On injectivity of the ring of real-valued
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Abstract

We give characterizations of P-frames and extremally disconnected
P-frames based on ring-theoretic features of the ring of continuous real-
valued functions on a frame L, i.e. RL. It is shown that L is a P-frame if
and only if RL is an Ny-self-injective ring. Consequently for pseudocompact
frames if RL is Ng-self-injective, then L is finite. We also prove that L is an
extremally disconnected P-frame iff RL is a self-injective ring iff R L is a Baer
regular ring iff RL is a continuous regular ring iff RL is a complete regular
ring.

1 Introduction

We clarify from the start that, throughout, by the term “ring” we mean a com-
mutative ring with identity. All topological spaces are completely regular and
Hausdorff, and all frames are completely regular.

Recall that a P-space is a topological space in which every cozero set is closed
and also a topological space X is extremally disconnected if every open set has
an open closure. These notions have been extended to pointfree topology in such
a way that a topological space X has one of these features if and only if the frame
of its open sets, i.e. OX, has the corresponding property (see [1], [5]).
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By a reduced ring we mean a ring without nonzero nilpotent elements.
In [10, 11] for a reduced ring A, some internal conditions on A that are equiv-
alent to self-injectivity (No-self-injective) of A are provided. Since RL is always
a reduced ring, we can use these conditions to investigate the injectivity of the
ring RL. Using these conditions, Estaji and Karamzadeh [7] have shown that for
a space X, the ring of real-valued continuous functions C(X) is Ny-self-injective
if and only if X is a P-space. Moreover, they demonstrated that C(X) is self-
injective if and only if X is an extremally disconnected P-space. One of the main
aims of this article is to develop these results to the more general setting of point-
free topology, that is, frames.

To prove the equivalence of RL is Rg-self-injective and L is a P-frame, for
an orthogonal countable set T in RL and t = \/,c7coz(a), in Lemma 3.2, we
introduce a frame map a; € RL such that coz(a;) = t, whenever L is a P-frame.
Finally, using the map «;, Lemmas 3.3 and 3.4, and [5, Proposition 3.9], it is shown
that L is a P-frame iff RL is Ny-self-injective, see Theorem 3.6.

In Proposition 4.3, we show that for a frame L, it is an extremally disconnected
frame iff RL is a Baer ring or equivalently, iff RL is a CS-ring or equivalently,
iff every nonzero ideal in RL is essential in a principal ideal generated by an
idempotent. This proposition is proved by Dube in [6, Proposition 2.4], but here,
in the proof of this proposition, a different approach is used.

To prove the equivalence of RL is self-injective and L is an extremally
disconnected P-frame, for a set T in RL and t = \/,c7 coz(a), in Lemma 4.5, we
construct a frame map y; € RL such that coz(y;) = t**, whenever L is extremally
disconnected P-frame. Using the map y;, Propositions 3.5, 3.6, 4.3, and 4.6, Lem-
mas 3.4 and 4.4, [9, Corollary 13.4], and [12, Proposition 1.7], it is proved that for a
frame L, L is an extremally disconnected P-frame iff R L is a self-injective ring iff
RL is a Baer regular ring iff RL is a continuous regular ring iff RL is a complete
regular ring, see Theorem 4.7.

2 Preliminaries

Here, we recall some definitions and results from the literature on frames and the
pointfree version of the ring of continuous real-valued functions. For undefined
terms and notations see [13] on frame-theoretic concepts, [2] on pointfree function
rings, and see [8] on C(X).

A frame is a complete lattice L in which the distributive law

xAN\A=\/{xAa:se A}

holds for all x € L and A C L. The top element and the bottom element of L are
denoted by T and _L| respectively; dropping the subscripts if no confusion may
arise. Throughout this context L will denote a frame. OX is the frame of open
subsets of a topological space X.

The pseudocomplement of an element a € L is denoted by a* and for each
a,b € L we have:
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1. a <a**.

2. ifa < b, then b* < a*.
3. (aVvb)* =a*ND*.

4. (a AND)** =a** ND*.

An element a in L is said to be complementedif aVV a* = T.

L is said to be reqular if a = \/{x € L : x < a} for eacha € L, where x < a
means that x* Va = T. This is equivalent to saying there is an element s € L,
called a separating element, such that x A\s = L and sVa = T. Itis said to be
completely regular if, for eacha € L,a = \/{x € L : x << a}, where x << a4 means
that there are elements (c;) indexed by the rational numbers Q N [0, 1] such that
co=x,c1=a,and c, < c,forp <gq.

As described in [2], the frame of reals, denoted £(IR), is the frame generated
by ordered pairs (p, q) of rational numbers p,q € Q subject to the relations:

(RD) (p,q) A (r,s) = (pVr,qAs),

R2) (p,q) V (r,5) = (p,s) whenever p <r < g <s,

(R3) (p,q) = V{(r,s) : p <7 <s < q},and

R T =V{(p.q) : p.q € Q}.

A frame homomorphism (or frame map) is a map between frames which preserves
finite meets, including the top element, and arbitrary joins, including the bottom
element. A function f : £L(R) — L which satisfies the following properties:

(RY) f((p,q) A (r,8)) = f(pVr,qNs),

(R2) f((p,q) V (r,5)) = f(p,s) whenever p < r < <5,

R3) f(p,q) = V{f(r,s) :p <r<s<gq} and

(R4) T =V{f(p.q) : p.g €Q}

is a frame map.

Now for any frame L the real-valued continuous functions on L are the homo-
morphisms £(R) — L. The set RL of all frame homomorphisms from £(RR) to
L has been studied as an f-ring in [2]. Further, corresponding to every continu-
ous operation ¢ : Q-0 (in particular +, ., A, V) we have an operation on RL,
denoted by the same symbol ¢, defined by:

woB(p,q) = \/H{alr,s) AB(u,w) : {r,s) o (u,w)  (p,q)},

where (r,s) o (u,w) = {xoy : x € (r,s),y € (u,w)} and (p,q) = {x € Q :
p < x < q}. Forevery r € R, define the constant frame map r € RLby r(p,q) =
T, whenever p < r < ¢, and otherwise r(p,q) = L. For any frame L, an element
a € RL is called bounded if a(p,q) = T for some p,q € Q, and L is called
pseudocompact ift RL = R*L, where the subring of RL consisting of its bounded
element is denoted by R*L.

Finally an important feature of R L is its cozero map coz : RL — L taking every
a € RL to coz(a) = a((—,0) vV (0,—)), where

0,—) =\{(0,9)) : g €Q,q>0},(—0) = \/{(p,0) : p€Q,p <0}.

The properties of the cozero map that we use are:
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coz(a) = Liffa =0,

coz(aB) = coz(a) A coz(p),

a(p,q) = coz((x —p)" A(q—a)"),
coz(a + B) < coz(a) V coz(p), and

Ll

5. « € RL is invertible iff coz(a) = T.

A cozero element of L is an element of the form coz(a) for some & € RL. The cozero
part of L, denoted by Coz L, is the regular sub-c-frame consisting of all the cozero
elements of L. It is shown in [2] that a frame L is completely regular if and only if
it is generated by the cozero elements.

3 P-frames

Recall that a P-frame is one in which every cozero element is complemented. This
notion is the exact extension of its point-delicate namesake in that a topological
space X is a P-space if and only if the frame DX is a P-frame. A ring R is said to
be regular (in the sense of Von Neumann) if for every a € R thereis b € R with
a = a?b. The following result has been proved by Dube in [5, Proposition 3.9].

Proposition 3.1. L is a P-frame if and only if RL is a regular ring.

Aring Ris said to be self-injective (Np-self-injective) if every R-homomorphism
from an ideal (a countably generated ideal) of R to R can be extended to an
R-homomorphism from R to R. In this section the aim is to find a feature of a
frame L that is equivalent to Ny-self-injective of RL. For this purpose first we
recall some of these definitions and results known and are making some lemmas.

Suppose R is a commutative ring with unit. A subset S of R is said to be
orthogonal provided xy =0 forallx,y € Swithx #y. If SNT =D and SUT is
an orthogonal set in R, then a € R is said to separate S from T if a € Ann(T) and
s2a = s, for every s € S (see [10]). In [11] it is shown that there exists an element
in R which separates S from T if and only if there is an element b in R such that
b € Ann(T) and s> = sb, for every s € S.

The homomorphism 7 : £L(R) — OR given by (p,q) —]p,4[ is an isomor-
phism, where

Ipgl={x e R:p <x<q}.
For convenience, we put o° := 77 1(7(v) \ {0}), for every v € LRR.
We need the following three lemmas and one proposition which gives an

algebraic characterization of P- frames. But we omit the proof of propositions
for it is achieved by [10, Theorem 2.2] and [11, Proposition 1.2].

Lemma 3.2. Let L be a P-frame. Assume that T is an orthogonal countable set in RL
and t = \/crcoz(a). Ifay : LR — L given by

21(0) = { Vaeera(?) V t* if0 € T(v)
t Vaer a(v) if 0 ¢ 7(v)

for everyv € LR, then oy € RL and coz(ay) = t.
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Proof. We check the conditions (R1')-(R4’) for a;.
(R1'). Consider p,q,7,s € Q. If 0 € T(p,q) NT(r,s), then0 € T(pVr,qAs),
which implies that

a(p,q) Ae(r,s) = [Vaera((p,q)°) vV £IA
[Vaer a((r,5)°) Vv ']
= Vawer(a((p,q)") Ad'((r,s)°) v ¢*
= Vaer(a((p,9)°) Na ((r sV

Vaera((pVr,qAs)°) vV
ar(pVr,gNs),

because
a((p,9)°) N’ ((r,8)°) < coz(a) Acoz(a') = coz(an') = coz(0) = L

for every a, 0’ € S with a # o'
If0 ¢ t(p,q) Ut(r,s), then0 & T(p Vr,qAs), which implies that

\/aeT‘X(p/ q) A \/txeT‘X(r/S)
Vawera(p,g) Na'(r,s)
Vaer a(p,q) Na(r,s)
Vaera(pVr,qAs)
a(pVr,gNhs),

ar(p,q) Aee(r,s)

because
a(p,q) Na'(r,s) < coz(a) Acoz(a') = coz(aa') = coz(0) = L

for every o, 0’ € T with a # .
If0 e t(p,q)\t(r,s), then0 & T(p Vr,q As), which implies that

ar(p,g) Neu(r,s) = [Vaera((p,9)°) V] AVyer alr,s)
Vaaera((p,q)°) A (r,8)] V[ AVaeralr,s)]
Vaer«((p,q)°) Aa(r,s)] Vv L
= wa(pVr,qAs),

because t* A Vet a(r,s) <t* Nt = L.
(R2). Letp,q,r,s € Qwithp <r < g <s.1f0 € 17(r,q), then 0 € 7(p,q) and
0 € 7(r,s), which implies that

ar(p,q) Var(r,s) = [Vaera((p,q)?) V]V [Veera((r,s)°) V]
= Vaer(@(((p,q)°) Va((r,s)?) v t*
Vaera((p,s )O)v

wt(p,s).

Ifp<0<r then0e€ t(p,q) and 0 ¢ T(r,s), which implies that

)
ar(p,q) Vour(r,s) = [Vaera((p,9)°) V]V Veeralr,s)
= [Vaera((p.9)°) Va(r,s)] vt
= Veera((p,s)?) VH*
= a(p,s).
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The proof of 4 < 0 < s is similar.
(R3). If 0 & 7(p,q), then 0 & T(r,s), forevery r,s € Qwithp <r < s < g.
Hence

Vo owrs)= \V Vars)=\ V als) =V alp.q) =ap.q).

r,s€Q, rseQ, acT aceT rs€Q, aeT
p<r<s<q p<r<s<q p<r<s<q

If0 € 7(p,q), then

V rseq, a1(r,s) =V rseq, Vacra((r,s)°) VEIVV rseq Vaera(r,s)
p<r<s<q p<r<s<q p<r<s<q

0et(r,s) 0 0¢t(r,s)
=V r,s€Q, \/txeT‘x((r/S) )\/t*

p<r<s<q
Vaesa((p,9)°) V t*
= a(p,q).
(R4"). Since Coz L is a o-frame and t is the countable subset of RL, we conclude

that t € Coz L, which implies that t Vt* = T, because L is a P-frame. Therefore,
we have

\/r,seQ [Jct(i’,S) =V 7,5€Q, [\/DCGT(X((I’,S)O) v t*] VvV r,s€Q, \/zxeT“(T’/S)
0ct(r,s) 0¢7(r,s)

\/r,seQ, \/zxeT “((rls)o) vt
VIXGT Vr,seQ, (X((}’,S)O) Vot
Vaer coz(a) V £

tV it

T.

Therefore, a; is a real-valued continuous function. To prove the second part, we

?ave coz(ar) = at((—,0) V(0,-)) = Vaera((—0) V(0,=)) = Vaercoz(a)

]
Lemma 3.3. Let SUT C RL be an orthogonal set with SN'T = @. If s = \/ 5 coz ()
and t = \/ger coz(B), then t < s*.

Proof.
snt=\/ coz(a) A \/ coz(B) =\/ (coz(a) Acoz(B)) = \/ coz(ap) = L,
xES BeET o,
which implies t < s*. [ ]

Lemma 3.4. If L is a P-frame, then the following statements hold.

(1) If « € RL, then (coz(a))* = a(r,s) A (coz(a))* and a(r,s) = a((r,s)°) Vv
(coz(a))*, for every r,s € Qwithr < 0 < s.

(2) If T C RL is an orthogonal set with t = \/ 1 coz(a), then

a((r,5)°) Vvt = a(r,s) A N\ (coz(B))",
a#BeT

foreveryax € Tandr,s € Qwithr < 0 <s.
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Proof. (1). Considera € RLandr,s € Qwithr < 0 < s. Sincea(r,s) V coz(a) =T,
we conclude that
(coz(a))* = (coz(a))* A (a(r,s) V coz(a)) = a(r,s) A (coz(x))*.
To prove the second part, by hypothesis, coz(a) V (coz(a))* = T, then
a(r,s) = (a(r,s) Acoz(a)) V (a(r,s) A (coz(a))*) = a((r,s)°) V (coz(x))*.

(). Ifa # B € T, then a((r,s)?) < coz(a) < (coz(B))*, because coz(B) A
coz(x) = L. Hence a((r,s)°) < Nazpes(coz(B))*, which follows from statement
(1) that

a((r,s)) v = a((r,s)°) V Ager(coz(B))*
(a((r,5)°) V (coz(a))*) A (a((r,5)°) V Aazper(coz(B))*
a(r,8) A Nazper(coz(B))*.

This completes the proof. n

Recall that the proof of the following proposition is concluded by [10, Theo-
rem 2.2], and [11, Proposition 1.2].

Proposition 3.5. Let R be a reduced ring, then the following statements are equivalent.
(1) Thering R is self-injective (Ny-self-injective).

(2) The ring R is a regular ring and whenever S U T is an orthogonal (countable) set
with SN'T = @, then there exists an element in R which separates S from T.

For convenience, given any two generators (u,v) and (w,z), we shall write
(uvwzpyq) to signify that (u,v).(w,z) C (p,q).

In the proof that follows we shall use the fact that if L is a regular frame and
h,g : L — M are frame homomorphisms such that (x) < g(x) for every x € L,
thenh = g.

Theorem 3.6. Let L be a frame. Then L is a P-frame if and only if RL is an Ro-self-
injective ring.

Proof. We begin with the necessity. Let SUT C RL be an orthogonal countable
set with SNT = @ and s = \/,c5coz(x). Now, we show that as € Ann(T).
Consider g € T and t = Vger coz(p). Then, by Lemma 3.2, we have

coz(asB) = coz(as) A coz(p)
= sAcoz(B)

SAt

= L

IN

which implies that as = 0. Therefore, a5 € Ann(T).
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Now, consider § € S. We show that da; = 6%. In order to approach this goal,
let us assume that p,qg € Q. If 0 € 7(p, q), then
sas(p ) = VAO(,0) Aalw,2) : (wowzpg) )
= V{0(u,0) A Vyes a(w, ) = (wowzpg) }
= V{Vaes6(u,0) Aa(w,z) : (wowzpg) }
= V{é(u,v) Né(w,z) : (uvwzpq)}
= *(p9),
because, if & € S and § # «, then since 0 € T(u,v) U t(w,z),
O(u,v) Na(w, z) < coz(d) A coz(a) = coz(da) = coz(0) = L.

Now, if 0 € T(p, q), then, by Lemma 3.4, we have

ous(p,q) = V{6(w,0) ANas(w,z) : (uowzpq)}
= V{6(u,0) AVaesa(w,z) : 0 € T(w, z), (uvwzpq)}V
V{61, 0) A [Vaesa((w,2)°) Vs*]: 0 € T(w,2), (uowzpq)}
= V{é(u,v) Né(w,z) : 0 & T(w,z), (uvwzpq)}V
V{6(u,v) No(w,z) A Nszacs(coz(a))* : 0 € T(w, z), (uowzpyg) }
< V{o(u,v) Né(w,z) : (uowzpq) }
= &(p,q)

Since ¢ and a5 are frame maps and LR is a regular frame, we conclude that
das = 62, which means that a; separates S from T. Now, by Proposition 3.5,
we are through.

To prove the sufficiency, consider « € RL, and let I be the ideal of RL gener-
ated by 2. Since f : I — RL given by Ba? — Ba is a RL- -homomorphism, we
conclude from statement (2) that there exists a R L-homomorphism f : RL — RL
such that f|, = f. Hence

a = fla?) = F(102) = F(1)a?.
Then RL is a regular ring. Therefore, by Proposition 3.1, L is a P-frame. m

We denote the Hewitt realcompactification and universal Lindelofication of L
by vL — L and AL — L respectively, (see [3] for details). It is shown in [5] that a
frame L is a P-frame if and only if vL is a P-frame if and only if AL is a P-frame.
We therefore have the following;:

Corollary 3.7. The following are equivalent for a frame L.
1. RL is an Ny-self-injective ring.
2. R(vL) is an Rg-self-injective ring.
3. R(AL) is an Rg-self-injective ring.

As remarked in [5, p. 126], every pseudocompact P-frame is finite. We there-
fore have the following corollary.

Corollary 3.8. If L is pseudocompact and RL is RNo-self-injective, then L is finite.
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4 extremally disconnected frames

In the first part of this section, our aim is to give alternative proofs of several alge-
braic characterizations of extremally disconnected frames that were established
in [6]. To do this we need two propositions. In the first proposition for a comple-
mented element 4 in L is defined a idempotent element e, of RL, but we omit its
proof for it can be easily deduced from the proof of [1, Theorem 8. 3. 3]. In the
second proposition, we calculate the multiplication ae, for a element« € RL, but
we also omit its proof for it can be easily checked.

Proposition 4.1. Let a be a complemented element of L. Then e, : LR — L by

T if0,1€ T(U)
ifoet(U)and1 ¢ T(U)
ifoZ t(U)and1 € T(U)

)

ea(U) = ”;
1 ifogt(U)and1 & T(U),

is a continuous real-valued function, €2 = e,, and coz(e;) = a.

Proposition 4.2. If a is complemented in L and « € RL, then

~falpg)va ifOeT(pq)
“aP8) =\ w(pg)ra 0 #T(p).

Before the following proposition is proposed, we first recall some definitions.
If A and B are ideals in a ring R we say A is essential in B if A C B and every
nonzero ideal inside B intersects A nontrivially, and when we say A is essential,
we mean it is essential in R. An ideal A in a ring R is called closed ideal (com-
plement) if it is not essential in a larger ideal and a ring R is said to be CS-ring if
every closed ideal is a direct summand, see [14]. A ring R is called a Baer ring if
for any subset S of R, we have Anng(S) = eR, where ¢ = e.

As in the introduction it is stated that Dube proved this proposition in
[6, Proposition 2.4], but here, we indicate the different proof about that based
on the foregoing proposition.

Proposition 4.3. The following statements are equivalent.
(1) L is an extremally disconnected frame.
(2) RL is a Baer ring.

(8) Every nonzero ideal in RL is essential in a principal ideal generated by an idempo-
tent.

(4) RL isa CS-ring.

Proof. (1)=-(2). Let S C RL be any subset, we are to show that AnnS = eRL,
where ¢ = e. We puts = V/,cgcoz(a). Since L is extremally disconnected, we
infer that s* V s** = T, which implies that s* is a complemented element in L.
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Consider B € Ann(S). Then coz(a) A coz(p) = coz(ap) = coz(0) = L, which
implies that coz(x) < (coz(B))*, for every « € S. Hence s < (coz(B))* and so

coz(p) < (coz(p))™ <™.

Consider v € LR and o € S. If 0 € T(v), then, by Proposition 4.2, Bes-(v) =
s* AB(v) = B(v), because B(v) < coz(B) < s*. If0 € T(v), then B(v°) < coz(B) <
s*, which implies that Bes:(v) = s** Vv B(v) > B(v), by Proposition 4.2. Since S
and e+ are frame maps and LR is the regular frame, we conclude that e« = B
which means that B € e;+RL. Hence Ann(S) C es+RL. Now, suppose thata € S,
then

coz(a) < s = coz(aes-) = coz(a) A coz(esr) < (coz(w))™ Ns* <s™ Ns* = 1,

it follows that e« = 0. Hence e+ € Ann(S). Therefore, Ann(S) = es«RL and so
RL is a Baer ring.

(2)=(3). Let I be a nonzero ideal in RL, then there is an idempotent ele-
ment e in RL such that Ann(I) = eRL = Ann((1 —e)RL), which implies that
a=wa(l—e)e (1—e)RLNI, forevery a € I. Hence I is essential in (1 —e)R L.

(3)=(4). Let I be a closed ideal in RL, then there is an idempotent element e
in RL such that I is essential in eR L.

(4)=(2). Consider S C RL and I = Ann(S). We claim that the ideal Ann(S)
is a closed ideal in RL. Let Ann(S) be essential in a larger ideal J, then S] # (0)
implies that S] N Ann(S) # (0), but (S] N Ann(S))? = (0), which is impossible,
since RL is a reduced ring. This shows that Ann(S) is a closed ideal and by
statement (4), I is generated by an idempotent..

(2)=(1). Consider a € L, then there are {a;};er € RL such that
a = Viercoz(a;). Since RL is a Baer ring, we conclude that there is an idem-
potent element e € RL such that Ann({a;}icr) = eRL, which implies that for
everyt €T

coz(e) A coz(ay) = coz(ea;) = coz(0) = L = Vt € T(coz(e) < (coz(ar))*),

and so coz(e) < Ajer(coz(ay))* = a*. Since coz(e) V coz(l —e) = T and
coz(e) Acoz(1—e) = L, we conclude that a** < (coz(e))* = coz(1 —e). Suppose
that {Bx}kex € RL such that a* = \/jcxcoz(By). For every (t,k) € T x K, we
have

coz(afy) = coz(at) A coz(By) < (coz(ar))™ Na* <a*™ ANa* = 1,

and so a¢f; = 0. Then By € Ann({a;}ier) = €RL, which implies that there is a
Yk € RL such that By = ey, for every k € K. Therefore, coz(B) = coz(eyy) <
coz(e) and so a* = \/yeg coz(Bx) < coz(e). Hence a* = coz(e) and a* V a** =
coz(e) V coz(1l —e) = T. This completes the proof. ]

We need the following two lemmas which give algebraic characterizations of
extremally disconnected P-frames, but we omit the proof of the second lemma
for it is similar to the proof of Lemma 3.2.
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Lemma4.4. Letw,6 € RLand u,v,w,z € Q. If L is a P-frame, then
(6(u,0))*™* =6(u,v) and (6(u,v) Na(w,z))*™ = 6(u,v) Na(w,z).

Proof. By[2, Lemma 6 ], 6(u,v) = coz((6 —u)" A (v—96)") and a(w,z) =
coz((a —w)™ A (z —a)™). Since L is a P-frame, every cozero element in L is
complemented. Hence (6(u,v))** = 6(u,v) andif B1 = (6 —u)* A (v —6)" and
Br=(a—w)" A(z—a)", then

(6(u,v) Na(w,z))*™ = (coz(B1) Acoz(Bz))**
(coz(B1B2))*"
coz(B1pB2)

coz(B1) A coz(B2)
o(u,v) Na(w, z).

Lemma 4.5. Let L be an extremally disconnected P-frame and T C RL with
t = Vaercoz(a). If uy : LR — L given by

_ | (Vaera(@))" v if0€ (o)
() { (\/zxeT“(U))** if0 & t(v)

for every v € LR, then p; € RL and coz(py) = t**.

Proof. Similar to the proof of Lemma 3.2, because a** A b** = (a A b)** and
a** v b** = (aV b)**, for every a,b € L. ]

In what follows, our aim is that extremally disconnected P-frames charac-
terize in terms of ring-theoretic properties of the ring RL, such as Baer, self-
injective, continuous, complete, and regular ring. We first recall some definitions
and propositions. A lattice A is called upper continuous if A is complete and
aA (Vb)) = V(aAb;) for alla € A and all linearly ordered subset {b;} C A.
A regular ring R is called continuous if the lattice of all principal ideals is upper
continuous.

We recall from [9, Corollary 13.4] that a regular ring R is continuous if and only
if every ideal of R is essential in a principal right ideal of R. Also, we recall from
[9, Corollary 13.5] that every regular self-injective ring is continuous. Also, every
reduced self-injective ring is regular ring which is Baer ring, see [12, Proposition
1.7].

Proposition 4.6. [4] The following statements are equivalent.
(1) Ris a Baer ring.

(2) R is a p.p. ring which is also the Boolean algebra B(R) of idempotents in R is
complete.

(3) Risa p.p. ring and every set of orthogonal idempotents in R has a supremum.
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Theorem 4.7. The following statements are equivalent.

(1) RL is a Baer regular ring.
(2) RL is a continuous regular ring.
(3) RL is a complete regular ring.
(4) L is an extremally disconnected P-frame.
(5) RL is a self-injective ring.
Proof. (1)=(2). It is clear by [9, Corollary 13.4] and Proposition 4.6.
(2)=>(3). It is evident.
(3)=>(4). Since every regular ring is a p.p. ring, we conclude from Proposition
4.6 that RL is a Baer regular ring. Then, by Proposition 4.3, L is an extremally
disconnected frame.
(4)=(5). Let SUT C RL be an orthogonal set with SNT = @ and
s = Vaes €0z (). Similar to the proof of Proposition 3.6, us € Ann(T).

Now, consider 6 € S. We show that us = 52, In order to approach this goal,
let us assume that p,qg € Q. If 0 € 7(p, q), then

us(p.g) = V{6(w,0) Aps(w,z) : <Mvwzl%7>}
= V{é(u,v) A (\/aeS a(w,2))” : (uvwzpg)}
= V{Vaes (6(1,0) Aa(w,2))" : (wowzpq)}
= V{(é(u,0) /\5(w z))"" + (uvwzpg)}
V{é(u,v) Né(w,z) : (uowzpg)}, by Lemma 4.4
= &(p.q),
because, if « € S and § # «, then §(u,v) A a(w,z) < coz(d) Acoz(a) = coz(dn) =
coz(0) = L, since 0 ¢ t(u,v) Ut(w,z). If 0 € T(p,q), then, by Lemma 3.4 and
4.4, we have
us(p,q) = V{6(u,0) A
= V{é(u,v) A
) A

ps(w, 2) + (uowzpq) }
(Vaesa(w,2))" : 0 & T(w,z2), (wowzpg)}v
[(Vaesa((w,2)") " V'] : 0 € T(w,z), (uowzpq)}
N0 ¢ T(w,z), (wowzpg) }V
) A /\5#0&65((:02(“))*)** :
0 € 7(w,z), (uvwzpq)}
= V{0(u,0) ANdé(w,z):0 ¢ T(w,z), (uvwzpq) }v
V{8(1t,0) A 6(w,2) A ( Asaes(coz(a))*)™
0 € t(w,z), (uvwzpq)}
< V{é(u,v) Nd(w, z) : (uvwzpq)}
= &(p,9).
Since ¢ and a; are frame maps and LIR is the regular frame, we conclude that
Sus = 62. which means that as separates S from T. Now, by Proposition 3.5, we

are through.
(5)=-(1). By [12, Proposition 1.7.], RL is a Baer regular ring. [
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It is shown in [6] that a frame L is extremally connected if and only if vL is
extremally connected if and only if AL extremally connected. We therefore, by
paragraph before Corollary 3.7, have the following:

Corollary 4.8. The following are equivalent for a frame L.
1. RL is an self-injective ring.
2. R(vL) is an self-injective ring.
3. R(AL) is an self-injective ring.

Acknowledgment: We thank the referee for comments that have improved
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