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Abstract

We estimate from below the lower density of the set of prime numbers p
such that p — 1 has a prime factor of size at least p°, where 1/4 < ¢ < 1/2.
We also establish upper and lower bounds on the counting function of the
set of positive integers n < x with exactly k prime factors, counted with or
without multiplicity, such that the largest prime factor of ged(p —1: p | n)
exceeds nl/2,

1 Introduction

For an integer n put P(n) for the maximum prime factor of n with the convention
that P(0) = P(£1) = 1. A lot of work has been done understanding the distri-
bution of P(p — 1) for prime numbers p. The extreme cases P(p —1) = 2 and
P(p—1) = (p—1)/2 correspond to Fermat primes and Sophie-Germain primes,
respectively. Not only we do not know if there are infinitely many primes of these
kinds, but we do not know whether for each ¢ > 0 arbitrarily small there exist
infinitely many primes p with P(p —1) < p°or P(p — 1) > p'~.

For a set C of positive integers and a positive real number x we put
C(x) =CnNJ1,x]. Let

o . ) B c e #Pc(x)
Pei={pprime: P(p—1) 2 p},  x(c) = lminf=r s
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Goldfeld proved in [5] that x(1/2) > 1/2. It is not known whether P, has
a relative density, nor what this density could be in case it exists. Fouvry [4],
showed that there exists cy € (2/3,1) such that x(cg) > 0. Baker and Harman [1],
found ¢y < ¢1 < 1 such that P, is infinite.

In this article, we generalize Goldfeld’s result in two different directions. First,
we estimate from below the lower density of P, for all ¢ € [1/4,1/2]. Secondly,
we estimate the counting function of the set of square free positive integers hav-
ing prime divisors that, when shifted, share a large common prime factor. Both
questions are motivated by a technique used in [3] to bound from below the de-
gree of the field of coefficients of newforms in terms of the level. A feature of
the method in loc. cit. is that what is needed are values of ¢ such that x(c) is as
large as possible. Since «(c) is clearly an increasing function of ¢, in contrast with
the aforementioned works, which are focused in dealing with values of c as close
to 1, here we concentrate on the case where this parameter is smaller than 1/2.

We obtain the following results.

Theorem 1. Let 1/4 < ¢ <1/2. Then

0 <xloglogx) (c>1/4)

#Pe(x) > (1—0)'1OZX+E(X)" E(x) = (lixx)z (c=1/4)
(log x)5/3 '

The implied constant depends on €. In particular,
k(c)>1—c forall ce[1/4,1/2].

The case ¢ = 1/2 is Goldfeld’s result mentioned above. Our proof of Theorem
1 follows closely his method.
Forany k > 1and ¢ € (0,1/k), let

Ae={n=p1---p, P(ged(p1 —1,...,px — 1)) > n‘}.
By Goldfeld’s result, #.A4; 1/, (x) =< x/ log x. Here, we prove the following result.
Theorem 2. Ifk > 2 and ¢ € [1/(2k),17/(32k)) are fixed, then

xl—c(k=1) x1—c(k=1) (log log x)k—l
7(10{% x)k+1 < #Aklc(x) < (log x)z

The case ¢ = 1/(2k) is important for the results from [3]. We have the estimate

1)

#Akll/(Qk) (x) — x1/2+1/2k+0(1)l X — oo. (2)

Goldfeld’s method does not seem to extend to the situation in Theorem 2 (see
the last section). Instead, we follow a more direct method. For the lower bound,
we rely on a refined version of the Brun-Titchmarsh inequality due to Banks and
Shparlinsky [2].

We remark that both theorems presented here remain valid if, instead of con-
sidering large factors of p — 1, we look at large factors p + n for an arbitrary
nonzero fixed integer n.
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We leave as a problem for the reader to determine the exact order of magni-
tude of #A4 .(x), or an asymptotic for it.

Throughout this paper, we use p, g, r with or without subscripts for primes.
We use the Landau symbols O, o and the Vinogradov symbols < and > with
their regular meaning. The constants implied by them might depend on some
other parameters such as ¢, k, ¢ which we will not indicate.

2 Proof of Theorem 1
We follow Goldfeld’s general strategy. Let
N:(x) =#{p < x:pisprimeand P(p — 1) > x°}.
Since #P.(x) > Nc(x), it is enough to give a lower bound for N,(x). Put

Mc(x) =) ) logt,

p<x{lp—-1
0>x¢

where p and ¢ denote primes. Since

=0, if P(p — 1) < x5
)3 10g€{ <logx, otherwise,
lp—1

0>x¢

we have that
Mc(x) <logx ) 1= N(x)logx.
p=x
P(p—1)>x°

Hence, N.(x) > M.(x)/ log x. Then, in order to prove Theorem 1, it is enough to
show that

OC M , (C > 1/4)’
Me(x) = (1 — )x + F(x), F(x) = ( log x ) ®

We denote by A(-) the von Mangoldt’s function. As usual, 7(x;b,a) is the
number of primes g < x in the arithmetic progression 4 = a (mod b). We define

L(x;u,0) = Y. A(m)m(x;m,1).

u<m<uv

Lemma 1. Assumel/4 < ¢ <1/2. Then

. (7/6-2¢/3
L(x;x%,x) = M.(x) + O W ,

wherer = 0whenc > 1/4andr =2/3 whenc = 1/4.



42 E Luca - R. Menares — A. Pizarro-Madariaga

Proof. Let 0 < d < 1 — ¢ be a real number and r € (0,1). We assume that x is
large enough so that the inequality x!~(log x)" < x holds. We put

Mi(x) = Y m(x; 05, 1) log ¢
x¢ <k <x1~%(log x)"
{ prime, k>2
Mi(x) = ) 7(x; £%,1) log £.
x4 (logx) <k <x
¢ prime, k>2
Hence,
L(x; x5, x) — Mc(x) = M%(x) + M4 (x). 4)
Using the Brun-Titchmarsh inequality, we have that
X log ¢
Mi(x) < ST
log X xc<€k§x17d(logx)r g (g - 1)
¢ prime, k>2
< = y 2logl Y &
~ logx - & (k
1<x(1 d)/z(logx)r/z k>clogx/ log¥
¢ prime
< X y 4log x
— logx _ ¢
(<x(1=d)/2(log x)r/2
— 4yl (x(l—d)/2(log x)r/z)
xl—ct+(1-d)/2
<

(log x)1-7/2"

On the other hand, for an integer m > x!~(log x)", we have that

x4

(log x)"

m(x;m,1) < Y. 1§£<
n<x m

n=1 (mod m)

Hence,
4(x) al Y logt
M;(x) < 0og
(1ng)7’ xlfd(logx)r<€k§x
{ prime, k>2
d _ d+1
< a (log x)(vVx) < i

(log x)" (log x)"

Using (4), we obtain

yl—ct+(1-d)/2 xi+3
Le(x) = Me(x) = O (log x)1-7/2 T (log x)" | °

We take d = 2/3(1 — ¢) and then both exponents of x above are equal and eval-
uate to 7/6 —2/3c. Takingr = 0 whenc > 1/4andr = 2/3 whenc = 1/4, we
obtain the desired estimate. n
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Lemma 2. Assume that ¢ € (0,1/2]. Then, for B > 0, we have

xloglog x

L(x;xC/aogx)B,xC) :o( ) (x — o).

log x

Proof. This follows immediately from the Brun-Titchmarsh inequality (see, for
example, equation (3) in [5]). [

Lemma 3. Assume that ¢ € (0,1/2]. Then, there exists B > 0 such that

xloglog x

L(x;l,xc/(logx)3> :cx-i—O( ), (x — o0).

log x

Proof. This follows easily from the Bombieri-Vinogradov theorem (see, for exam-
ple, equation (2) in [5]). [ |

Proof of Theorem 1: We have (see p. 23 in [5]),

L(x;1,x) :x+o<logx>' (x = o0). )
Take B > 0 as in Lemma 3. Since
L(x;1,x)=L{1 X +L X x¢ | + L(x; x5, x)
7 7 - ’ (logx)B (logx)B/ ’ 7 4
the result follows by combining (3) and Lemmas 1, 2 and 3. m

3 Proof of Theorem 2

3.1 The upper bound

Let x be large. It is sufficient to prove the upper bound indicated at (1) for the
number of integers n € Ay, N [x/2,x], since then the upper bound will follow
by changing x to x/2, then to x/4 and so on, and summing up the resulting
estimates. So, we assume that n > x/2 is in Aklc(x). Thenn = p1---pr < x,
where py < pp <--- < py,and p; = pA; +1fori=1,...,k where

p>nt > (x/2)".

Note that
Pk)tl"')Lk < (P(Vl) <n<X.

Thus, p < x1k Let B (x) be the set of such n < x such that A, < x°, where
5 = & = 15(k — 1)/(32k?). Since Ay < --- < A, we get that A; < x° for all
i=1,...,k This shows that

#Bl(X) < 7_L_(xl/k)(xé)k < xl/k+15(k—1)/(32k) _ 0(x1—c(k—1)) (x N oo), (6)

where we used the fact that 1/k 4+ 15(k — 1)/(32k) < 1 — ¢(k — 1), which holds
forallk > 2 and ¢ € (0,17/(32k)).
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From now on, we assume that n € By(x) = (Ak. N [x/2,x]) \Bi(x). Fix the
primes p; < --- < px_q. Then p is fixed, py < x/(p1...px-1) and pr = 1
(mod p). The number of such primes is, by the Brun-Titchmarsch theorem (see
[6]), at most

2x
p—1)p1...pe—1log(x/(pp1-..pPr-1))

mt(x/(p1---pr-1);p, 1) < (

Since x/ (pp1 ... pr—1) > Ay > x°, we get that the last bound is at most

X

< .
(log x)pp1 ... Pk

Keeping p fixed and summing up the above bound over all ordered k — 1-tuples
of primes (x/2)° < p; < --- < py1 < x such that p; = 1 (mod p) for
i=1,...,k—1,wegetabound of

k—1

k-1
X y 1 < x(loglog x) , 7)

(log x)p = 1 (log x)p*
g=1 (mod p)

where we used the fact that

Z 1 < loglog x

q<x q P
g=1 (mod p)

uniformly in (x/2)¢ < p < x1/k which follows from the Brun-Titchmarsch theo-
rem by partial summation. Summing up the above bound (7) over all p > (x/2)°

gives

1

k-1
4By () < x(loglog x)
log x (x/2 <p<x1/kp

x1/k

< x(loglog x)*— 1/
log x (x/z

x(log log x)* A gy
< + / -
log x th—1 logt (x/2)¢  J(x/2)c thlogt

< x(log log x)*=1 < )
log x xe(k=1) logx

x1=ck=1)(Jog log x)*—1
(log x)?

<

(8)

The upper bound follows from (6) and (8).



On shifted primes with large prime factors and their products 45

3.2 The lower bound

The following result is Lemma 2.1 in [2].

Lemma 4. There exist functions Ca(v) > Ci(v) > 0 defined for all real numbers
v € (0,17/32) such that for every integer u # 0 and positive real number K, the
inequalities

Ci(v)y Ca(v)y

plogy plogy

hold for all primes p < y¥ with O(y"/(logy)X) exceptions, where the implied constant
depends on u, v, K. Moreover, for any fixed ¢ > 0, these functions can be chosen to
satisfy the following properties:

< m(y;p,u) <

e Cy(v) is monotonic decreasing, and C,(v) is monotonic increasing;

e C1(1/2) =1—¢eand C(1/2) =1 +=

So, we take y = x!/K and consider primes p € Z = [y, 2y*]. Then 2y =

y¥, where v = ck + (log2)/(logy) < 17/32 for all x sufficiently large. So, let
e > 0 be such that c < 17/32 — e and assume that x is sufficiently large such that
log2/(logy) < &/2. Then, by Lemma 4 with u = 1 and K = 2, the set P of primes
p < 2y such that

C1(17/32 —¢/2)y

plogy

contains all primes p < 2y* with O(y°*/(log y)?) exceptions. Thus, the number
of primes p € P NI satisfies

m(y;p, 1) >

ck

#(PNI) > n2y™) - n(y®) -0 ((mjécy)z) g lggy

for all x sufficiently large independently in k and c. Consider numbers of the form
n = py---px, where p; < --- < py < y are all primes congruent to 1 modulo p.
Furthermore, it is clear that p = P(p; — 1) fori = 1,...,k. Note that n < x. The
number of such 7 is, for p fixed,

ﬂ(y;rbl)) < y )k x
< k = \plogy) ~ pk(log x)k”

Summing up the above bound over p € P NZ, we get that

bAL(x) > x l>> x <#(PF;I))
’ (logx)* 5ty Pk~ (logx)k yek
N xyck xl—c(k=1)

> ,
y* (log x)klogy = (logx)k+1

which is what we wanted.
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4 Comments and Remarks

It is not likely that Goldfeld’s method extends to the situation considered in
Theorem 2. As we have seen, the proof of Theorem 1 is based on the identity
(5). Then, Mertens’s theorem, the Brun-Titchmarsh inequality and the Bombieri-
Vinogradov theorem are used to extract the desired estimate out of it. If we try
to follow the same strategy to prove Theorem 2, for example with c = 1/(2k), we
are then led to replace the left hand side of (5) by

Le(x) = Y. A(m)me(x;m,1),

mgxl/k

where i (x;m, 1) = #{n € A (x) : pln = p =1 mod m}. Let mx(x) denote
the number of squarefree integers up to x having exactly k prime factors. Then,
letting p1, p2, ..., px denote primes,

Le(x) = )3 Y. A(m)
P1<p2<-<Pk m|gcd(p;—1)
pip2PkSX 1<i<k

= Y log(ged (pi—1:1<i<k))
P1<pa<--<pk
p1p2-PksX

x(loglog x)k+1

log x

> (log2)m(x) > X — oo,

In view of (2), we see that L (x) grows much faster, when k > 2, than the counting
function we are interested in. Hence, it is unlikely that Ly (x) can be used to obtain
information on the growth of A . (x).
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