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Abstract

In this paper we first investigate linear extendability of an isometric
embedding T : U −→ Y from an open subset U of a real Banach space X
into a real Banach space Y in the case where Y is either the space CR(K) of
continuous real-valued functions on a compact space K, or is a strictly con-
vex Banach space. Then we obtain similar results for the case where Y is an
arbitrary real Banach space and T : U −→ Y is an isometry whose range
satisfies some additional conditions.

1 Introduction

The problem of determining conditions under which an isometry between two
normed linear spaces is affine has been studied by many authors and has its
roots in the famous Mazur-Ulam Theorem [10]. By the Mazur-Ulam theorem
every surjective isometry between two real normed spaces is affine. Using the
idea of [18], a surprisingly short proof of Mazur-Ulam theorem has been given
by J. Väisälä in [16]. This theorem has been generalized by many authors by
relaxing the surjectivity assumption. For instances, in [3], Figiel proved that for
an isometry T : X −→ Y between real normed spaces X and Y , there exists a
linear map S : Y −→ X such that S(T(x)) = x for all x ∈ X and moreover
the restriction of S to the linear span of T(X) has norm 1. In [4], the surjectivity
assumption was replaced by a weaker assumption that every direction in Y can
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be approximated by a direction between two points in the range of the isome-
try T. In [1] Baker proved that every isometry from a normed space into a strictly
convex normed linear space is affine. On the other hand, in [17] it was shown that
for a real Banach space X and a compact Hausdorff space K, if T : X → CR(K)
is an isometry with T(0) = 0, then there exists a closed nonempty subset L ⊆ K,
such that the superposition Q ◦ T : X → CR(L) is a linear map. Here CR(K) is
the space of all real-valued continuous functions on K and Q : CR(K) −→ CR(L)
is the restriction map. For some related results, we may refer to [18] and [12].
By introducing the notion of metricoid spaces, a generalization of Mazur-Ulam
theorem for isometries between metricoid spaces was given in [7].

In [9] Mankiewiz considered the extension problem of isometries whose
domains are subsets of normed spaces and proved that every surjective isometry
between open connected subsets of normed spaces can be extended to a surjec-
tive affine isometry between normed spaces. The extension problem of isome-
tries on unit spheres of some normed spaces has been considered for examples in
[8, 15, 19, 20]

Recently, by proving some Mazur-Ulam type theorems, in [5] and [6], Hatori
investigated the problem of linear extendability of surjective isometries between
open subgroups (or certain open subsets) of invertible elements of unital Banach
algebras see [5, Theorem 3.2] and [6, Theorem 3.1].

Motivated by the Backer’s and Villa’s results concerning (into) isometries, and
Harori’s work on linear extendability of surjective isometries between open sub-
groups of invertible elements in Banach algebras, in this paper we first
investigate linear extendability of an isometry from a certain open subset U of a
Banach space X into a Banach space Y , in the case where Y is either the space
CR(K), for a compact Hausdorff space K, or a strictly convex Banach space. In
the first case we show that there exists a closed subset L ⊆ K and a real-linear
isometry T̃ : X −→ CR(L) which extends Q ◦ T (up to a translation), where
Q : CR(K) −→ CR(L) is the restriction map, and in the second case where Y
is strictly convex, it turns out that such an isometry T : U −→ Y extends to a
real-linear isometry from X into Y up to a translation.

Imposing some additional assumptions on the range of a given isometry
T : U −→ Y , where Y is an arbitrary Banach space, we obtain similar results
for this case (Theorems 3.6 and 3.8).

2 Preliminaries

Let X and Y be normed spaces and U be a subset of X . A mapping T : U −→ Y
is called an isometrical embedding or an isometry if ‖Tu − Tv‖ = ‖u − v‖ for all
u, v ∈ U .

As we mentioned before, Mazur-Ulam Theorem states that any surjective isom-
etry T : X −→ Y between real normed spaces X and Y is real-linear up to a trans-
lation, that is, T − T0 is real-linear. A normed linear space Y is said to be strictly
convex, provided that for each a, b ∈ Y the equality ‖a + b‖ = ‖a‖+ ‖b‖ implies
{a, b} is linearly dependent, or equivalently for nonzero elements a, b ∈ Y , the
equality ‖a + b‖ = ‖a‖ + ‖b‖ implies that a = tb for some t > 0. For instances,
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inner product spaces as well as ℓp spaces for 1 < p < ∞ are strictly convex.
By Baker’s result [1], every isometrical embedding from a normed space into a
strictly convex normed space is affine. We recall that in a strictly convex normed
space Y , by [1], for each a, b ∈ Y , 1

2(a + b) is the unique point in Y with distance

equal to 1
2‖a − b‖ from both a and b.

In a normed space X , a point a of the sphere Sr = {x ∈ X : ‖x‖ = r}, r > 0, is
called smooth if there exists a unique fa ∈ X ∗ such that fa(a) = ‖a‖ and ‖ fa‖ = 1.
Mazur proved that the set of all smooth points in a separable Banach space X is
a dense Gδ subset of X (see [13, Proposition 9.4.3]).

For a compact Hausdorff space K we denote the Banach space of real-valued,
respectively complex-valued continuous functions on K by CR(K) and C(K) en-
dowed with the supremum norm ‖ · ‖K . For each t ∈ K, the evaluation func-
tional at t defined on these spaces will be denoted by δt. For each continuous
function f on K we denote the maximum set of modulus of f by M( f ), that is
M( f ) = {x ∈ K : | f (x)| = ‖ f‖K}.

Let X be a real or complex normed space and X ∗
1 be the closed unit ball of

X ∗ endowed with the weak-star topology. Let iX be the isometrical embedding
from X to CR(X

∗
1 ) or C(X ∗

1 ) defined by iX (x)(l) = l(x), for l ∈ X ∗
1 and x ∈ X .

There are some real or complex normed spaces X containing an element e0 such
that for each x ∈ X , the equality iX (x) = 0 on the maximum set M(iX (e0))
of iX (e0) implies that x = 0. Clearly if A is a commutative semisimple unital
complex Banach algebra with unit element e, then the maximum set M(iA(e))
has this property. More generally, if B is a unital complex Banach algebra, A is
a closed semisimple commutative subalgebra of B containing the unit of B and

x0 is an invertible element of B with ‖x0‖ = ‖x−1
0 ‖ = 1 (for example unitary

elements in C∗-algebras satisfy these conditions), then for the complex normed
space X = Ax0, the element x0 ∈ X has the mentioned property. Indeed, for each
complex homomorphism ϕ on A, it is easy to see that the map ϕ̃ ∈ X ∗ defined
by ϕ̃(xx0) = ϕ(x), x ∈ A, is an element of the unit ball of X ∗ with ϕ̃(x0) = 1.
Hence, since the maximum set M(iX (x0)) of iX (x0) contains all ϕ̃, it follows that
for each x ∈ A with iX (xx0) = 0 on M(iX (x0)) we have ϕ(x) = 0 for all complex
homomorphisms ϕ on A and hence x = 0.

3 Main Results

Given real normed spaces X ,Y and an isometrical embedding T : U −→ Y
where U is a certain subset of X , we investigate the extendability of T to a linear
isometry between X and Y . We first consider the case where Y = CR(K), for
some compact Hausdorff space K and then we investigate similar problem for
the case that the range of T is contained in a strictly convex real Banach space Y
or satisfies a property as a subset of an arbitrary real Banach space Y .

The motivation of considering isometrical embeddings to CR(K) comes from
Villa’s result [17] and Hatori’s result [5] and in the proofs we make use the ideas
of these papers. For stating the result, we need the following lemma concerning
smooth points of the spheres in Banach spaces.
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Lemma 3.1. Let X ,Y be real Banach spaces and V be a nonempty closed subset of X
such that RV ⊆ V . Let T : V → Y be an isometric embedding satisfying T(0) = 0. If
a ∈ V is a smooth point of the sphere S‖a‖ and f ∈ Y∗ is a linear functional of norm one,
such that for all real r ∈ R,

f (T(ra)) = r‖a‖, (3.1)

then f (T(x)) = fa(x) holds for all x ∈ V .

Proof. The proof is a minor modification of [13, Lemma 9.4.6]

Theorem 3.2. Let X be a real Banach space and U be a nonempty open subset of X
such that R\{0}U ⊆ U . Then for each isometry T : U → (CR(K), ‖.‖K), where
K is a compact Hausdorff space, there exists a nonempty and closed subset L ⊆ K,

a function g ∈ CR(K) and a linear isometry T̃ : X → (CR(L), ‖.‖L) such that

T̃(u) = (T(u) − g)|L holds for all u ∈ U .

Proof. Fixing a point e0 ∈ U , there exists r0 > 0 such that the closed ball Br0(e0) =
{x ∈ U : ‖x − e0‖ ≤ r0} is contained in U . Since, by hypothesis R\{0}U ⊆ U
replacing e0 by 1

r0
e0 we may assume that r0 = 1 and consequently the convex

subset R
+B1(e0) = {rx : r > 0, x ∈ B1(e0)} is contained in U . We note that the

sequence { e0
n } of elements of U converges to 0 and since T is an isometry on U ,

{T( e0
n )} is a cauchy sequence in CR(K) and so converges to some g ∈ CR(K). It is

now easy to see that the map S : U ∪ {0} −→ Y defined by S(u) = T(u) − g for
u ∈ U and S(0) = 0 is an isometry, as well. Hence replacing U by U ∪ {0} and
T by S we may assume that U contains zero and T(0) = 0 (with this assumption
that U\{0} is open in X ).

Let V denote the norm closure of U in X . Being an isometry, we can extend T
to an isometry, denoted again by T from V into CR(K). We now define the map
T1 : X → CR(K) by

T1(a) =

{
0 a = 0
T(a + ‖a‖e0)− T(‖a‖e0) a 6= 0.

Clearly T1 is well-defined, since for each a ∈ X , ‖a‖e0, a+ ‖a‖e0 ∈ ‖a‖B1(e0) ⊆ U .

We first claim that for each point a ∈ X , we have
⋂

r∈R M(T(ra)) 6= ∅, where,
as we mentioned before, M( f ) is the maximum set {t ∈ K : | f (t)| = ‖ f‖K} of a
continuous function f on K. To prove the claim, it suffices to show that the family
{M(T(ra) : r ∈ R} of compact subsets of K has finite intersection property. Let
r1, ..., rn ∈ R be arbitrary. Without loss of generality we may assume that r1 ≤
r2 ≤ ... ≤ rn and ri = 0 for some 1 ≤ i ≤ n. Then for each t ∈ M(T(rna)− T(r1a))
if i ≤ j ≤ n then

(rn − r1)‖a‖ =‖T(rna)− T(r1a)‖K = |(T(rna)− T(r1a))(t)|

≤|(T(rna)− T(rja))(t)| + |T(rja)(t)| + |T(r1a))(t)|

≤‖T(rna)− T(rja)‖K + ‖T(rja)‖K + ‖T(r1a)‖K

=(rn − rj)‖a‖+ rj‖a‖ − r1‖a‖ = (rn − r1)‖a‖
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which shows that |T(rja)(t)| = rj‖a‖ = ‖T(rja)‖K , that is t ∈ M(T(rja)). Simi-
larly if 1 ≤ j ≤ i, then

(rn − r1)‖a‖ =‖T(rna)− T(r1a)‖K = |(T(rna)− T(r1a))(t)|

≤|(T(rna)(t)| + |T(rja))(t)| + |T(rja)(t) − T(r1a))(t)|

≤‖T(rna)‖K + ‖T(rja)‖K + ‖T(rja)− T(r1a)‖K

=rn‖a‖ − rj‖a‖+ (rj − r1)‖a‖ = (rn − r1)‖a‖

which implies that t ∈ M(T(rja)). Therefore, t ∈ M(T(rja)) for all 1 ≤ j ≤ n, as
desired. Hence

⋂
r∈R M(T(ra)) 6= ∅, as we claimed.

Let a ∈ V be a smooth point of the sphere S‖a‖ and fa ∈ X ∗ be the functional

of norm one with fa(a) = ‖a‖. By the above discussion, there exists ta ∈ K such
that for each r ∈ R, T(ra)(ta) = ǫr

ar‖a‖ for some ǫr
a ∈ {−1, 1}. Since for infinitely

many n ∈ Z, ǫn
a are all equal, it follows easily that there exists ǫa ∈ {1,−1} such

that for each r ∈ R, T(ra)(ta) = ǫar‖a‖. Hence it follows from Lemma 3.1 that
fa(x) = εaT(x)(ta) for all x ∈ V . Therefore, fa = εaδta ◦ T on V , that is δta ◦ T has
a linear extension ǫa fa ∈ X ∗ (with norm 1).

We now consider the subset L of K as the closure of

L0 = {t ∈ K : δt ◦ T has a linear extension on X}.

By the above argument, for every smooth point a ∈ A which belongs to V , there
exists ta ∈ L0 such that |T(a)(ta)| = ‖a‖. As in [17], we consider two cases:

Case 1: Assume first that X is separable.

We note that V = U\{0}, since 0 is in the closure of U . Hence since U\{0} is
an open subset of X and the set of all smooth points of X is a dense Gδ subset of
X , it follows that the set of all smooth points of X contained in U\{0} is a dense
Gδ subset of V , as well. Let Q : CR(K) −→ CR(L) be the restriction map. Then
the definition of L shows that the equality

Q ◦ T(rv) = rQ ◦ T(v) (3.2)

holds for all r ∈ R and v ∈ V . Moreover, if a, b ∈ V such that a + b ∈ V , then
since for each t ∈ L0, δt ◦ T has a real-linear extension on X we have

Q ◦ T(a + b) = Q ◦ T(a) + Q ◦ T(b). (3.3)

Hence for each a ∈ U , since a + ‖a‖e0,−‖a‖e0 ∈ U ⊂ V we have

Q ◦ T1(a) = Q ◦ T(a + ‖a‖e0)− Q ◦ T(‖a‖e0) = Q ◦ T(a) (3.4)

Setting T̃ = Q ◦ T1, the above equality shows that T̃(a) = Q ◦ T(a) for all a ∈ U .

Now we show that T̃ is a linear isometry from X into CR(L). To prove the

linearity of T̃, we apply a similar argument as in [5, Theorem 3.2]. Let c be a
nonzero element in X . Then c + re0, ‖c‖e0 ∈ U and c + (r + ‖c‖)e0 ∈ U for all
r ≥ ‖c‖. Hence by (3.3)

Q ◦ T(c + re0) + Q ◦ T(‖c‖e0) = Q ◦ T(c + re0 + ‖c‖e0) =

Q ◦ T(c + ‖c‖e0) + Q ◦ T(re0)
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and consequently by (3.4)

T̃(c) = Q ◦ T(c + re0)− Q ◦ T(re0). (3.5)

We first show that T̃(a + b) = T̃(a) + T̃(b), for every a, b ∈ X . Since clearly T̃
is continuous we may assume without loss of generality that a 6= 0, b 6= 0 and
a + b 6= 0. Since ‖a + b‖ ≤ ‖a‖+ ‖b‖, using (3.5) and (3.3) we have

T̃(a + b) = Q ◦ T(a + b + ‖a‖e0 + ‖b‖e0)− Q ◦ T(‖a‖e0 + ‖b‖e0)

= Q ◦ T(a + ‖a‖e0) + Q ◦ T(b + ‖b‖e0)− Q ◦ T(‖a‖e0)− Q ◦ T(‖b‖e0)

= T̃(a) + T̃(b)

Now we show that T̃(ra) = rT̃(a) holds for all a ∈ X and r ∈ R. If a = 0 or r = 0,
then the equality is trivial. So assume that a 6= 0 and r 6= 0. The case where r > 0

is immediate from the definition of T̃ and equality (3.2). In the case where r < 0,
since −a + ‖a‖e0, a + ‖a‖e0, 2‖a‖e ∈ U it follows from (3.3) that

Q ◦ T(−a + ‖a‖e0) + Q ◦ T(a + ‖a‖e0) =Q ◦ T(2‖a‖e0)

=Q ◦ T(‖a‖e0) + Q ◦ T(‖a‖e0)

and therefore

T̃(ra) =− r(Q ◦ T(−a + ‖a‖e0)− Q ◦ T(‖a‖e0))

=− r(−Q ◦ T(a + ‖a‖e0) + Q ◦ T(‖a‖e0)) = rT̃(a).

which shows that T̃ is linear.
Clearly for each point a ∈ X ,

‖T̃(a)‖L =
∥∥Q ◦ T(a + ‖a‖e) − Q ◦ T(‖a‖e)

∥∥
L

≤
∥∥T(a + ‖a‖e) − T(‖a‖e)

∥∥
K

=
∥∥a + ‖a‖e − ‖a‖e

∥∥ = ‖a‖.

Now if a ∈ X is a smooth point and ta ∈ L0 and fa ∈ X ∗ are as in the beginning
of the proof, then since a + ‖a‖e0, ‖a‖e0 ∈ U and δta ◦ T = ǫa fa on U we have

‖T̃(a)‖L ≥ |T̃(a)(ta)| =|T(a + ‖a‖e0)(ta)− T(‖a‖e0)(ta)|

=|ǫa( fa(a + ‖a‖e0)− fa(‖a‖e0))|

=| fa(a)| = ‖a‖.

Therefore, for each smooth point a ∈ X , ‖T̃(a)‖L = ‖a‖. Hence in the case where

X is separable, since the set of smooth points is dense in X and T̃ is linear we

conclude that T̃ is an isometry from X into CR(L).
Case 2: Now we discuss the general case that X is not necessarily separable.
The argument for this case is similar to the one given in [17]. Using the above

argument, for every separable closed subspace X of X , since TX = T|U∩X :
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U ∩ X −→ CR(K) is an isometry, there exists a closed subset L(X) ⊆ K, and a lin-

ear isometry T̃X : X → CR(L(X)) such that T̃X(u) = T(u)|L(X) for all u ∈ U ∩ X.

We recall that, by the above argument, T̃X(a) = (T(a + ‖a‖e0)− T(‖a‖e0))|L(X)
holds for all a ∈ X.

If X1 and X2 are two separable closed subspaces of X , then the closed sub-
space X1 + X2 of X containing X1 ∪ X2, is a separable closed subspace of X and
L(X1 + X2) ⊆ L(X1) ∩ L(X2). Therefore, the family

{L(X) : X is a closed separable subspace of X}

has finite intersection property, and thus the intersection

L = ∩{L(X) : X is a closed separable subspace of X}, (3.6)

is a nonempty closed subset of K. Let Q : CR(K) −→ CR(L) denote the restriction

map and T̃ : X −→ CR(L) be defined by T̃(a) = Q ◦ T(a+ ‖a‖e0)− Q ◦ T(‖a‖e0),

a ∈ X . Then since T̃|X = T̃X for each closed separable subspace X of X , it follows

that T̃ is linear and T̃(u) = T(u)|L holds for all u ∈ U . So it suffices to show that
T̃ is an isometry.

Clearly, for each element a ∈ X , ‖T̃(a)‖L ≤ ‖a‖. On the other hand, for each
closed separable subspace X of X containing a, there exists tX ∈ L(X) ⊂ K such

that |T̃X(a)(tX)| = |T̃X(a)‖L(X) = ‖a‖. Choosing a limit point t0 ∈ K of the set

{tX : X is a closed separable subspace of X containing a}

we conclude that |T̃(a)(t0)| = |T̃(a)‖L = ‖a‖. So we need only to show that
t0 ∈ L. Assume on the contrary that t0 /∈ L(X0) for some closed separable sub-
space X0 of X containing a. Then there exists a neighborhood V of t0 such that
V ∩ L(X0) = ∅. Being t0 a limit point, there exists closed separable subspace
Y ⊇ X0 such that tY ∈ V, which is impossible since tY ∈ L(Y) ⊆ L(X0). Thus

t0 ∈ L and |T̃(a)(t0)| = ‖a‖, that is T̃ is an isometry.

We should note that for a complex unital Banach algebra A, the general groups
A−1 of invertible elements of A and exp(A) = {Πn

i=1exp(xi) : x1, ..., xn ∈ A,
n ∈ N} satisfy the hypotheses of the above theorem.

Corollary 3.3. Under the hypotheses of Theorem 3.2, if K is a compact metric space,

then there exists a linear isometry S̃ : X −→ CR(K) such that S̃u|L = (Tu − g)|L and

(S̃u)(K) ⊆ co((Tu − g)(L)) for all u ∈ U , where L is a nonempty closed subset of K
and g ∈ CR(K).

Proof. Let g ∈ CR(K), L ⊆ K and linear isometry T̃ : X −→ CR(L) be as in the
above theorem. Then since K is metrizable, it follows from Borsuk-Dugundji The-
orem ([14, Proposition 21.1.4]) that there exists a linear isometry S : CR(L) −→
CR(K) such that S f |L = f and S f (K) ⊆ co( f (L)) for all f ∈ CR(L). Hence the

isometry S̃ = S ◦ T̃ : X −→ CR(K) has the desired properties.
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We now obtain an extension property for isometries into strictly convex real
Banach spaces or into real Banach spaces with additional assumptions on the
range of the isometry. We recall that for a real or complex normed space X , iX is
the isometrical embedding from X to CR(X

∗
1 ) or C(X ∗

1 ). To prove next theorem
we use the following two lemmas:

Lemma 3.4. Let U be a nonempty subset of a real normed space X , Y be a strictly convex

real normed space and T : U → Y be an isometry. Then for each a, b ∈ U , with a+b
2 ∈ U

we have

T(
a + b

2
) =

T(a) + T(b)

2
.

Proof. Let a, b ∈ U . Then since T is an isometry

‖T(
a + b

2
)− T(a)‖ = ‖

a + b

2
− a‖ =

1

2
‖a − b‖ =

1

2
‖T(a) − T(b)‖

and similarly,

‖T(
a + b

2
)− T(b)‖ =

1

2
‖T(a)− T(b)‖.

Hence by the uniqueness property in strictly convex normed spaces we have

T( a+b
2 ) = T(a)+T(b)

2 .

The following Mazur-Ulam type theorem has been proved in [6]:

Lemma 3.5. [6, Lemma 2.1] Let X and Y be real normed spaces and U and V be non-
empty open subsets of X and Y , respectively and let T : U −→ V be a surjective
isometry. If a, b ∈ U satisfy ta + (1 − t)b ∈ U for every t ∈ [0, 1], then

T(
a + b

2
) =

T(a) + T(b)

2
.

Theorem 3.6. Let X be a real normed space and U be a subset of X with a nonempty
interior such that R\{0}U ⊆ U . Let Y be a real Banach space and T : U −→ Y be an
isometric embedding. Assume that either

(i) Y is strictly convex, or
(ii) U and T(U ) are open, R\{0}T(U ) ⊆ T(U ) and U contains a nonzero element

e0 such that i(x) = 0 on M(i(e0)) implies that x = 0 for all x ∈ X .

Then there exists y0 ∈ Y and a linear isometry T̃ : X −→ Y (which is surjective in

case (ii)) such that T̃(u) = T(u)− y0 for every u ∈ U .

Proof. If 0 is an interior point of U , then U = X and the theorem is trivial. So
we can assume that U has a nonzero interior point. Fixing a nonzero interior
point e0 ∈ U (with additional mentioned property in case (ii)), there exists r0 > 0
such that the closed ball Br0(e0) = {x ∈ U : ‖x − e0‖ ≤ r0} is contained in
U . As in Theorem 3.2 we can assume that r0 = 1, 0 ∈ U (such that U\{0} and
T(U )\{0} are open in case (ii)) and T(0) = 0. As before, we define T̃ : X −→ Y

by T̃(a) = T(a + ‖a‖e0)− T(‖a‖e0) for all a ∈ X . We should note that for each
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nonzero a ∈ X we have a
‖a‖

+ e0 ∈ B1(e0) ⊆ U and consequently a + ‖a‖e0 ∈ U

for all a ∈ X .
Since 0 ∈ U and for each u ∈ U we have −u ∈ U it follows from Lemma 3.4

that in case (i), 0 = T(0) = T(u) + T(−u), that is T(−u) = −T(u). In case (ii),
using Lemma 3.5 for nonzero elements u and −u + 1

n u, n ∈ N, in U we have the
same equality. On the other hand, for each u ∈ U , since u

n ∈ U for all n ∈ N,

using Lemmas 3.4 and 3.5 once again, we get T(
u− u

n
2 ) =

T(u)−T( u
n )

2 for all n ∈ N.
Hence tending n → ∞ since T is continuous we get T(u) = 2T(u

2 ). Continuity of
T easily implies that for each r ∈ R and u ∈ U , T(ru) = rT(u).

We should note that for each u, v ∈ U with u+v
2 ∈ U (equivalently u + v ∈ U )

we have, by Lemma 3.4, in case (i) that T(u+v
2 ) = T(u)+T(v)

2 and consequently in
this case, for such u, v ∈ U we have

T(u + v) = T(u) + T(v). (3.7)

Using Lemma 3.5 in case (ii) we have T(u+v
2 ) = T(u)+T(v)

2 for all u, v ∈ U with
tu + (1 − t)v ∈ U\{0}, t ∈ [0, 1]. In particular, since for each nonzero a ∈ U in
case (i) and a ∈ R

+B1(e0) in case (ii), a + ‖a‖e0, ‖a‖e0 ∈ R
+B1(e0) ⊆ U we have

T(a + ‖a‖e0) = T(a) + T(‖a‖e0) and consequently in case (i)

T̃(a) = T(a + ‖a‖e0)− T(‖a‖e0) = T(a) (a ∈ U ) (3.8)

and in case (ii)

T̃(a) = T(a + ‖a‖e0)− T(‖a‖e0) = T(a) (a ∈ R
+B1(e0)). (3.9)

Hence in case (i), T̃ is an extension of T.
Now in both cases since for each nonzero a ∈ X and r ≥ ‖a‖, a + re0,

‖a‖e0 ∈ R
+B1(e0), using the same argument as in Theorem 3.2 we can show

that T̃ is linear. As before, in both cases, T̃ is an isometry. Indeed, for each a ∈ X ,
we have

‖T̃(a)‖ =
∥∥T(a + ‖a‖e0)− T(‖a‖e0)

∥∥ =
∥∥a + ‖a‖e0 − ‖a‖e0

∥∥ = ‖a‖.

which shows, by the real-linearity of T̃ that T̃ is an isometry.

To complete the proof, it suffices to show that in case (ii), T̃ is surjective and

T̃(u) = T(u) for all u ∈ U . Set V = T(U\{0}). We note that since in case
(ii), V is assumed to be open, there exists s0 ≤ 1 such that Bs0(T(e0)) ⊆ V .
Hence T(B1(e0)) ⊇ Bs0(T(e0)). Therefore, for a point y ∈ V , since

s0y
‖y‖

+ T(e0) ∈

Bs0(T(e0)) there exists a point x ∈ B1(e0) such that
s0y
‖y‖

+ T(e0) = T(x). Since, by

(3.9), T(e0) = T̃(e0) and T(x) = T̃(x), the linearity of T̃ implies that y ∈ T̃(X ),

that is T̃ is surjective.

Given u ∈ U\{0}, set b = T(u). Then since T̃ is surjective, there exists

v ∈ X with T̃(v) = b. Since u + ‖u‖e0 ∈ R
+B1(e0) we have T̃(u + ‖u‖e0) =

T(u + ‖u‖e0), by (3.9), and hence

‖u‖‖e0‖ =
∥∥T(u + ‖u‖e0)− T(u)

∥∥ =
∥∥T̃(u + ‖u‖e0)− T̃(v)

∥∥

=
∥∥u + ‖u‖e0 − v

∥∥ =
∥∥iX (u + ‖u‖e0 − v)‖X ∗

1
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Hence for each l ∈ X ∗
1 , iX (u − v)(l) is in the closed disk B‖u‖‖e0‖(‖u‖iX (e0)(l)).

Using the same argument for −u + ‖u‖e0, we conclude that for each l ∈ X ∗
1 ,

iX (u − v)(l) is in the closed disk B‖u‖‖e0‖
(−‖u‖iX (e0)(l)). Therefore, for each

l ∈ M(iX (e0)), iX (u − v)(l) = 0, that is iX (u − v) = 0 on M(iX (e0)) and
consequently u = v, by the assumption on M(iX (e0)). Therefore, T̃(u) = T(u),
as desired.

Remark. a) We should note that the assumptions R\{0}T(U ) ⊂ T(U ) and
existence of a point e0 ∈ U with the mentioned property in case (ii) of the above

theorem, have been used to prove the surjectivity of T̃ and equality T̃(u) = T(u)

for all u ∈ U . However, without these assumptions T̃ is a linear isometry with

T̃(a) = T(a) for all a ∈ R
+B1(e0).

b) The proof of case (ii) in the above theorem can also be applied for complex

normed spaces with the same hypothesis on M(iX (e0)). In this case T̃ is a real-
linear isometry. As we mentioned before, in subspaces of the form Ax0 where A
is a closed commutative semisimple unital subalgebra of a unital complex Banach

algebra B and x0 ∈ B is invertible with ‖x0‖ = ‖x−1
0 ‖ = 1, the maximum set of

iAx0
(x0) has the desired property. Hence case (ii) of the above theorem, can be

applied for appropriate subsets U of Ax0.
Next corollary is immediate from Theorem 3.2 and case(i) of the above

theorem.

Corollary 3.7. Let B be a unital Banach algebra, A be a closed unital subalgebra of B
and x0 ∈ B be invertible. If G is an open subgroup of invertible elements of A and
T : Gx0 −→ Y is an isometric embedding, where Y is either CR(K) for some compact
Hausdorff space K or is a strictly convex real Banach space, then there exists y0 ∈ Y and

a real-linear isometry T̃ : Ax0 −→ Y such that T̃(ax0) = T(ax0)− y0, for all a ∈ G.

We should note that an interesting generalization of Mazur-Ulam theorem for
isometric embeddings T : X −→ Y between real normed spaces X and Y was
given in [3] and then imposing an additional assumption on the range (weaker
than surjectivity assumption) a Mazur-Ulam type theorem was given in [4]. In the
next theorem and corollary we give similar results for the case where the domain
of T is an appropriate subset of X .

Theorem 3.8. Let X be a real normed space, U be a nonempty open subset of X such that
R\{0}U ⊆ U and Y be a real Banach space. Let T : U → Y be an isometric embedding.
Then there exists a surjective linear map S : Y −→ spanU such that S(T(u)) = u for
all u ∈ U and the restriction of S to span T(U ) has norm one.

Proof. The proof of this theorem is a minor modification of [3, Main theorem]. As
before we can assume that 0 ∈ U , U\{0} is open and T(0) = 0. Furthermore, we
can extend T to an isometry, denoted again by T from the closure V of U to Y .

Let X ′,Y ′ stand for the linear span of U and T(U ), respectively. If dimX ′ = 1,
then since RV ⊆ V it follows that V = X ′ and so by [3, Lemma 1] there exists a
linear map S : Y → X ′ such that ‖S‖ = 1, S(T(x)) = x for all x ∈ X ′.

Now assume that X ′ is finite dimensional. Then since X ′ is a separable Banach
space, the set of all smooth points of X ′ is a dense subset of X ′ and as before the
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set of all smooth points of X ′ contained in V is dense in V . As, in this case,
X ′ = spanU = spanV it follows that there are smooth points a1, ..., an in V such
that X ′ = span{a1, ..., an}. This easily implies that { fa1

, ..., fan} is a basis for (X ′)∗.
For every 1 ≤ i ≤ n, using the previous case, we can choose si ∈ Y∗ with ‖si‖ = 1
such that si(T(rai)) = r‖ai‖ for all r ∈ R. Hence by Lemma 3.1, for each 1 ≤ i ≤ n
and v ∈ V we have si(T(v)) = fai

(v). Now consider the map S : Y −→ X ′

defined by

S(y) = G−1 (s1(y), ..., sn(y)) (y ∈ Y),

where G : X ′ → R
n is the linear isomorphism defined by G(x) = ( fa1

(x), ...,
fan(x)). Then S is a linear map whose restriction to Y ′ is continuous and for each
v ∈ V ,

S(T(v)) = G−1 (s1(T(v)), ..., sn(T(v))) = G−1 ( fa1
(v), ..., fan(v)) = v.

By a similar argument as in [3, Lemma 4], we get ‖S|Y ′‖ = 1 and then the same
argument as in [3, Main Theorem] can be applied to complete the proof for the
general case that X ′ is not necessarily of a finite dimension.

Corollary 3.9. Under the hypotheses of the above theorem , if for every unit vector
y ∈ span T(U ) there exist a, b ∈ U and λ ∈ R such that

‖y − λ(T(a) − T(b))‖ <
1

2
, (3.10)

then there exists y0 ∈ Y and a (real) linear isometry T̃ : X −→ Y such that T̃(u) =
T(u)− y0 for every u ∈ U .

Proof. Assuming 0 ∈ U , U\{0} is open and T(0) = 0 and extending T to an

isometry, denoted again by T from the closure V of U to Y , we define T̃ : X → Y

by T̃(0) = 0 and T̃(a) = T(a + ‖a‖e0) − T(‖a‖e0) for a 6= 0 which is clearly
well-defined.

By the above theorem there exists a surjective linear map S : Y −→ spanU
whose restriction to span T(U ) is of norm one and S(T(u)) = u for all u ∈ U . The
hypothesis on the unit vectors in span T(U ) easily implies that the restriction of S
to the linear span Y ′ of T(U ) is injective (see the proof of unique theorem in [4]).

Let X ′ be the linear span of U . As S−1 : X ′ → Y ′ is a (real) linear map and
S(T(u)) = u for all u ∈ U which implies the same equality for all u ∈ V , we
conclude that T(ru) = rT(u) holds for all r ∈ R and u ∈ V . Moreover, if a, b ∈ V
such that a + b ∈ V , then T(a + b) = T(a) + T(b). In particular, for each a ∈ U ,

since a + ‖a‖e0,−‖a‖e0 ∈ U ⊂ V we have T̃(a) = T(a + ‖a‖e0) − T(‖a‖e0) =
T(a).

Now the same argument as in the proof of Theorem 3.2, shows that T̃ is a
(real) linear isometry.
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