(β1) ∧ coz(β2)

= δ(u, v) ∧ α(w, z).

Lemma 4.5. Let L be an extremally disconnected P-frame and T ⊆ RL with
t =

∨

α∈T coz(α). If µt : LR → L given by

µt(v) =

{

(

∨

α∈T α(v0)
)∗∗

∨ t∗ if 0 ∈ τ(v)
(

∨

α∈T α(v)
)∗∗

if 0 6∈ τ(v)

for every v ∈ LR, then µt ∈ RL and coz(µt) = t∗∗.

Proof. Similar to the proof of Lemma 3.2, because a∗∗ ∧ b∗∗ = (a ∧ b)∗∗ and
a∗∗ ∨ b∗∗ = (a ∨ b)∗∗, for every a, b ∈ L.

In what follows, our aim is that extremally disconnected P-frames charac-
terize in terms of ring-theoretic properties of the ring RL, such as Baer, self-
injective, continuous, complete, and regular ring. We first recall some definitions
and propositions. A lattice A is called upper continuous if A is complete and
a ∧ (∨bi) = ∨(a ∧ bi) for all a ∈ A and all linearly ordered subset {bi} ⊆ A.
A regular ring R is called continuous if the lattice of all principal ideals is upper
continuous.

We recall from [9, Corollary 13.4] that a regular ring R is continuous if and only
if every ideal of R is essential in a principal right ideal of R. Also, we recall from
[9, Corollary 13.5] that every regular self-injective ring is continuous. Also, every
reduced self-injective ring is regular ring which is Baer ring, see [12, Proposition
1.7].

Proposition 4.6. [4] The following statements are equivalent.

(1) R is a Baer ring.

(2) R is a p.p. ring which is also the Boolean algebra B(R) of idempotents in R is
complete.

(3) R is a p.p. ring and every set of orthogonal idempotents in R has a supremum.
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Theorem 4.7. The following statements are equivalent.

(1) RL is a Baer regular ring.

(2) RL is a continuous regular ring.

(3) RL is a complete regular ring.

(4) L is an extremally disconnected P-frame.

(5) RL is a self-injective ring.

Proof. (1)⇒(2). It is clear by [9, Corollary 13.4] and Proposition 4.6.
(2)⇒(3). It is evident.
(3)⇒(4). Since every regular ring is a p.p. ring, we conclude from Proposition

4.6 that RL is a Baer regular ring. Then, by Proposition 4.3, L is an extremally
disconnected frame.

(4)⇒(5). Let S ∪ T ⊆ RL be an orthogonal set with S ∩ T = ∅ and
s =

∨

α∈S coz(α). Similar to the proof of Proposition 3.6, µs ∈ Ann(T).
Now, consider δ ∈ S. We show that δµs = δ2. In order to approach this goal,

let us assume that p, q ∈ Q. If 0 6∈ τ(p, q), then

δαs(p, q) =
∨

{δ(u, v) ∧ µs(w, z) : 〈uvwzpq〉}

=
∨

{δ(u, v) ∧
(

∨

α∈S α(w, z)
)∗∗

: 〈uvwzpq〉}

=
∨

{
∨

α∈S

(

δ(u, v) ∧ α(w, z)
)∗∗

: 〈uvwzpq〉}

=
∨

{
(

δ(u, v) ∧ δ(w, z)
)∗∗

: 〈uvwzpq〉}

=
∨

{δ(u, v) ∧ δ(w, z) : 〈uvwzpq〉}, by Lemma 4.4

= δ2(p, q),

because, if α ∈ S and δ 6= α, then δ(u, v) ∧ α(w, z) ≤ coz(δ)∧ coz(α) = coz(δα) =
coz(0) = ⊥, since 0 6∈ τ(u, v) ∪ τ(w, z). If 0 ∈ τ(p, q), then, by Lemma 3.4 and
4.4, we have

δµs(p, q) =
∨

{δ(u, v) ∧ µs(w, z) : 〈uvwzpq〉}

=
∨

{δ(u, v) ∧
(

∨

α∈S α(w, z)
)∗∗

: 0 6∈ τ(w, z), 〈uvwzpq〉}∨
∨

{δ(u, v) ∧ [
(

∨

α∈S α((w, z)0)
)∗∗

∨ s∗] : 0 ∈ τ(w, z), 〈uvwzpq〉}

=
∨

{
(

δ(u, v) ∧ δ(w, z)
)∗∗

: 0 6∈ τ(w, z), 〈uvwzpq〉}∨
∨

{
(

δ(u, v) ∧ δ(w, z) ∧
∧

δ 6=α∈S(coz(α))∗
)∗∗

:

0 ∈ τ(w, z), 〈uvwzpq〉}

=
∨

{δ(u, v) ∧ δ(w, z) : 0 6∈ τ(w, z), 〈uvwzpq〉}∨
∨

{δ(u, v) ∧ δ(w, z) ∧
(

∧

δ 6=α∈S(coz(α))∗
)∗∗

:

0 ∈ τ(w, z), 〈uvwzpq〉}

≤
∨

{δ(u, v) ∧ δ(w, z) : 〈uvwzpq〉}

= δ2(p, q).

Since δ and αs are frame maps and LR is the regular frame, we conclude that
δαs = δ2. which means that αs separates S from T. Now, by Proposition 3.5, we
are through.

(5)⇒(1). By [12, Proposition 1.7.], RL is a Baer regular ring.
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It is shown in [6] that a frame L is extremally connected if and only if υL is
extremally connected if and only if λL extremally connected. We therefore, by
paragraph before Corollary 3.7, have the following:

Corollary 4.8. The following are equivalent for a frame L.

1. RL is an self-injective ring.

2. R(υL) is an self-injective ring.

3. R(λL) is an self-injective ring.
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dade de Coimbra, Coimbra (1997).

[3] B. Banaschewski and C. Gilmour, Cozero bases of frames, J. Pure Appl. Algebra
157 (2001), no. 1, 1–22.

[4] S.K. Berberian, Baer *-rings, Springer-Verlag, 1972.

[5] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional
frames, Algebra Universalis 61 (2009), 115–138.

[6] , Notes on pointfree disconnectivity with a ring-theoretic slant, Appl.
Categ. Structures 18 (2010), no. 1, 55–72.

[7] A.A. Estaji and O.A.S. Karamzadeh, On C(X) modulo its socle, Comm. Algebra
31:4 (2003), 1561–1571.

[8] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag,
1976.

[9] K.R. Goodearl, Von neumann regular rings, Pitman, San Fracisco, 1979.

[10] O.A.S. Karamzadeh, On a question of Matlis, Comm. Algebra 25 (1997), 2717–
2726.

[11] O.A.S. Karamzadeh and A.A. Koochakpour, On ℵ0-selfinjectivity of strongly
regular rings, Comm. Algebra 27 (1999), 1501–1513.

[12] E. Matlis, The minimal prime spectrum of a reduced ring, Illinois J. Math. 27
(1983), 353–391.



480 A. A. Estaji – M. Abedi

[13] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in
Mathematics, Springer Basel, 2012.

[14] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21
(1993), 1809–1847.

Faculty of Mathematics and Computer Sciences,
Hakim Sabzevari University,
Sabzevar, Iran.
Postal code: 9617976487
Mail box: 397
email : aaestaji@hsu.ac.ir

Esfarayen University of Technology, Esfarayen,
North Khorasan, Iran.
Postal code: 9661998195
email : abedi@esfarayen.ac.ir


