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Abstract

In the previous paper [12] we introduced the definition of the strict
topology β(X) on the measure space M(X) for a locally compact Hausdorff
space X. In this paper, we consider on M(X) the topology β(X) and we
show that β(X) is the weak topology under all left multipliers induced by
a function space on M(X). We then show that β(X) can be considered as a
mixed topology. This result is not only of interest in its own right, but also it
paves the way to prove that (M(X), β(X)) is a Mazur space and the locally
convex space (M(S), β(S)), equipped with the convolution multiplication is
a complete semitopological algebra, for a wide class of locally compact semi-
groups S.

1 Introduction and preliminaries

About sixty years passed since two mathematicians introduced two new topolo-
gies with different methods. Over the years a considerable amount of work has
been done on them and on similar topologies by functional analysts. One of them,
Buck [7], investigated the space of continuous functions with the strict topology
and the other one, the Polish mathematician Alexiewicz [4], considered a vector
space E on which two norms are given and defined a notion of convergence of
sequences in E, which, in some sense, mixed the topologies given by the two
norms. These methods have been studied and generalized by several mathemati-
cians as, for example, Aguayo and his coauthors in [1, 2, 3], Collins [10], Kua [18],
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Choi and Kim [8], Cobzas [9], Katsaras [13, 14, 15, 16], Malkowsky and Velickovic
[22], Taylor and his coauthor [23, 24], Wiweger [25, 26] and [12, 19, 20, 21].

Now, let M(X) be the Banach space of all complex Radon measures on the
locally compact Hausdorff space X with the total variation norm. Let also, K(X)
denote the set of all compact subsets in X. The authors have recently introduced
in [12] the strict topology β(X) on M(X) and, among other things, they also in-
vestigated some attributes of the locally convex topology β(X) on M(X). In fact,
for any increasing sequence (Kn) in K(X) and any increasing sequence (αn) in
R+ such that αn −→ ∞, they introduced the set of the form

U((Kn), (αn)) =
{

µ ∈ M(X) : |µ|(Kn) ≤ αn for all n ≥ 1
}

,

and then they showed that the family U (X) of all sets of the form U((Kn), (αn))
is a base of neighbourhoods of zero for a locally convex topology β(X) on M(X).
In other word, they showed that β(X) is the topology generated by the family
{qU : U ∈ U (X)} of seminorms on M(X), where

qU(µ) = sup
{

α−1
n |µ|(Kn) : n ≥ 1

}

for all µ ∈ M(X) and U := U((Kn), (αn)) ∈ U (X).
In this paper, we shall show that the strict topology β(X) on M(X) can be

viewed as a mixed topology. We then intend to use the theory of mixed topolo-
gies to give some general properties of the locally convex space (M(X), β(X)).
This allows us to prove that the locally convex space (M(X), β(X)) is a Mazur
space. Among other thing, we show that M(X) is β(X)-complete for all locally
compact Hausdorff space X and as an application we show that for a wide class
of locally compact semigroups S, the locally convex space (M(S), β(S)) with the
convolution as a multiplication is a complete semitopological algebra.

2 The basic results

We commence this work with the following proposition which shows that we can
consider the topology β(X) as a weak topology under all left multipliers induced
by a function space on M(X). To this end, first we adopt some notations. We
denote by BM(X) the Banach space (with the usual norm ‖ · ‖∞) of all bounded
Borel measurable functions ϕ on X. Let also BM0(X) denote the subspace of all
functions in BM(X) that vanish at infinity; That is, for ε > 0 there exists a compact
subset K of X such that |ϕ(x)| < ε for all x ∈ X \ K. Then M(X) is a Banach left
BM0(X)-module with the module action defined by

ϕ · µ(B) =
∫

B
ϕ dµ,

for all µ ∈ M(X), ϕ ∈ BM0(X) and all Borel subset B of X. Hence, we can equip
M(X) with the strict topology τc induced by BM0(X) in the sense of Sentilles and
Taylor, that is, the topology generated by the collection of seminorms µ 7→ ‖ϕ · µ‖
for ϕ ∈ BM0(X), see [23] for more details.
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Proposition 2.1. Let X be a locally compact Hausdorff space. Then the family U (X) is
a neighborhood base at zero for the topology τc.

Proof. Let

V =
m
⋂

i=1

{µ ∈ M(X) : ‖ϕi · µ‖ < εi},

be a τc-neighborhood at zero, where ϕi ∈ BM0(X) and εi > 0 for i = 1, · · · , m.
For each 1 ≤ i ≤ m, let (Ci,n)n be a sequence of compact subsets of X such that
|ϕi(x)| < εi/n2n for all x ∈ X \ Ci,n and all n ∈ N. If now, we set

K0 = ∅ and Kn =
m
⋃

i=1

Ci,n (n ∈ N),

then for all x ∈ X \ Kn and all 1 ≤ i ≤ m, we can see that |ϕi(x)| < εi/n2n.
Moreover, if

γ1 :=
min{ε1, · · · , εm}

3(‖ϕ1‖∞ + · · ·+ ‖ϕm‖∞ + 1)
,

and γn := (n − 1)/2 for all n ≥ 2, then U((Kn), (γn)) ⊆ V; Indeed, for a µ in the
set U((Kn), (γn)) and i = 1, · · · , m, we have

‖ϕi · µ‖ = |ϕi · µ|
(

∞
⋃

n=1

Kn

)

= lim
n→∞

|ϕi · µ|(Kn)

= lim
n→∞

n

∑
j=1

|ϕi · µ|(Kj \ Kj−1)

≤
∫

K1

|ϕi| d|µ|+ lim
n→∞

n

∑
j=2

∫

Kj\Kj−1

|ϕi| d|µ|

≤ ‖ϕi‖∞γ1 + lim
n→∞

n

∑
j=2

εi

(j − 1)2(j−1)
|µ|(Kj \ Kj−1)

≤ ‖ϕi‖∞γ1 + lim
n→∞

n

∑
j=2

γjεi

(j − 1)2(j−1)

≤ ‖ϕi‖∞γ1 + lim
n→∞

n

∑
j=2

εi

2j
< εi.

Conversely, let U((Kn), (αn)) be an arbitrary element of U (X). Consider the
function

ϕ :=
∞

∑
n=1

1

αn
χKn\Kn−1

,

in BM0(X), where χKn\Kn−1
denotes the characteristic function of Kn \ Kn−1 on X

and K0 = ∅. Then

V := {µ ∈ M(X) : ‖ϕ · µ‖ ≤ 1},
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is a τc-neighborhood of zero such that V ⊆ U((Kn), (αn)); Indeed, for each µ ∈ V
we have

|µ|(Kn) = |µ|
(

n
⋃

j=1

(Kj \ Kj−1)
)

≤
n

∑
j=1

αn

αj
|µ|(Kj \ Kj−1)

≤ αn

∫

X
ϕ d|µ| ≤ αn,

for all n ∈ N, and this completes the proof.

Apart from the locally convex topology β(X) on M(X), there are two other
locally convex structures on the space M(X) whose definitions are as follows. By
n(X) we denote the topology generated by the total variation norm on M(X),
and by κ(X) we denote the second locally convex structure on M(X) which is
generated by the seminorms

PK(µ) = |µ|(K), (1)

where K runs over all compact subsets of X. Our main result in this section is to
show that the strict topology on M(X) can be constructed from κ(X) and n(X).
To this end, we state first some of the standard definitions which will be used in
the sequel and we define the mixed topology.

A DF-space is a locally convex space E which possesses a fundamental
sequence (Bn)n of bounded sets and has the property that if (Un)n is a sequence
of closed, absolutely convex neighborhoods of zero so that U =

⋂∞
n=1 Un absorbs

bounded sets of E, then U is also a neighborhood of zero. Let E be a vector space
with two locally convex topologies τ and τ∗ satisfying:

(i) τ∗ ≤ τ;
(ii) (E, τ) is a DF-space with a base (Bn) of absolutely convex bounded sets

such that
Bn + Bn ⊆ Bn+1 for each n;

(iii) each Bn is τ∗-closed.
For any sequence (U∗

n) of absolutely convex neighborhoods of zero in (E, τ∗) set

Uγ =
∞
⋃

n=1

(U∗
1 ∩ B1 + · · ·+ U∗

n ∩ Bn).

It is easy to see that the set of all Uγ forms a base of neighborhoods of zero for
a locally convex topology γ := γ[τ, τ∗] on E. As usual, we call this topology
the mixed topology on E. We refer the reader to the references [4, 25, 26] for more
information about the theory of mixed topology.

By a method similar to that of [19, Proposition 2.1] one can easily obtain the
following generalization of that theorem. The details are omitted.

Proposition 2.2. Let X be a locally compact Hausdorff space. Then the topology β(X)
on M(X) is the mixed topology γ(X) = γ[κ(X), n(X)].
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An argument similar to the proof of [19, Theorem 2.2] with the aid of Propo-
sition 2.2 gives the following generalization of that Theorem.

Theorem 2.3. Let X be a locally compact Hausdorff space. Then the following assertions
hold.

(i) A subset of M(X) is n(X)-bounded if and only if it is β(X)-bounded.
(ii) On n(X)-bounded subsets of M(X), β(X) = κ(X).
(iii) A sequence in M(X) is β(X)-convergent to zero if and only if it is n(X)-bounded

and κ(X)-convergent to zero.
(iv) A linear map from (M(X), β(X)) into a locally convex space is continuous if

and only if its restriction to n(X)-bounded sets is continuous for κ(X).
(v) β(X) is the finest locally convex topology on M(X) which agrees with κ(X) on

n(X)-bounded sets of M(X).
(vi) A subset of M(X) is β(X)-compact if and only if it is n(X)-bounded and

κ(X)-compact.
(vii) (M(X), β(X)) is complete if and only if each n(X)-bounded set is κ(X)-complete.

Recall that a locally convex space (E, τ) is a Mazur space if every sequentially
τ-continuous linear functional on E is τ-continuous. In the next result, we deal
with this property for the locally convex space (M(X), β(X)). First, we recall
some notations from [11, 12]. For µ ∈ M(X), let L∞(|µ|) denote the Banach space
of all bounded Borel µ-measurable functions F(µ) on X with the essential supre-
mum norm

‖F(µ)‖µ,∞ := inf
{

α ≥ 0 : {x ∈ X : |F(µ)(x)| > α} is |µ| − null
}

.

It follows from this definition that the inequality |F(µ)(x)| < ε holds for
µ-almost all x if and only if ‖F(µ)‖µ,∞ < ε. Define L∞(M(X)) to be the set of
all elements F in ∏{L∞(|µ|) : µ ∈ M(X)} such that F(µ) = F(ν) a.e.[µ] for all
µ, ν ∈ M(X) with µ ≪ ν. Then supµ∈M(X) ‖F(µ)‖µ,∞ < ∞ for all F ∈ L∞(M(X))

and L∞(M(X)) is a Banach space with norm ‖F‖ = supµ∈M(X) ‖F(µ)‖µ,∞ , see

[11, Lemma 5.11, page 76]. If now, for arbitrary F ∈ L∞(M(X)), we define the
functional ΦF : M(X) → C by

ΦF(µ) =
∫

X
F(µ) dµ,

for all µ ∈ M(X), then by an elegant use of the Radon-Nikodym Theorem one
can see that the map F 7→ ΦF is an isometric isomorphism from L∞(M(X)) onto
(M(X), n(X))∗ , see [11, Theorem 5.12]. Moreover, we recall from [12] that a func-
tional F ∈ L∞(M(X)) vanishes at infinity if for each ε > 0, there is a compact subset
Kε of X such that for each µ ∈ M(X), |F(µ)(x)| < ε for |µ|-almost all x ∈ X \ Kε;
Formally

∀ε > 0 ∃Kε ∈ K(X) s.t. ∀µ ∈ M(X), |F(µ)(x)| < ε

for |µ| − almost all x ∈ X \ Kε.

We denote by L∞
0 (M(X)) the subspace of L∞(M(X)) consisting of all

F ∈ L∞(M(X)) that vanish at infinity. In our previous work [12], among other
things, we showed that the strong dual of (M(X), β(X)) can be identified with
L∞

0 (M(X)).
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Proposition 2.4. Let X be a locally compact Hausdorff space. Then the locally convex
space (M(X), β(X)) is a Mazur space.

Proof. Let L be a sequentially β(X)-continuous linear functional on M(X). There-
fore, there exists an F ∈ L∞(M(X)) = (M(X), n(X))∗ such that ΦF = L. Hence,
according to [12, Theorem 3.2], it suffices to show that F is in L∞

0 (M(X)). We
divide the proof in three cases as follows.

Case 1. X is compact. In this case, the Proposition 4.1 of [12] implies that
β(X) = n(X). Moreover, L∞

0 (M(X)) = L∞(M(X)). Hence F ∈ L∞
0 (M(X)).

Case 2. X is σ-compact Hausdorff space which is not compact. In this case, there
exists an increasing sequence (Kn) ⊆ K(X) with X =

⋃∞
n=1 Kn satisfying the

condition that each K in K(X) is contained in some Kn. Also by Urysohn’s Lemma
and Riesz Representation Theorem ([11, Theorem 5.7, page 75]), for each n ≥ 1
we can find µn ∈ M(X) such that |µn|(Kn) > 0. In particular |µn|(X \ Kn) > 0 for
each n ∈ N. So, if we set

ν =
∞

∑
n=1

2−n|µn|/‖µn‖,

then ν(Kn) and ν(X \Kn) are nonzero for all n ≥ 1. Now, suppose on the contrary
that F /∈ L∞

0 (M(X)). Then, there is a number ε0 > 0 such that ‖F(µ)χX\K‖µ,∞ >

ε0 for all K ∈ K(X) and all µ ∈ M(X). In particular, ‖F(ν)χX\Kn
‖ν,∞ > ε0 for all

n ∈ N. It follows that there exists a sequence F′
n(ν) in L1(ν) which is bounded by

one and
∣

∣

∣

∫

X
χX\Kn

F′
n(ν)F(ν) dν

∣

∣

∣
> ε0. (2)

If now, for each n ∈ N, we set νn := χX\Kn
F′

n(ν) dν, then νn is in M(X) and

νn ≪ ν. Moreover, for arbitrary compact subset K of X, we see that |νn|(K)
tends to zero. Hence, by Theorem 2.2(iii), the sequence (νn) converges to zero
with respect to the topology β(X). Therefore, the β(X)-sequential continuity of
the functional L implies that L(νn) tends to zero. But this contradicts (2); This is
because of, F(νn) = F(ν) a.e.[νn] for all n ∈ N and therefore

|L(νn)| =
∣

∣

∣

∫

X
F(νn) dνn

∣

∣

∣

=
∣

∣

∣

∫

X
F(ν) dνn

∣

∣

∣

=
∣

∣

∣

∫

X
χX\Kn

F′
n(ν)F(ν) dν

∣

∣

∣
.

Case 3. X is a locally compact Hausdorff space which is not σ-compact. In this case,
there exists a sequence (Vn) of relatively compact open subsets of X such that the
sets Vn for all n ≥ 1 are pairwise disjoint and Vn ⊆ X \ K0, where K0 is a fixed
nonempty compact subset of X. It follows that for any compact subset K of X
the sets Vn eventually do not intersect K. Also by Urysohn’s Lemma and Riesz
Representation Theorem ([11, Theorem 5.7, page 75]), for each n ≥ 1 we can find
µn ∈ M(X) such that |µn|(Vn) > 0. So, if we set

ν =
∞

∑
n=1

2−n|µn|/‖µn‖,
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then ν(Vn) 6= 0 for all n ≥ 1. Now, suppose on the contrary that F /∈ L∞
0 (M(X)).

Then, there is a number ε0 > 0 such that ‖F(µ)χX\K‖µ,∞ > ε0 for all K ∈ K(X)
and all µ ∈ M(X). In particular, ‖F(ν)χX\K0

‖ν,∞ > ε0. Therefore, ‖F(ν)χVn‖ν,∞ >

ε0 for all n ∈ N. It follows that there exists a sequence F′
n(ν) in L1(ν) which is

bounded by one and
∣

∣

∣

∫

X
χVn F′

n(ν)F(ν) dν
∣

∣

∣
> ε0. (3)

If now, for each n ∈ N, we set νn := χVn F′
n(ν) dν, then the proof of this case will

be completed by the same argument as in the proof of the Case 2.

We now show that for a locally compact Hausdorff space X, the locally convex
space (M(X), β(X)) is complete. For this, let us recall that from [6, Definition 1.2,
page 17], a set function λ : K(X) → [0, ∞) is called a Radon content if

λ(K2)− λ(K1) = sup
{

λ(K) : K ⊆ K2 \ K1, K ∈ K(X)
}

for all K1, K2 ∈ K(X) with K1 ⊆ K2.

Proposition 2.5. Let X be a locally compact Hausdorff space. Then (M(X), β(X)) is a
complete topological space.

Proof. In view of Theorem 2.3 (vii), it suffices to show that each n(X)-bounded
set is κ(X)-complete. So, let (µα) be an n(X)-bounded net which is Cauchy in the
κ(X)-topology, then (χK · µα) is an n(X)-Cauchy net in M(X) for each compact
subset K ⊆ X. For each K ∈ K(X), let µK be the limit of the net (χK · µα) with
respect to the norm topology of M(X). The proof will be complete if we show
that there is a µ ∈ M(X) such that χK · µ = µK for all compact subsets K. To this
end, without loss of generality, we may assume that µK ≥ 0 for all compact sets
K. Now, define λ : K(X) → [0, ∞) by

λ(K) := µK(K)

for all K ∈ K(X). If K1 and K2 are two arbitrary compact subsets of X with
K1 ⊆ K2. Then, for each compact subset K of X such that K ⊆ K2, we have

µK2
(K) = lim

α
χK2

· µα(K)

= lim
α

∫

K
χK2

dµα

= lim
α

∫

K
χK dµα

= lim
α

χK · µα(K) = µK(K).

In particular, µK2
(K1) = µK1

(K1) and therefore,

λ(K2)− λ(K1) = µK2
(K2)− µK1

(K1) = µK2
(K2 \ K1).
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Hence the regularity of the measure µK2
∈ M(X) together with the fact that

µK2
(K) = µK(K) when K ⊆ K2 \ K1 ⊆ K2, implies that

λ(K2)− λ(K1) = sup
{

µK2
(K) : K ⊆ K2 \ K1, K ∈ K(X)

}

= sup
{

µK(K) : K ⊆ K2 \ K1, K ∈ K(X)
}

= sup
{

λ(K) : K ⊆ K2 \ K1, K ∈ K(X)
}

.

Thus λ is a Radon content set function on K(X). Therefore, if we define

µ(A) := sup
{

λ(K) : K ⊆ A, K ∈ K(X)
}

, (A ⊆ X)

then by Theorem 2.1.4 in [6], the restriction of µ to the σ-algebra of all Borel sub-
sets is a Radon measure on X.

Now, the proof will be completed by showing that χK · µ = µK for all
K ∈ K(X); This is because of, the validity of this equality for each compact subset
K of X, implies that (µα) tends to µ with respect to the topology κ(X) on M(X).
To that end, suppose that K is an arbitrary compact subset of X. Then by the same
argument as above for each C ∈ K(X), we can see that

µK∩C(K ∩ C) = µK(K ∩ C),

and therefore

χK · µ(C) = µ(K ∩ C)

= sup
{

λ(K′) : K′ ⊆ K ∩ C, K′ ∈ K(X)
}

= sup
{

µK′(K′) : K′ ⊆ K ∩ C, K′ ∈ K(X)
}

= sup
{

µK∩C(K
′) : K′ ⊆ K ∩ C, K′ ∈ K(X)

}

= µK∩C(K ∩ C)

= µK(K ∩ C)

= lim
α

χK · µα(K ∩ C)

= lim
α

∫

K∩C
χK dµα

= lim
α

∫

C
χK dµα

= µK(C),

where in the fourth equality we use the fact that

µK′(K′) = µK∩C(K
′)

for all K′ ∈ K(X) with K′ ⊆ K ∩ C. Hence χK · µ(C) = µK(C) for all C ∈ K(X).
We now invoke the regularity of the measures χK · µ and µK, to conclude that
χK · µ = µK. This completes the proof of the proposition.
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3 An application to semigroups

Let S denote a locally compact semigroup; That is, a semigroup with a locally
compact Hausdorff topology under which the binary operation of S is jointly
continuous. The convolution multiplication “∗” on M(S) is defined by

〈

µ ∗ ν, f
〉

=
∫

S

∫

S
f (xy) dµ(x) dν(y)

for all f ∈ C0(S), where C0(S) is the Banach space of all bounded complex-valued
continuous functions on S vanishing at infinity. In particular, for all Borel sets B
of S we have

µ ∗ ν(B) =
∫

S
µ(Bx−1) dν(x)

=
∫

S
ν(y−1B) dµ(y);

where y−1B := {t ∈ S : yt ∈ B} and Bx−1 := {t ∈ S : tx ∈ B}; see [5] for more
details.

We are now in position to show that the convolution multiplication on M(S) is
β(S)-separately continuous for a wide class of locally compact semigroups which
contains locally compact groups and discrete semigroups as elementary exam-
ples. To this end, let us recall that a locally compact semigroup S is called com-
pactly cancellative if C−1D and CD−1 are compact for all compact subsets C and
D of S, where

C−1D =
{

s ∈ S : cs ∈ D for some c ∈ C
}

;

CD−1 =
{

s ∈ S : sd ∈ C for some d ∈ D
}

.

Theorem 3.1. Let S be a compactly cancellative semigroup with identity. Then the
locally convex space (M(S), β(S)) with the convolution multiplication is a complete
semitopological algebra.

Proof. The completeness follows from Proposition 2.5. Now, in view of parts (ii)
and (iv) of Theorem 2.3, we only need to show that the convolution multiplication
on M(S) is β(S)-continuous on n(S)-bounded subsets. To this end, let (µι) be a
norm bounded net in M(S) convergent to zero in β(S) and let ν ∈ M(S) with
‖ν‖ > 0. Suppose that U((Kn), (αn)) is an arbitrary β(S)-neighborhood of zero
and K ∈ K(S) is chosen so that |ν|(S \ K) < α1/2M, where M is the bound of the
net (µι). If now, we set

K′
n := KnK−1 and α′

n :=
αn

2‖ν‖
,

then there exists ι0 such that µι ∈ U((K′
n), (α

′
n)) for all ι ≥ ι0. Now, we can write

|µι ∗ ν|(Kn) ≤ |µι| ∗ |ν|(Kn)

=
∫

K
|µι|(Knt−1) d|ν|(t) +

∫

S\K
|µι|(Knt−1) d|ν|(t)

≤ |µι|(K
′
n)

∫

K
d|ν|(t) + M

∫

S\K
d|ν|(t)

≤ ‖ν‖α′
n + M(

r1

2M
) ≤ rn,
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for all ι ≥ ι0. Hence, µι ∗ ν −→ 0 in the β(S)-topology.
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