Primitive arcs on curves

Julien Sebag

Abstract

We introduce the notion of *primitive arc* of a curve defined over a field k and study criterions for the existence of such objects in terms of the geometry of the curve. We prove that this notion provides a criterion which determines when the normalization of an irreductible curve singularity (X, x) induces an isomorphism between the formal neighborhoods of the associated arc schemes at the constant arc x and its lifting \bar{x} to the normalization \bar{X} . We also show that the existence of a primitive arc at $x \in X$ is equivalent to the smoothness of the analytically irreducible curve X at x. In this end, we interpret this notion in terms of the formal deformations of the constant arc x in the associated arc scheme.

1 Introduction

1.1 Let k be a field. A *test-ring* A (or (A, \mathfrak{m}_A)) is a local k-algebra, whose maximal ideal \mathfrak{m}_A is nilpotent with residue field $A/\mathfrak{m}_A \cong k$. A *primitive arc* γ of a k-curve X at $x \in X(k)$ is a primitive k-parametrization $\mathcal{O}_{X,x} \to k[[T]]$ (see definition 3.1), which satisfies the following property: For every test-ring (A, \mathfrak{m}_A) , for every commutative diagram of morphisms of local k-algebras

$$\begin{array}{ccc}
\mathcal{O}_{X,x} & \xrightarrow{\gamma_A} A[[T]] \\
\downarrow x & & \downarrow r_A \\
\downarrow k & & \downarrow k[[T]],
\end{array}$$
(1)

Received by the editors in July 2015 - In revised form in March 2016. Communicated by S. Caenepeel.

2010 Mathematics Subject Classification: 14E18,14B05.

Key words and phrases: Arc scheme, arc deformation, curve singularity.

where $r_A \colon A[[T]] \to k[[T]]$ is the continuous morphism of complete local k-algebras defined by $T \mapsto T$ with kernel \mathfrak{m}_A , there exists a unique power series $p_A \in \mathfrak{m}_A[[T]]$ which induces a continuous morphism of complete local k-algebras $p_A^{\sharp} \colon k[[T]] \to A[[T]]$ that verifies the formula $\gamma_A = p_A^{\sharp} \circ \gamma$. If it exists, a primitive arc is unique (up to isomorphism).

1.2 The basic subject of this article could be summarized by the following question:

Question 1.1. Which class of pointed k-curves admits primitive arcs?

This article provides a complete answer to question 1.1 for analytically irreducible curves. Precisely, we establish various criterions for the existence of primitive arcs on k-curves. In this way, the existence of primitive arcs can be interpreted as an original criterion of local smoothness (for k-curves) in terms of the associated arc schemes, or as a criterion for determining when the normalization morphism induces an isomorphism at the level of the involved arc schemes. If X is a k-curve and $x \in X(k)$, recall that the point x can be viewed as a *constant* arc of the associated arc scheme $\mathcal{L}_{\infty}(X)$, and we denote by $\mathcal{L}_{\infty}(X)_x$ the formal neighborhood of the arc x in $\mathcal{L}_{\infty}(X)$, i.e., the formal k-scheme $\mathrm{Spf}(\widehat{\mathcal{O}_{\mathcal{L}_{\infty}(X)},x})$.

Theorem 1.1. Let k be an algebraically closed field. Let X be a k-curve which is unibranch at $x \in X(k)$. Then the following assertions are equivalent:

- 1. The k-curve X is smooth at x;
- 2. There exists a primitive arc γ at x on X;
- 3. The formal k-scheme $\mathcal{L}_{\infty}(X)_x$ is isomorphic to $\operatorname{Spf}(k[[(T_i)_{i\in\mathbf{N}}]]);$
- 4. The normalization $\pi: \bar{X} \to X$ induces, at the level of formal neighborhoods of the associated arc schemes, an isomorphism of formal k-schemes

$$\widehat{\mathscr{L}_{\infty}(\pi)_{r}}:\mathscr{L}_{\infty}(\bar{X})_{\bar{r}}\to\mathscr{L}_{\infty}(X)_{r},$$

where $\bar{x} \in \bar{X}(k)$ is the lifting of x;

- 5. The morphism $(\widehat{\mathscr{L}_{\infty}(\pi)}_x)^{\sharp} \colon \widehat{\mathscr{O}_{\mathscr{L}_{\infty}(X),x}} \to \widehat{\mathscr{O}_{\mathscr{L}_{\infty}(\bar{X}),\bar{x}}}$ is surjective.
- **1.3** The point of view of formal neighborhoods of arc schemes has been introduced in [8] (see also [6]). If V is a variety, the formal neighborhood $\mathcal{L}_{\infty}(V)_{\gamma}$ parametrizes the *formal deformations* of the arc γ in $\mathcal{L}_{\infty}(V)$. In [8, 6] (see also [3] for an analog statement in the context of formal geometry), the authors prove a structure theorem for formal neighborhoods of arc schemes at *non-constant* arcs, which are not contained in the singular locus of the involved variety. The interpretation of such a result in terms of singularity theory remains a challenging problem, and works [3, 4, 5] are, to the best of our knowledge, the first steps in this direction. Let us also mention [7, 12] where some properties of formal neighborhoods of arc schemes are also studied in other frameworks.

Contrary to these works, the involved arcs in our statement are *constant*; hence, our result provides information for arcs contained in the singular locus. (Let us note that in general the main theorem of [8, 6] does not hold for singular constant arcs, see [2] for counter-examples). Roughly speaking, the present work (see assertion (3) of theorem 1.1) investigates the study of the smoothness of an analytically irreducible k-curve X at a point x from the point of view of the "deformations" of the constant arc x in the associated arc scheme $\mathcal{L}_{\infty}(X)$. In this context, the notion of *rigidity* (i.e., situation where there is no non-trivial deformation) corresponds to the existence of a primitive arc.

2 Preliminaries

- **2.1** Let k be a field. A k-variety is a k-scheme of finite type. A k-curve is a reduced k-variety of dimension 1. We say that a pointed curve (X, x), with $x \in X(k)$, is unibranch (or analytically irreducible) at x if the ring $\widehat{\mathcal{O}_{X,x}}$ is a domain.
- **2.2** Let k be a field. Let V be a k-variety. The functor $S \mapsto \operatorname{Hom}_k(S \hat{\otimes}_k k[[T]], V)$ defined from the category of k-schemes to that of sets is representable by a k-scheme $\mathscr{L}_{\infty}(V)$. (Let us note that this presentation uses a recent non-trivial result due to B. Bhatt, see [1, Theorem 1.1]). If V is an affine k-variety, for every k-algebra A, every element $\gamma_A \in \mathscr{L}_{\infty}(V)(A)$ coincides with the datum of a morphism of k-algebras $\mathcal{O}(V) \to A[[T]]$.
- **2.3** Let V be a k-variety and $\gamma \in \mathscr{L}_{\infty}(V)(k)$. Yoneda's lemma [9, 8.1.4] and the properties of completion formally imply that the formal neighborhood $\mathscr{L}_{\infty}(V)_{\gamma}$ of the k-scheme $\mathscr{L}_{\infty}(V)$ at γ is completely determined by the functor of points

$$A \mapsto \operatorname{Hom}_k^{\operatorname{cpl}}(\widehat{\mathcal{O}_{\mathscr{L}_{\infty}(V),\gamma}}, A),$$

when A runs over the category of test-rings, and where the considered morphisms are the continuous morphisms of complete local k-algebras from $\widehat{\mathcal{O}_{\mathscr{L}_{\infty}(V),\gamma}}$ to A. See [8, 6] or also [3].

3 The proof of theorem 1.1

Definition 3.1. Let k be a field. Let X be a k-curve with $x \in X(k)$. A primitive k-parametrization of X at x is a morphism of local k-algebras $\gamma \colon \mathcal{O}_{X,x} \to k[[T]]$, which satisfies the following property: For every morphism $\gamma' \colon \mathcal{O}_{X,x} \to k[[T]]$ of local k-algebras, there exists a power series $p_k \in Tk[[T]]$ such that we have $\gamma' = p_k^\sharp \circ \gamma$.

If k is algebraically closed and X is unibranch at x, the normalization $\pi\colon \bar{X}\to X$ of X provides a primitive k-parametrization of X at x by considering the induced morphism of local k-algebras $\pi_x\colon \mathcal{O}_{X,x}\to \widehat{\mathcal{O}_{\bar{X},\bar{x}}}$.

J. Sebag

Remark 3.1. A primitive k-parametrization may not be a primitive arc. Let X be the affine plane k-curve defined by the datum of the polynomial $F = T_1^3 - T_2^2 \in \mathbf{C}[T_1, T_2]$. Let us consider the primitive k-parametrization γ at the origin $\mathfrak o$ in $X = \operatorname{Spec}(\mathbf{C}[T_1, T_2]/\langle T_1^3 - T_2^2 \rangle)$ defined by the element $(T^2, T^3) \in \mathbf{C}[[T]]$. Let $A := \mathbf{C}[S]/\langle S^2 \rangle$. We observe that the element $\gamma_A \in \mathscr{L}_\infty(X)_{\mathfrak o}(A)$ given by $T_1 \mapsto S$, $T_2 \mapsto S$, can not be written under the form $\gamma \circ p_A$. So, γ is not a primitive arc.

Let us mention that implication $4 \Rightarrow 5$ is obvious, and that implication $4 \Rightarrow 1$ also is obvious since we have $\mathscr{L}_{\infty}(\bar{X})_{\bar{x}} \cong \operatorname{Spf}(k[[(T_i)_{i \in \mathbf{N}}]])$. Let us prove the other implications.

 $1\Rightarrow 2$ Since X is smooth at x, there exists an affine open subscheme U of X, which contains x, endowed with an étale morphism of k-schemes $U \to \mathbf{A}_k^1 = \operatorname{Spec}(k[t])$, corresponding to the choice of a local parameter in $\mathcal{O}(U)$ (i.e., a generator t of the maximal ideal \mathfrak{m}_x in the ring $\mathcal{O}_{X,x}$). Up to shrinking X, we may assume that X = U. Then, let γ be the arc corresponding to the following morphism of k-schemes:

$$\mathcal{O}_{X,x} \xrightarrow{\sim} \widehat{\mathcal{O}_{X,x}} \xrightarrow{\sim} k[[t]] \xrightarrow{t \to T} k[[T]], \tag{2}$$

obtained by composition via the completion morphism. It gives rise to a primitive k-parametrization of X at x. Then, it is easy to check that the arc γ is primitive, since, in this case, for every test-ring A, and every $\gamma_A \in \mathscr{L}_{\infty}(X)_x(A)$, we take $p_A = \gamma_A$.

 $2 \Rightarrow 4$ Let γ be a primitive arc at x on the curve X. Let A be a test-ring. By §2.3, we only have to prove that the map:

$$\pi_A := \widehat{\mathscr{L}_{\infty}(\pi)_{\mathcal{X}}}(A) \colon \mathscr{L}_{\infty}(\bar{X})_{\bar{\mathcal{X}}}(A) \to \mathscr{L}_{\infty}(X)_{\mathcal{X}}(A)$$

is a bijection. Let $\gamma_A \in \mathscr{L}_\infty(X)_x(A)$. By assumption, there exists a unique power series $p_A \in \mathfrak{m}_A[[T]]$ such that $\gamma_A = \gamma \circ p_A$ (where we identify p_A and the induced morphisms of k-schemes). Since the morphism π is proper and birational, the valuative criterion of properness implies the existence of a unique non-constant arc $\bar{\gamma} \in \mathscr{L}_\infty(\bar{X})(k)$ such that $\pi \circ \bar{\gamma} = \gamma$. Then, we easily observe that $\bar{\gamma} \circ p_A$ is the unique preimage by π_A of γ_A .

 $5 \Rightarrow 1$ We assume that the morphism $(\widehat{\mathscr{L}}_{\infty}(\pi)_x)^{\sharp}$ is surjective. Then, for every test-ring A, the induced map:

$$\pi_A := (\widehat{\mathscr{L}_{\infty}(\pi)_x})^{\sharp}(A) \colon \operatorname{Hom}_k^{\operatorname{cpl}}(\widehat{\mathscr{O}_{\mathscr{L}_{\infty}(\bar{X}),\bar{x}'}}A) \to \operatorname{Hom}_k^{\operatorname{cpl}}(\widehat{\mathscr{O}_{\mathscr{L}_{\infty}(X),x'}}A)$$

is injective. We are going to show that this property implies the smoothness of X at x. Let us denote by $\operatorname{mult}_x(X)$ the integer defined as follows. If γ is a primitive k-parametrization at x, let us consider the ideal $\gamma(\mathfrak{m}_x)$ in the ring $\widehat{\mathcal{O}}_{\bar{X},\bar{x}} = k[[t]]$ (t is here a generator of the maximal ideal $\mathfrak{m}_{\bar{x}}$ of the ring $\mathcal{O}_{\bar{X},\bar{x}}$). There exists an integer n such that $\gamma(\mathfrak{m}_x) = \langle t^n \rangle$. We then set $n =: \operatorname{mult}_x(X)$. This definition

does not depend on the choice of γ . If the *k*-curve *X* is singular at *x*, we have $\operatorname{mult}_x(X) \geq 2$.

Let us assume that x is a singular point of X. Up to shrinking X, we may assume that X is affine, embedded in $\mathbf{A}_k^N = \operatorname{Spec}(k[T_1,\ldots,T_N])$, and, up to a translation, we may assume that x is the origin \mathfrak{o} of \mathbf{A}_k^N . Let $A:=k[U]/\langle U^2\rangle$. The power series $\varphi_1=0\in A[[T]]$ and $\varphi_2=UT\in A[[T]]$ define two elements of $\mathscr{L}_{\infty}(\bar{X})_{\bar{x}}(A)$. It follows from the definition that

$$\mathscr{L}_{\infty}(\pi)(\varphi_1) = \mathscr{L}_{\infty}(\pi)(\varphi_2). \tag{3}$$

since $\operatorname{mult}_{x}(X) > 1$. Indeed, every variable T_{i} (seen in the ring $\mathcal{O}_{X,x}$) is sent by the morphism of local k-algebras $\pi_{x} \colon \mathcal{O}_{X,x} \to \widehat{\mathcal{O}_{X,\bar{x}}}$ to an element in the ideal $\langle t^{\operatorname{mult}_{x}(X)} \rangle$, where t is a generator of the ideal $\mathfrak{m}_{\bar{x}}$. So, we obtain formula (3) since $\mathscr{L}_{\infty}(\pi)(\varphi_{i})$ corresponds, for every integer $i \in \{1,2\}$, to the following composition of morphisms of local k-algebras:

$$\mathcal{O}_{X,x} \xrightarrow{\pi_x} \widehat{\mathcal{O}_{\bar{X},\bar{x}}} \xrightarrow{t \mapsto \varphi_i} A[[T]]$$
.

The injectivity of the map π_A then implies that $\varphi_1 = \varphi_2$. That is a contradiction, which concludes the proof.

 $3 \Rightarrow 1$ It is sufficient to prove that the ring $\mathcal{O}_{X,x}$ is formally smooth for the \mathfrak{m}_x -adic topology thanks to [11, 17.5.3]. By [10, 19.3.3,19.3.6], we observe that, due to our assumption, the ring $\widehat{\mathcal{O}_{\mathscr{L}_{\infty}(X),x}}$ is formally smooth, and we conclude by the existence of the following diagram of continuous morphisms of local k-algebras:

Example 3.1. Keep the notation of remark 3.1. In this case, the normalization morphism $\pi^{\sharp} \colon \mathcal{O}(X) \to k[T]$ is defined by $T_1 \mapsto T^2, T_2 \mapsto T^3$; hence, every A-deformation of the origin in \bar{X} is sent to the origin in X. We easily conclude that the deformation (S,S) of the origin in X does not lift to the normalization \bar{X} .

Remark 3.2. By base change, we observe that theorem 1.1 can be generalized to every geometrically unibranch integral curve X and any closed point $x \in X$.

Remark 3.3. Keep the notation and assumptions of theorem 1.1. It is not hard to prove that the morphism $(\widehat{\mathscr{L}_{\infty}(\pi)_x})^{\sharp} \colon \widehat{\mathscr{O}_{\mathscr{L}_{\infty}(X),x}} \to \widehat{\mathscr{O}_{\mathscr{L}_{\infty}(\bar{X}),\bar{x}}}$ is a formal invariant of the curve singularity (X,x). By this way, formal neighborhoods at constant arcs in arc scheme provide *new* formal invariants of curve singularities. It would be interesting to study these invariants with respect to the classical theory of singularities.

Acknowledgement. We would like to thank the referee for his comments and David Bourqui for pointing out the current argument used in the proof of implication $3 \Rightarrow 1$ to us.

J. Sebag

References

[1] B. Bhatt, Algebraization and tannaka duality, Preprint.

- [2] D. Bourqui and J. Sebag, *The Drinfeld–Grinberg–Kazhdan theorem is false for singular arcs*, To appear in Journal of IMJ (DOI: http://dx.doi.org/10.1017/S1474748015000341).
- [3] ______, Drinfeld–Grinberg–Kazhdan's theorem for formal schemes and singularity theory, Preprint (submitted, 2015).
- [4] _____, Formal minimal models of plane curve singularities, Preprint (submitted, 2016).
- [5] _____, Smooth arcs on algebraic varieties, Preprint (submitted, 2016).
- [6] V. Drinfled, On the Grinberg-Kazhdan formal arc theorem, Preprint.
- [7] L. Ein and M. Mustaţă, Generically finite morphisms and formal neighborhoods of arcs, Geom. Dedicata **139** (2009), 331–335.
- [8] M. Grinberg and D. Kazhdan, *Versal deformations of formal arcs*, Geom. Funct. Anal. **10** (2000), no. 3, 543–555.
- [9] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11, 167.
- [10] ______, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259.
- [11] ______, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
- [12] A. J. Reguera, *Towards the singular locus of the space of arcs*, Amer. J. Math. **131** (2009), no. 2, 313–350.

Institut de recherche mathématique de Rennes UMR 6625 du CNRS Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex (France) email: julien.sebag@univ-rennes1.fr