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Abstract

For any finite group G, we define the notion of a Bredon homotopy action of
G, modelled on the diagram of fixed point sets (XH)H≤G for a
G-space X, together with a pointed homotopy action of the group NG H/H
on XH/(

⋃
H<K XK). We then describe a procedure for constructing a suitable

diagram X : O
op
G → Top from this data, by solving a sequence of elementary

lifting problems. If successful, we obtain a G-space X′ realizing the given
homotopy information, determined up to Bredon G-homotopy type. Such
lifting methods may also be used to understand other homotopy questions
about group actions, such as transferring a G-action along a map f : X → Y.

Introduction

The naive notion of a homotopy action of a group G on a topological space X
can be described as the choice of a homotopy class of a map BG → B haut(X),
where haut(X) is the monoid of self-homotopy equivalences (see §1.1). This
always lifts to a strict action, unique up to Borel equivalence (see §1.8). However,
the G-actions we obtain in this way will be free, so the more delicate aspects of
equivariant topology are not visible in this way.

A more informative approach to equivariant homotopy theory, due to Bredon,
studies G-spaces X up to G-homotopy equivalence – that is, G-maps having
G-homotopy inverses (see [Br]). This is equivalent to the homotopy theory of
diagrams X : O

op
G → Top (where OG is the orbit category of G and X(G/H)

is the fixed point set XH – see §1.4 and [E]). Dwyer and Kan showed that this
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in turn is equivalent to a homotopy theory of a certain diagram of fibrations (see
[DK1, DK2]).

The purpose of this paper is to define a notion of homotopy action in Bredon
equivariant homotopy theory, and describe an associated inductive procedure for
realizing such an action by a continuous one.

One might be tempted to say that a homotopy action of G should simply be a
homotopy-commutative diagram X′ : O

op
G → hoTop. We then have available the

obstruction theory of Dwyer, Kan, and Smith for rectifying general homotopy-
commutative diagrams (cf. [DKS2, DK3]), which we can use to try to lift X′ to a
strict diagram X : O

op
G → Top, yielding a G-space, unique up to Bredon equiva-

lence.
However, the orbit category OG can be quite complicated: it includes various

isomorphisms G/H ∼= G/Ha for a ∈ G, and in particular an action of NG H
as the automorphisms of G/H for each H ≤ G. In the Dwyer-Kan-Smith
approach, all the morphisms of OG are treated on an equal footing, and must
all be made to fit together at one time (with increasing levels of coherence). In
particular, it does not allow us to interpret the initial data in terms of homotopy
actions of each NG H on X′(G/H).

The version of homotopy action that we define here involves an ordinary di-
agram of spaces (with no group actions), which we assume for simplicity to be
strict. We do require a certain amount of equivariant rectification in addition, but
we keep this to the minimum, and in a form that reduces to an elementary lifting
problem, in the spirit of [C] and [DK2], starting with certain ordinary homotopy
actions of NG H.

0.1. Bredon homotopy actions. We let Λ denote the partially ordered set of sub-
groups of G, and define a Bredon homotopy action of G to consist of:

• A diagram X
∼

: Λop → Top;

• For each conjugacy class 〈H〉, a pointed homotopy action of
WH := NG H/H on the homotopy cofiber X

∼
H

H
of the obvious map

hocolimK>H X
∼
(K) → X

∼
(H) for some representative H ∈ 〈H〉.

If H′ and H are conjugate in G, we must have a homotopy-commuting
square:

(0.2)

hocolimK>H X
∼
(K) //

≃

��

X
∼
(H)

≃

��
hocolimK′>H′ X

∼
(K′) // X

∼
(H′)

with vertical homotopy equivalences.

0.3. Realizing Bredon homotopy actions. We wish to realize such a Bredon ho-
motopy action by a topological action, using descending induction on the sub-
groups of G: without specifying the G-space X itself, assume that for some H ≤ G
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we have constructed a partial diagram X consisting of spaces X(K) ≃ X
∼
(K) (to

be thought of as of “fixed point sets” XK for the putative G-space X) for all
groups H < K ≤ G, together with inclusions i∗ : X(L) →֒ X(K) for i : K →֒ L,
compatible with an action of G on X by X(K) 7→ X(Ka).

Note that we may filter the collection of subgroups of G (or the objects of OG)
by letting Fk consist of those subgroups H for which there is a chain of proper
inclusions H = H0 < H1 < . . . < Hk = G. If we set XH :=

⋃
H<K X(K),

by induction on this filtration we assume that we have actions of WH on XH

and XH
H (the latter realizing the given pointed homotopy action on X

∼
H

H
– see

Appendix). These fit into a homotopy cofibration sequence:

(0.4) XH → X
∼
(H) → XH

H .

The key ingredient in the inductive procedure for realizing a Bredon homotopy
action as above is the “interpolation” problem: given two WH-spaces such as XH

and XH
H, and two maps as in (0.4), how to obtain a compatible WH-action on the

middle space X
∼
(H). This can be reduced to a lifting problem (see Propositions

3.6 and 3.10). If we succeed in solving it, we have extended our diagram X to H,
too.

Our main result shows that if this procedure can be completed for all H ≤ G,
we obtain a full O

op
G -diagram X, and thus a G-space X realizing the given Bredon

homotopy action (cf. [E]):

Theorem A. A Bredon homotopy action A := 〈X
∼

, (Φ∗
H)H≤G〉 for a finite group G

can be realized by a G-space X if and only if one can inductively construct a sequence of
cofibrant diagrams (Xk : Fk → Top) realizing A. Moreover, one can extend Xk to
Xk+1 if and only if for each H ⊆ Fk+1 \ Fk, one can find a map ΨH making the
following diagram of topological spaces commute:

B haut(XH)

BWH

BζXH

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

Bζ
XH

H ,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨

ΨH // BQjH ,qH

BδjH
◦Bµ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

BεqH
◦Bν

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

B haut(XH
H)

[See Theorem 4.13 below; the topological monoid Q f ,g is defined in §3.4].

0.5. Related lifting problems. Along the way we discuss three related but sim-
pler questions, of independent interest, and show how they too may be reduced
to lifting problems for appropriate fibrations:

(i) How to extend a G-action on a space X along a map f : X → Y;

(ii) How to lift a G-action on Y along a map f : X → Y;

(iii) How to make a map f : X → Y between two G-spaces into a G-map.
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See Propositions 2.7 and 2.17.

0.6. Obstructions. All these lifting problems have associated obstruction theo-
ries, described in terms of (Moore-)Postnikov towers (see Proposition 3.14), and
thus similar in spirit to Cooke’s original approach to the realization problem for
homotopy actions (see [C]). These differ from the obstruction theory of [DKS2],
though unfortunately neither version is easily computable.

We may thus conclude from Theorem A that the obstructions of Proposition
3.14 are the only ones to realizing a Bredon homotopy action, and the difference
obstructions distinguish between the resulting realizations up to G-homotopy
equivalence (see Corollary 4.15).

0.7 Remark. The question of realizing homotopy actions is an old one, going back
to work of Cooke in [C] (see also [LSm, O, Z, SV1]). Many approaches to this and
related problems appear in the literature: since (homotopy) actions induce maps
between classifying spaces of groups and monoids, any information about the
latter is relevant to the question at hand. Methods for analyzing maps between
classifying spaces were developed by Dwyer, Zabrodsky, Jackowski, McClure,
Oliver, and others in the 1980’s (cf. [DM, DZ, JMO]), and later by Grodal and
Smith for actions on spheres, in [GS], based on Lannes theory (cf. [La]). Our
approach here is more elementary, and perhaps more conceptual, although the
machinery for calculating our obstructions is not as well-developed.

0.8 Notation. The category of topological spaces will be denoted by Top, and its
objects will be denoted by boldface letters: X, Y . . . . The category of pointed
topological spaces X∗ = (X, x0) is denoted by Top∗.

A G-space is a topological space X equipped with a left G-action, and the cat-
egory of G-spaces with G-maps (i.e., G-equivariant continuous maps) will be de-
noted by G-Top. We write XH for the fixed point set {x ∈ X : hx = x ∀h ∈ H}
of X under a subgroup H ≤ G.

An important example is a G-CW complex, obtained by attaching G-cells of the
form G/H × Dn+1 for n ≥ −1 (see [I]). For finite G, this is equivalent to X
being a CW-complex on which G acts cellularly (see [tD, II, §1]).

An action of a (discrete) group G on X is given by a homomorphism ϕX : G →
Aut(X), which we call the action map of X. We call the composite ζX := iX ◦ ϕX :
G → haut(X) the monoid action map of X, where iX : Aut(X) →֒ haut(X) is
the inclusion. Similarly, a pointed action of G on X∗, given by the pointed action
map ϕ∗

X∗
: G → Aut∗(X∗), has a pointed monoid action map ζ∗X := iX∗ ◦ ϕ∗

X∗
: G →

haut∗(X∗).

0.9. Organization. In Section 1 we provide some basic background on G-spaces,
the orbit category, and equivariant homotopy theory. In Section 2 we address
the question of transferring group actions along a map (cf. §0.5), as preparation
for the interpolation problem, discussed in Section 3 (both for arbitrary groups).
In Section 4 we define the notion of a Bredon homotopy action and prove our
main result (for finite G). In the Appendix, we review the notion of a pointed
homotopy action.
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1 G-Spaces and the Orbit Category

In this section we recall some basic facts about G spaces, and the Borel and Bredon
approaches to equivariant homotopy theory.

1.1. Homotopy actions. Let haut(X) denote the strictly associative topological
monoid of self-homotopy equivalences of a topological space X. If G is a group,
any monoid map ζX : G → haut(X) factors through the submonoid Aut(X)
of invertible elements (self-homeomorphisms) in haut(X), so it makes X into a
G-space, equipped with a continuous G-action.

However, Aut(X) is not a homotopy invariant of X, while haut(X) is. A
homotopy action of G on X is therefore defined to be the homotopy class of a map
Φ : BG → B haut(X) (see [DDK, DW] and compare [Su]). In particular, a group
action determines a homotopy action, by setting Φ := BζX.

If X∗ = (X, x0) is pointed, haut(X) has a sub-monoid haut∗(X∗) consisting
of the pointed self-homotopy equivalences of X, and a pointed homotopy action of
G on X∗ is (the homotopy class of) a map Φ

∗ : BG → B haut∗(X∗).
The inclusion j : haut∗(X∗) →֒ haut(X) fits into a homotopy fibration se-

quence:

(1.2) haut∗(X∗)
j
−→ haut(X)

evx0−−→ X
k
−→ B haut∗(X∗)

Bj
−→ B haut(X) ,

where Bj is universal for Hurewicz fibrations with homotopy fiber X (cf. [A, St],
and see [BGM, Theorem 5.6] & [DFZ, Proposition 4.1]).

Note that a free G-space X is the total space of a principal G-bundle over the
orbit space X/G, which is classified by a map ϑ : X/G → BG. If we let

X1 →֒ Eθ
θ
−→ BG denote the pullback of Bj along Φ, this fits into a commuting

diagram of fibration sequences:

(1.3)

∗ //

��

G = //

��

G

��
X1

�

� ≃ //

=
��

X′

PB

// //

ξ
����

EG

����
X1

�

� // Eθ
θ // // BG,

thus yielding a (free) topological G-action on X′ ∼ X (with θ ∈ [X′/G, BG]
corresponding to ϑ ∈ [X/G, BG] under this equivalence, if X is a free G-space).
Since we cannot guarantee that G will act on X itself, this is sometimes refereed
to as a proxy action (cf. [DW]).

Note that for every G-space X there is a G-map X × EG → X which is a
homotopy equivalence (out of a free G-space). With this notion of G-weak equiv-
alence, we obtain the Borel version of equivariant homotopy theory, which thus
reduces to the study of principal G-bundles.

We say that the homotopy action Φ is realized by a free G-space X1 if the corre-
sponding principal G-bundle (1.3) is classified by a map θ which is the pullback
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of (1.2) along Φ; we have just seen that any homotopy action is realizable. Sim-
ilarly, any pointed homotopy action is realizable by a pointed topological action
(see Appendix).

Let G be a fixed group. Bredon’s approach to G-equivariant homotopy theory
(cf. [Br, E]) reduces the study of a G-space X to the system of fixed point sets
under the subgroups of G. To describe it, we recall the following:

1.4. The orbit category. The orbit category OG of G has the cosets G/H (for
each H ≤ G) as objects, and G-equivariant maps as morphisms.

Any map G/H → G/K in OG can be factored as i∗ : G/H → G/Ka−1

(induced by the inclusion i : H →֒ Ka−1
), followed by an isomorphism φKa−1

a :

G/Ka−1
→ G/K, where Ka−1

:= aKa−1, for a ∈ G, and φKa−1

a is induced by

the right translation g 7→ ag. Two maps φKa−1

a ◦ i∗ and φKb−1

b ◦ j∗ from G/H

to G/K are the same in OG if and only if a−1b ∈ K. Thus the automorphism
group WH := AutOG

(G/H) of G/H ∈ OG is NG H/H (where NG H is the
normalizer of H in G).

1.5. OG-diagrams. An O
op
G -diagram in Top is a functor Ψ : O

op
G → Top, and the

category of all such will be denoted by TopO
op
G . The main example we have in

mind is the fixed point set diagram X associated a G-space X, defined X(G/H) :=
XH .

Since Top is a simplicial model category, TopO
op
G has a projective simplicial

model category structure in which a map f : Ψ → Ψ′ of O
op
G -diagrams is a weak

equivalence (respectively, a fibration) if for each H ≤ G, f (G/H) : Ψ(G/H) →
Ψ′(G/H) is a weak equivalence (respectively, a fibration). See [Hi, Theorem
11.7.3].

There is an analogous simplicial model category structure on G-Top, in which
a G-map f : X → Y is a weak equivalence (respectively, fibration) if for each
H ≤ G, the map f |XH is a weak equivalence (respectively, fibration). See [DK1]
and compare [Pi].

The following result of Elmendorf explains the central role of fixed-point sets
in Bredon equivariant homotopy theory:

1.6 Theorem ([E, Theorem 1]). The fixed point set functor sending a G-space X to the

diagram X : O
op
G → Top has a right adjoint C : TopO

op
G → G-Top.

1.7 Remark. In fact, this adjoint pair constitutes a simplicial Quillen equivalence

between G-Top and TopO
op
G . Moreover, for any G-space X, Elmendorf shows

that CX is a G-CW complex. We therefore may (and shall) assume from now on
that all our G-spaces are G-CW complexes.

1.8 Definition. A G-map h : X → Y which at the same time is a (non-equivariant)
homotopy equivalence will be called a Borel G-equivalence. If x0 ∈ X and
y0 = h(x0) ∈ Y are G-base-points (fixed under the G action) and h is a pointed
homotopy equivalence, it will be called a pointed Borel G-equivalence.
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1.9 Lemma. For any homotopy equivalence h : X → Y between CW complexes,
there is a CW complex Z with homotopy equivalences i : X → Z and i′ : Y → Z
such that i ∼ h ◦ i′, inducing strictly multiplicative monic homotopy equivalences
i⋆ : haut(X) → haut(Z) and i′⋆ : haut(Y) → haut(Z).

Proof. Factoring h as p′ ◦ i = h with i a cofibration and p′ a fibration, and using
the cofibrancy of X and Y, we obtain a diagram of homotopy equivalences

(1.10)

Z

p′ &&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼
p

��
X

i

88qqqqqqqqqqqqq h // Y

i′qq

with p ◦ i = IdX and p′ ◦ i′ = IdY. Define i⋆ : haut(X) → haut(Z) by ϕ 7→
i ◦ ϕ ◦ p (for any homotopy equivalence ϕ : X → X). Because p ◦ i = IdX, the
map i⋆ is monic, preserves compositions, and has a (non-monoidal) homotopy
inverse p∗ : haut(Z) → haut(X). Similarly for i′.

1.11 Remark. Any homotopy equivalence h : X → Y induces a homotopy equiv-
alence B haut(X) ≃ B haut(Y) (cf. [F1, Satz 7.7]). In fact, we can apply the
classifying space functor B to the maps i⋆ and i′⋆, obtaining homotopy equiva-
lences:

B haut(X)
Bi⋆−→ B haut(Z)

(Bi′⋆)
−1

−−−−→ B haut(Y) ,

whose composite is denoted by Bh∗ (well-defined up to homotopy). Similarly
in the pointed case.

2 Transferring group actions

In this and the following section G can be any topological group. Given a map
f : X → Y, consider the questions of:

• Transferring a given G-action on X along f to Y. or conversely.

• Making f equivariant with respect to given actions on both X and Y.

In the spirit of [DK2], we shall show how they can be reduced to suitable
lifting problems. First, we make the questions more precise:

2.1 Definition. Given any map f : X → Y, a G-map f ′ : X′ → Y′ is:

(i) a right transfer of a G-action on X along f if we have a homotopy-commutative
diagram

(2.2)
X

f
// Y

≃ h
��

X′

≃k

OO

f ′
// Y′

in which h is a homotopy equivalence, and k is a Borel G-equivalence.
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(ii) a left transfer of a G-action on Y along f if we have a diagram

(2.3)

X
f

// Y Y′′
≃
moo

≃
n

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

X′

≃k

OO

f ′
// Y′

in which k is a homotopy equivalence, m and n are Borel G-equivalences,
which becomes homotopy-commutative after inverting m or n (up to ho-
motopy).

(iii) a compatible G-map for f with respect to G-actions on X and Y if we have a
diagram

(2.4)

X
f

// Y Y′′
≃
moo

≃
n

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

X′

≃k

OO

f ′
// Y′

in which k, m, and n are all Borel G-equivalences, which becomes homotopy-
commutative after inverting m or n.

In order to describe the conditions under which such transfers exist, we re-
quire also the following construction:

2.5 Definition. For any map f : X → Y, let P f denote the homotopy pullback:

(2.6)

P f

PB
δ
����

ε // haut(Y)

f ∗
����

haut(X)
f∗

// Map(X, Y) .

This can be constructed explicitly in two ways: if we change f into a cofibra-
tion, the map f ∗ : Map(Y, Y) → Map(X, Y) is a fibration, so its restriction to
haut(Y) is a fibration, too (since the latter is just a union of path components of
Map(Y, Y)). In this case, the strict pullback is actually the homotopy pullback.
Similarly when f is a fibration, so f∗ is a fibration.

Using such a strict model, we see that P f is a sub-monoid of the strictly
associative monoid haut(X)× haut(Y). Moreover, it is grouplike, since (g, h) ∈
P f means that f ◦ g = h ◦ f (for g ∈ haut(X) and h ∈ haut(Y)), and

thus f ◦ g−1 ∼ h−1 ◦ f . If f is either a fibration or a cofibration, we can use
[BJT, Lemma 4.16] to change h−1 (respectively, g−1) up to homotopy to get
f ◦ g−1 = h−1 ◦ f and thus (g−1, h−1) ∈ P f , too. The maps δ and ε (the

restrictions of the structure maps for P̌ f ) are monoid maps. Evidently P f is a
homotopy invariant of f .

With these notions we then have the following:
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2.7 Proposition. Let f : X → Y be any map in Top.

(i) There is a right transfer of a G-action on X (with monoid action map ζX : G →
haut(X)) along f if and only if there is a map Ψ making the following diagram
commute up to homotopy:

(2.8)

BP f

Bδ
��

BG

Ψ

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

BζX

// B haut(X).

(ii) There is a left transfer of a G-action on Y (with monoid action map ζY : G →
haut(Y)) along f if and only if there is a map Ψ making the following diagram
commute up to homotopy:

(2.9)

BP f

Bε
��

BG

Ψ

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

BζY

// B haut(Y).

(iii) There is a compatible G-map for f with respect to G-actions on X and Y (with
monoid action maps ζX : G → haut(X) and ζY : G → haut(Y)) if and only if
there is a map Ψ making the following diagram commute up to homotopy:

(2.10)

BP f

(Bδ,Bε)
��

BG

Ψ

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

(BζX,BζY)
// B haut(X)× B haut(Y).

Proof. (i) If X is a G-space, and we have a right transfer f ′ : X′ → Y′, of the
G-action along f , we may change f ′ into a G-cofibration, and the monoid action
maps ζX′ : G → haut(X′) and ζY′ : G → haut(Y′) then fit together to define
a monoid map z : G → P̌ f ′ in (2.6), which actually lands in P f ′ , since G is
a group. Because BζX is just BζX′ , up to homotopy, Bz : BG → BP f ′ is the
required lift in (2.8).

Conversely, given a lift Ψ in (2.8), by applying Kan’s G-functor to (2.8),
realizing, and then taking cofibrant replacement in the model category of strictly
associative topological monoids (see [SV2, Theorem B]), we obtain a diagram of
cofibrant (and grouplike) topological monoids:

(2.11)

P̂ f

δ̂
��

ε̂

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

Ĝ

ρ̂

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
ĥaut(X) ĥaut(Y) ,

with P̂ f weakly equivalent to P f .



694 D. Blanc – D. Sen

Since B haut(X̂) ≃ B haut(X), by pulling back (1.2) we obtain a monoid

action of Ĝ on X̂ ≃ X. By [Pr, Theorem 5.8] (see also [DL, F2], [Ma2, §7,9], [Bo,

§5] and [DDK]), this is classified by a map θ̂ : Eθ̂ → BĜ. Up to homotopy, θ̂
corresponds to the map θ in the fibre bundle sequence:

(2.12) X′ : = EG × X −→ Eθ
θ
−→ BG

classifying the free G-action on X′ (Borel equivalent to the given X). Similarly,

we get a free Ĝ-action on Ŷ ≃ Y, classified by κ̂ : Eκ̂ → BĜ Moreover, we

have a map f̂ : X̂ → Ŷ (which is just f : X → Y, up to homotopy), and we

may assume that f̂ is itself a cofibration (for example, by carrying out the above

construction in simplicial sets, and replacing Ŷ by Ŷ × CX̂ before realizing).
As in (2.6), we obtain a commuting diagram

(2.13)

P
f̂

δ̂′
��

ε̂′ // haut(Ŷ)

f̂ ∗
����

haut(X̂)
f̂∗

// Map(X̂, Ŷ) ,

in which f̂ ∗ is a fibration, so δ̂′ is, too.

Because X̂ ≃ X, ĥaut(X) and haut(X) are weakly equivalent, and since
the former is cofibrant and the latter is fibrant, we have a weak equivalence of

monoids k : ĥaut(X) → haut(X), and similarly ℓ : ĥaut(Y) ≃ haut(Y). More-
over, since (2.13) is a homotopy pullback, P f and P

f̂
are weakly equivalent,

and again we have a weak equivalence of monoids h : P̂ f
≃
−→ P

f̂
. Thus the strict

diagram (2.13) fits into a homotopy commutative diagram:

(2.14)

P̂ f

A

Bδ̂
��

h

''PP
PP

PP
PP

PP
PP

PP
PP

PP
ε̂ // ĥaut(Y)

ℓ

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

ĥaut(X)

k ((PP
PP

PP
PP

PP
PP

P
P

f̂

δ̂′

��

ε̂′ // haut(Ŷ)

f̂ ∗
����

haut(X̂)
f̂∗

// Map(X̂, Ŷ) .

In the model category of strictly associative monoids, we can replace h by another
weak equivalence of monoids making A commute on the nose (cf. [BJT, Lemma
4.16]), and then changing ℓ into a fibration, we may replace ε̂ by a map making

B commute strictly, too, without changing P̂ f .

Composing the monoid map ρ̂ : Ĝ → P̂ f of (2.11) with k ◦ δ̂ : P̂ f →

haut(X̂) and ℓ ◦ ε̂ : P̂ f → haut(Ŷ), we obtain monoid action maps ζ̂
X̂

: Ĝ →

haut(X̂) and ζ̂
Ŷ

: Ĝ → haut(Ŷ) making X̂ and Ŷ into strict Ĝ-spaces, with
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f̂ : X̂ →֒ Ŷ a Ĝ-map (which is a cofibration). It therefore fits into a commuting

diagram of principal Ĝ-bundles

(2.15)

X̂

��

�

�
f̂

// Ŷ

��
Eθ̂

θ̂ !!❈
❈❈

❈❈
❈❈

β̂
// Eκ̂

κ̂}}④④
④④
④④
④

BĜ .

Here β̂ is obtained by realizing the bar construction for the Ĝ-actions on X̂ and

Ŷ, respectively (see [Pr, §5]), so it commutes up to homotopy with the classifying
maps θ̂ and κ̂ for the two bundles, where (as noted above) up to homotopy θ̂ is
just θ : Eθ → BG, classifying the free G-space X′.

Let κ : Eκ̂ → BG denote the composite of κ̂ with BĜ ≃ BG, classifying a

free G-bundle Y′ → Eκ̂ with Y′ ≃ Ŷ ≃ Y. If we also let β : Eθ → Eκ̂ denote
the composite of β̂ with Eθ ≃ Eθ̂ , then κ ◦ β ≃ θ, so we have a map

(2.16)

X′

��

f ′
// Y′

��
Eθ

θ !!❈
❈❈

❈❈
❈❈

β
// Eκ̂

κ}}④④
④④
④④
④

BG

of principal G-bundles, so in particular, f ′ is a G-map.

Statements (ii) and (iii) are proven analogously.

Compare [Z, Proposition 2.2] for the compatibility version for homotopy ac-
tions.

2.17 Proposition. Let f : X → Y be any map. In a right transfer of a G-action on
X along f , we may assume that k in (2.2) is a homeomorphism; in a left transfer of a
G-action on Y along f , we may assume that m and n in (2.3) are homeomorphisms; and
in a compatible G-map for f with respect to G-actions on X and Y, we may assume that
either k, or m and n, are homeomorphisms in (2.4).

Proof. If the action of G on X is free (and (2.8) holds), we can replace X′ :=
EG × X by X in (2.12), and therefore also in (2.16), so we have a right transfer
f ′ : X →֒ Y′ (along f : X → Y) which is a G-map.

The same argument shows that if the action of G on Y is free (and (2.9) holds),
it has a left transfer along f to a fibration f ′ : X′ →→ Y which is a G-map.
Moreover, given free G-actions on both X and Y, any f : X → Y has a compatible
G-map f ′ : X → Y with the same source and target (if (2.10) holds).

Since every G-space Y has a Borel G-equivalence h : Y′ → Y, where Y′

is a free G-space, we do not actually need to assume that the action on Y is free,
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because we can compose the left transfer or compatible map f ′ with this h. Thus
we may always assume that ℓ, m, and n are homeomorphisms.

Finally, given a G-space X, we may replace it by the free G-space X′ := X×EG
and produce a G-map f ′ : X′ →֒ Y′ which is a cofibration. Then taking the
pushout:

(2.18)

X′

PO

q≃
��

�

�
f ′

// Y′

r≃
��

X �

�

f ′′
// Y′′,

we see that all maps are G-maps; f ′, and thus f ′′, are cofibrations, so this is a
homotopy pushout in Top, and since q is a homotopy equivalences, so is r.

2.19. Applications. In general, the lifting problems of Proposition 2.7 are hard
to solve. However, in certain cases the obstructions to obtain the relevant liftings
may be computable, or may vanish for dimension reasons. For example:

(i) When X = K(π, n) is an Eilenberg-Mac Lane space, then:

(2.20) haut(X) ≃ K(π, n)× Aut(π)

(as a monoid) is a semi-direct product of the Eilenberg-Mac Lane space
itself and the discrete group Aut(π), while haut∗(X) ≃ Aut(π) ∼= π0 haut∗(X)
is homotopically discrete (see [Ma1, Proposition 25.2]).

Thus if both X and Y are Eilenberg-Mac Lane spaces, all but the pullback
itself in (2.6) are generalized Eilenberg-Mac Lane spaces, so each of the
lifting problems (2.8), (2.9), and (2.10) reduces to an algebraic question
about certain classes in the cohomology of BG (as expected).

(ii) A more interesting example is when each of X and Y has only two non-
trivial homotopy groups (see §3.16 below). In this case the homotopy groups
of haut(X) and haut(Y) are completely known by [Di, §3] (see also [Mo]),
and in particular if πiX = 0 for i 6= k, m (k < m), then πi haut(X) = 0
unless k ≤ i ≤ m. Using the Postnikov tower for Y we can also determine
π∗ Map(X, Y), up to extension. Therefore the homotopy groups of P f may
also be determined, up to extension.

Since we need not assume G is finite, Hi(BG; π) may vanish for large
enough i, at least when π is one of the groups π∗P f Thus in certain cases
we can show that there is no obstruction to solving the lifting problems.

(iii) The case when X and Y are spheres has been the subject of intense study
over the years, beginning with [PSm]. Moreover, much is known about
haut(Sn) and haut∗(Sn) (see, e.g., [Ha1, Ha2]). Therefore, one might be
able to compute obstructions to extending or lifting certain group actions
on spheres along some map f : Sn → Sm, or making f equivariant.
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3 Interpolating group actions

For our approach to the realization problem for Bredon homotopy actions, we
need to consider a slightly more complicated situation than that studied in the
previous section: assume given a sequence of maps

(3.1) X
f
−→ Y

g
−→ Z

with given G-actions on X and Z, for which we want to find a compatible G-
action on Y.

3.2 Definition. A G-interpolation for two G-spaces X and Z and maps as in (3.1)
is a pair of G-maps f ′ : X′ → Y′ and g′ : Y′ → Z′ fitting into a diagram

(3.3)

X
f

// Y

h
��

g
// Z Z′′

≃
moo

≃
n

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

X′′
≃

k

88♣♣♣♣♣♣♣♣♣♣♣♣♣ ≃

ℓ

// X′ f ′
// Y′ g′

// Z′

in which k, ℓ, m, and n are all homotopy equivalences and G-maps, and h is a
homotopy equivalence, which becomes homotopy-commutative after inverting
m or n (up to homotopy).

3.4 Definition. Given two composable maps as in (3.1), let Q f ,g denote the
homotopy pullback in:

(3.5)

Q f ,g
PB

µ f

��

νg // Pg

δg
����

P f ε f

// haut(Y) .

(see §2.5). If f and g are cofibrations, both P f and Pg are actually pullbacks,
and the map δ : Pg → haut(Y) is a fibration, so Q f ,g is the ordinary pullback.
Furthermore, it is a grouplike strictly associative monoid, and the maps µ and ν
are monoid maps.

3.6 Proposition. Two maps as in (3.1) for G-spaces X and Z (with monoid action maps
ζX : G → haut(X) and ζZ : G → haut(Z), respectively) have a G-interpolation if
and only if there is a map Ψ making the following diagram commute up to homotopy:

(3.7)

B haut(X)

BG

BζX

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

BζZ ,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨
Ψ // BQ f ,g

Bδ f ◦Bµ

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Bεg◦Bν

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

B haut(Z).
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Proof. Given a G-interpolation, the diagram (3.7) is obtained by applying B to
the corresponding monoid action maps.

Conversely, a homotopy commutative diagram (3.7) may be lifted (together
with (3.5)) to a commuting diagram of topological monoids:

(3.8)

Ĝ
ρ̂

// Q̂ f ,g

µ̂ f
ww♣♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

ν̂g
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

P̂ f

δ̂ fww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

ε̂ f ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ P̂g

δ̂gww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

ε̂g ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

ĥaut(X) ĥaut(Y) ĥaut(Z)

and we have spaces X̂ ≃ X, Ŷ ≃ Y, and Ẑ ≃ Z on which ĥaut(X), ĥaut(Y),

and ĥaut(Z), respectively act. Moreover, we have maps f̂ : X̂ → Ŷ and

ĝ : Ŷ → Ẑ (corresponding up to homotopy to f and g, respectively), and as in

the proof of Proposition 2.7, we may assume f̂ and ĝ are cofibrations.
Therefore, (3.8) fits into a diagram:

(3.9)

Q̂ f ,g

µ̂ f
ww♣♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

ν̂g
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

P̂ f

h

��

δ̂ fww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

ε̂ f ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ P̂g

k

��

δ̂gww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

ε̂g ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

ĥaut(X)

ℓ

��

ĥaut(Y)

m

��

ĥaut(Z)

n

��

P
f̂

δ
f̂ww♦♦♦

♦♦
♦♦
♦♦
♦♦
♦♦

ε
f̂ ''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ Pĝ

δĝww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

ε ĝ ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

haut(X̂) haut(Ŷ) haut(Ẑ)

in which P
f̂

and Pĝ are homotopy limits, so the homotopy equivalences

ℓ, m, and n induce homotopy equivalences h and k making (3.9) homotopy-
commutative. Since Q

f̂ ,ĝ
is also a homotopy limit, h and k induce a homotopy

equivalence p : Q̂ f ,g → Q
f̂ ,ĝ

.

Composing p ◦ ρ̂ : Ĝ → Q
f̂ ,ĝ

of diagram (3.8) with the appropriate structure

maps for Q
f̂ ,ĝ

yields monoid action maps ζ̂
X̂

: Ĝ → haut(X̂), ζ̂
Ŷ

: Ĝ →

haut(Ŷ), and ζ̂Ẑ : Ĝ → haut(Ẑ) making f̂ and ĝ into Ĝ-equivariant maps (by

definition of Q
f̂ ,ĝ

), with ζ̂
X̂

and ζ̂Ẑ corresponding up to homotopy to the

given monoid action maps ζX : G → haut(X) and ζZ : G → haut(Z).
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Passing to the classifying maps for the corresponding principle G- and

Ĝ-bundles as in the proof of Proposition 2.7, we obtain the required G-interpo-
lation.

We now have the following analogue of Proposition 2.17:

3.10 Proposition. If p := g ◦ f : X → Z is a G-map in (3.1), in any G-interpolation
for we may assume that k, ℓ, m, and n are homeomorphisms in (3.3), and that g′ ◦ f ′ =
p.

Proof. In the proof of Proposition 3.6 we saw that the lifting Ψ in (3.7) allows us
to factor the map of free G-spaces (i.e., total spaces of principle G-bundles)

X′ := X × EG
p′:=p×IdEG
−−−−−−→ Z × EG =: Z′

as the composite of two maps of free G-spaces X′ f ′

−→ Y′ g′

−→ Z′ with Y ≃
Y′ (using a homotopy-factorization of the corresponding classifying maps of the
bundles). Applying the (homotopy) pushout (2.18) we obtain a commutative
diagram of G-spaces:

(3.11)

X′

PO

qX≃
��

�

�
f ′

// Y′

r≃
��

g′
// Z′ qZ // Z

X �

�

f ′′
// Y′′

g′′

33

where the map g′′ out of the pushout is induced by qZ ◦ g′ : Y′ → Z and
p := f ◦ g : X → Z, which agree on X′ since p′ = g′ ◦ f ′ = (g ◦ f )× IdEG.

3.12 Definition. Given two maps as in (3.1) for G-spaces X and Z, let ρ :
BQ f ,g → B haut(X)× B haut(Z) be the map (Bδ f ◦ Bµ, Bεg ◦Bν) of (3.7), and
let:
(3.13)

BQ f ,g . . .

ρ

**
// Wn+1

pn+1 // Wn
pn // Wn−1 . . . B haut(X)× B haut(Z)

be the Moore-Postnikov tower for ρ, with W0 := B haut(X)× B haut(Z) (cf. [GJ,
VI, 3.9]).

If F denotes the homotopy fiber of ρ, then up to homotopy each map pn+1 :
Wn+1 → Wn is a fibration with fiber K(πn+1F, n + 1), which is classified by
a map k̃n : Wn → Kπ1Qn

(πn+1F, n + 2) (see [R, Theorem 3.4]). Assume by
induction on n ≥ 0 that we have constructed a lift gn : BG → Wn for
g0 := (BζX, BζZ) : BG → W0 = B haut(X)× B haut(Z). Then the n-th obstruction
class for this lift is

[k̃n ◦ gn] ∈ [BG, Kπ1Qn(πn+1F, n + 2)] ∼= Hn+2(G; πn+1F) ,

where G acts on πn+1F via (gn)# : G → π1Wn.
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From Proposition 3.6 we deduce:

3.14 Proposition. Two maps as in (3.1) for G-spaces X and Z (with monoid action
maps ζX : G → haut(X) and ζZ : G → haut(Z), respectively) have a G-interpolation
if and only if the obstruction classes [k̃n ◦ gn] ∈ Hn+2(G; πn+1F) successively van-
ish, for some sequence of lifts. There is also a sequence of difference obstructions in
Hn+1(G; πn+1F) for distinguishing between non-homotopic lifts in (3.7).

3.15 Remark. As with any obstruction theory, non-vanishing of a cohomology
class [k̃n ◦ gn] merely requires that we back-track to an earlier stage and try dif-
ferent choices, so in reality we have tree of obstructions, and the G-interpolation
exists if and only if some branch extends to infinity.

3.16 Example. We can use the method described here to study G-actions on a
space Y if πiY = 0 for i 6= k, m (k < m): In this case we can choose in
X := K(π, m) and Z := K(π′, k) in (3.1), with given actions of G on π and
π′, and use Proposition 3.6 to interpolate a G-action on Y. As noted in §2.19,
for suitable choices of G the obstructions of Proposition 3.14 will vanish (e.g., for
reasons of dimension).

4 Realizing diagrammatic homotopy actions

From now on we assume that G is finite (but see §4.16 below). Given a G-space
X, the associated fixed point set diagram X encodes the Bredon G-homotopy type
of X, by Theorem 1.6. This diagram consists of the various fixed point sets XH

(H ≤ G), the inclusions i∗ : XK →֒ XH induced by i : H →֒ K, and the G-action
by conjugation: XH → XHa

. Our goal is to provide a “homotopy version” of
X, and describe a procedure for realizing it by attempting to solve a sequence of
simpler lifting problems as in Section 3.

4.1. Filtering O
op
G . For any subgroup H of G, we define the length of H in G,

denoted by lenG H, to be the maximal 0 ≤ k < ∞ such that there exists a
sequence of proper inclusions of subgroups:

(4.2) H = H0 < H1 < H2 < . . . < Hk−1 < Hk = G .

This induces a filtration

(4.3) F0 ⊂ F1 ⊂ . . .Fk ⊂ . . . ⊂ O
op
G

by full subcategories, where Obj Fk := {G/H ∈ O
op
G : lenG H ≤ k} (so

Obj F0 = {G/G}).
Since G is finite, the filtration is exhaustive: if lenG{e} = N – that is, the

longest possible sequence (4.2) in G has N inclusions of proper subgroups –

then FN = O
op
G . We let F̂k denote the collection of subgroups H < G such

that G/H ∈ Fk.
Let 〈H〉 := {Ha : a ∈ G} denote the conjugacy class of a subgroup H ≤ G:

note that if H ∈ F̂k, then 〈H〉 ⊆ F̂k.
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4.4 Definition. Let Λ denote the partially ordered set of subgroups of G; we can
think o f the opposite category Λop as a subcategory of OG. The full subcategory
ΛH consists of all subgroups K with H < K ≤ G, and Λk is the full subcategory
of objects in filtration Fk.

4.5 Definition. A Bredon homotopy action of G 〈X
∼

, (Φ∗
H)〈H〉⊆Λ〉 consists of:

(i) A diagram X
∼

: Λop → Top.

(ii) A choice of a representative H in each conjugacy class 〈H〉 ⊆ Λ, equipped
with a pointed homotopy WH-action Φ∗

H : BWH → B haut∗(X
∼

H

H
) on X

∼
H

H
,

defined by the homotopy cofibration sequence:

(4.6) X
∼H

→ X
∼
(H) → X

∼
H

H
,

where X
∼H

:= hocolim
Λ

op
H

X
∼
(K).

We require that if H′ and H are conjugate, their homotopy cofibration sequences
(4.6) fit into a homotopy-commuting square (0.2).

4.7 Definition. A cofibrant diagram Xk : Fk → Top (in the projective model cat-

egory TopFk – cf. [Hi, §11.6]) realizes a Bredon homotopy action 〈X
∼

, (Φ∗
H)H≤G〉

in the k-th filtration if:

(a) The corresponding homotopy diagram (γ ◦ Xk)|Λop
k

: Λ
op
k → hoTop is

weakly equivalent to γ ◦ X
∼
|
Λ

op
k

, for γ : Top → hoTop the quotient

functor.

(b) For each H ∈ Fk, the pointed action of WH on the cofiber of

(4.8) colimK>H Xk(G/K) → Xk(G/H)

realizes the pointed homotopy action Φ∗
H .

Note that because Xk is cofibrant, this colimit is a homotopy colimit and (4.8)
is a cofibration, and because of (0.2), the homotopy action Φ∗

H is defined for
every H ≤ G, not only our chosen representatives.

A sequence (Xk : Fk → Top)∞

k=0 of such diagrams is coherent if Xk|Fk−1
= Xk−1

for each k ≥ 1.

4.9 Example. If X is a G-CW complex, let X
∼

be the restriction of X : O
op
G →

Top to the subcategory Λop. For any H ≤ G, X
∼H

:= hocolim
Λ

op
H

X
∼
(K) is

simply XH :=
⋃

H<K XK, which is a sub-WH-complex of XH . The quotient
XH

H := XH/XH is the cofiber of the inclusion jH : XH →֒ XH , which is a free
pointed WH-space (unless XH = ∅), with monoid action map ζ∗

XH
H

: WH →

haut∗(XH
H) and Φ∗

H := Bζ∗
XH

H
: BWH → B haut∗(XH

H). Evidently X : F∞ =

O
op
G → Top realizes the Bredon homotopy action 〈X|Λop , (Φ∗

H)H≤G〉 we have
just defined (in all filtrations). In this case, we also say that the G-space X realizes
〈X|Λop , (Φ∗

H)H≤G〉.
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4.10 Definition. If Xk : Fk → Top realizes a Bredon homotopy action
〈X
∼

, (Φ∗
H)H≤G〉 in the k-th filtration, we may realize the pointed homotopy

action Φ∗
H of WH on X

∼
H

H
by a topological pointed action of WH on a

space XH
H ≃ X

∼
H

H
(see Proposition 5.8 below). This fits into a homotopy cofibra-

tion sequence:

(4.11) XH
jH
−→ X

∼
(H)

qH
−→ XH

H ,

where XH;= hocolimK>H Xk(G/K) (homotopic to (4.6)). Note that the action
of NG H on Fk by conjugation defines a WH-action on XH.

The H-lifting problem for Xk is to find a map ΨH making the following
diagram commute up to homotopy:

(4.12)

B haut(XH)

BWH

BζXH

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

Bζ
XH

H ,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨

ΨH // BQjH ,qH

BδjH
◦Bµ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

BεqH
◦Bν

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

B haut(XH
H)

in the notation of (3.5).

We are now in a position to state our main result:

4.13 Theorem. A Bredon homotopy action A := 〈X
∼

, (Φ∗
H)H≤G〉 for a finite group

G can be realized by a G-space X if and only if one can inductively construct a coherent
sequence of cofibrant diagrams (Xk : Fk → Top)∞

k=0 realizing A, where one can extend

Xk to Xk+1 if and only if for each 〈H〉 ⊆ F̂k+1 \ F̂k, there is an H ∈ 〈H〉 for which
the H-lifting problem (4.12) can be solved.

Proof. If A can be realized by a G-space X, the corresponding diagrams Xk were
described in Example 4.9.

To see that solving the H-lifting problem suffices to extend an inductively-
defined Xk to Xk+1, we start with X0(G/G) := X

∼
(G) (which we denote by

Y). To construct X1, we must consider all maximal proper subgroups M ∈ F̂1,
which are of two types:

(a) If NG M = M, then WM = {e} and the correspondence aM 7→ Ma is a
bijection between G/M and 〈M〉. In this case we change Y = X

∼
(G/G) →

X
∼
(G/M) into a cofibration i : Y →֒ Z(M) (with no group action), and

form a diagram consisting of a copy i(Ma) : Y →֒ Z(Ma) of i for each coset

Ma ∈ 〈M〉, with X1((φ̃
M
a )op) the homeomorphism identifying Z with

Z(Ma) (relative to the fixed subspace Y).
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(b) Otherwise NG M = G, so WM = G/M and 〈M〉 is a singleton. We then
apply Proposition and 3.6 to obtain a WM-action on Z(M) ≃ X

∼
(G/M),

extending the trivial action on Y := X
∼
(G/G). This is possible since we

assume that the M-lifting problem can be solved. The action map ζZ(M)
:

G/M → Aut(Z(M)) lifts to a G-action via the homomorphism G →→ G/M.

Since all the conjugation G-actions we have described agree on Y (where they
are trivial), we obtain a diagram X1 : F1 → Top, whose restriction to Λ

op
1

consists of the inclusions Y →֒ Z(M) for all M ∈ F̂i \ F̂i−1.
At the k-th stage of the induction, we assume given a cofibrant diagram Xk−1 :

Fk−1 → Top realizing X
∼

up to filtration k − 1. In particular, for each H ∈

F̂k \ F̂k−1 we have a space XH := (Xk−1)H as in §4.4, on which NG H acts
(by conjugation), with H ⊆ NG H acting trivially. Thus XH has a WH-action
compatible with the structure maps of Xk−1.

For each conjugacy class 〈H〉 ⊆ F̂k \ F̂k−1, we have a specified representative
H. We use Proposition 5.8 to lift the given pointed homotopy action of WH on

X
∼

H

H
to a (free) pointed action on XH

H ≃ X
∼

H

H
. Next, use Proposition 3.6 to produce

a WH-interpolation of the given WH-actions on XH and XH
H for the homotopy

cofibration sequence (4.6). Denote the new WH-space we have produced by
Z(H) ≃ X

∼
(G/H). By Proposition 3.10, we may assume that the inclusion i(H) :

XH →֒ Z(H) is WH-equivariant (with respect to the given conjugation action on
Xk−1).

For any conjugate Ha ∈ 〈H〉, choose a fixed element a ∈ G representing
the coset aNG H ∈ G/NG H ∼= 〈H〉, and let Xk(G/Ha) := Z(H). The WHa-

action on Xk(G/Ha) is the composite of the action map WH → Aut(Z(H))

with the isomorphism (ρH
a )

−1
∗ : WHa → WH induced by ρH

a : NG H → NG Ha

(conjugation by a).
We define iHa : XHa →֒ Z(H) to be the composite i(H) ◦ (φ̃H

a )op. This is

WHa-equivariant because (φ̃H
a )op is induced by ρH

a , so we have extended Xk−1

to a diagram Xk : Fk → Top.
At the end of the process we have a full O

op
G diagram X∞ := colimk→∞ Xk,

and thus (by Theorem 1.6) a G-space X realizing the given Bredon homotopy
action A.

Note that homotopic maps Φ∗ ∼ (Φ′)∗ : BWH → B haut∗(X
∼

H

H
) induce

pointed Borel WH-equivalences XH
H → (X′)H

H (assuming both are WH-CW com-
plexes), and homotopic lifts Ψ ∼ Ψ

′ : BWH → BQjH ,qH
in (4.12) yield Borel

equivalent WH-spaces ZH and Z′
H , which implies that we have a weak equiv-

alence of the resulting Fk+1-diagrams Xk+1 and X′
k+1, since all the structure

maps which are not inclusions can be described in terms of the conjugation action
of G.

4.14 Definition. If Xk : Fk → Top realizes a Bredon homotopy action A in the k-

th filtration, for each conjugacy class 〈H〉 ⊆ F̂k+1 \ F̂k, choose any representative
H ∈ 〈H〉. The 〈H〉-sequence of obstructions (en)∞

n=1 to extending Xk to Xk+1
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is defined by letting en ∈ Hn+2(WH ; πn+1F) denote the n-th obstruction of
Proposition 3.14 for the H-lifting problem (4.12).

The difference obstructions fn ∈ Hn+1(WH ; πn+1F) for distinguishing be-
tween different extensions of Xk to Xk+1 are defined analogously.

4.15 Corollary. For any finite group G, a Bredon homotopy action A can be realized

by a G-space X if and only if for each k ≥ 0 and 〈H〉 ⊆ F̂k+1 \ F̂k, (some branch
of) the inductively defined 〈H〉-sequence of obstructions (en)∞

n=1 vanishes. Moreover,
two such realizations X and X′ (by G-CW complexes) are G-homotopy equivalent if the
corresponding sequence of difference obstructions vanish.

Remark 3.15 applies here too, of course.

4.16. Generalizations. The procedure described above extends to some infinite
groups G, as long as we have a class function ℓ : Λ → κ into some ordinal κ
with ℓ(K) � ℓ(H) for H ≤ K. In this case we have a filtration corresponding
to (4.3) of length κ, and thus a transfinite inductive procedure as in the proof of
Theorem 4.13.

For example, if G = Z then ℓ : Λ → ω + 1 assigns to nZ ≤ Z the number
of (not necessarily distinct) prime factors of n, with ℓ({0}) = ω. On the other
hand, there is no such function ℓ for G = Z

2 or S1.

4.17. Some simple examples. The approach to realizing homotopy actions de-
scribed here is quite complicated, in general, even for cyclic groups. Neverthe-
less, in certain cases the theory simplifies to some extent:

I. In a semi-free action all fixed points are global. In terms of a Bredon homotopy
action this implies that the maps jH : X

∼H
→ X

∼
(H) are homotopy equivalences

for {e} 6= H, and thus X
∼

H

H
is contractible – but X

∼
(G) =: Y need not be

contractible. However, we do have a trivial G-action on Y. Thus we are left with
the obstructions of Proposition 3.14 for interpolating the given G-actions in the
homotopy cofibration sequence Y → X

∼
({e}) → Z. If these vanish, we obtain

the required semi-free G-action an a space X ≃ X
∼
({e}).

Note that in this case G need not be finite, so the examples mentioned in §2.19
are relevant here.

II. A necessary condition in order for our obstruction theory to be effectively
computable is that the (homotopy groups of) the spaces of self-equivalences of

X
∼H

and X
∼

H

H
in (4.6) are known for each H ≤ G.

One simple case where this holds is when each of the above spaces is an
Eilenberg-Mac Lane space (cf. (2.20)). If the groups π∗ haut(X

∼
(H)) are know –

e.g., if X
∼
(H) is also an Eilenberg-Mac Lane space – then the homotopy groups

of

(4.18) Map(X
∼H

, X
∼
(H)) and Map(X

∼
(H), X

∼
H

H
)

are known (by [T]), so we may determine the homotopy groups of PjH
and

PqH up to an extension from the pullback diagram (2.6), (2.20), and (4.18),
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respectively, and these determine the homotopy groups of QjH ,qH
– and thus of

the fibers F – up to extensions from and (3.5) and (3.13).

III. The discussion above can also be extended to the case of two-stage Postnikov
systems (see §2.19 and Example 3.16 above).

Appendix: Pointed homotopy actions

For convenience, we collect here some basic facts about pointed homotopy ac-
tions. These are well-known, but we have not found a suitable reference in the
literature.

5.1 Definition. A pointed homotopy action of a group G on a pointed space X∗ =
(X, x0) is (the homotopy class of) a map Φ∗ : BG → haut∗(X∗). It is realized
by a pointed G-action ϕ∗

Y∗
: G → Aut∗(Y∗) if there is a (pointed) homotopy

equivalence h : X∗ → Y∗ such that

(5.2)

B haut∗(X∗)

Bh∗
��

BG

Φ∗
22❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

Bϕ∗
Y∗

// B Aut∗(Y∗)
Bi

// B haut∗(Y∗)

commutes up to homotopy.

5.3 Definition. A G-action ϕ : G → Aut(X) on a space X lifts weakly to a pointed
action ϕ∗ : G → Aut∗(Y∗) if we have Borel G-equivalences p : Z → X and
p′ : Z → Y, with sections i : X → Z and i′ : Y → Z as in Lemma 1.9, such that
the diagram of associative topological monoids (and multiplicative maps):

(5.4)

Aut∗(Y∗)
�

� // haut∗(Y∗)
�

� // haut(Y)
i′⋆ // haut(Z)

G

ϕ∗
Y∗

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥ ϕX // Aut(X) �
� // haut(X)

i⋆

OO

commutes up to homotopy after inverting the homotopy equivalence i⋆.
Since we assumed that X, Y, and Z are CW complexes, any homotopy equiva-

lence between them can be made into a pointed homotopy equivalence by choos-
ing appropriate (non-degenerate) base-points (cf. [Do, Theorem 3.6]). As a result,
we may assume that X and Y in Definition 5.3 are pointed.

If X∗ = (X, x0) is a G-space with chosen base point x0, and the G-action is
free on X \ {x0}, we call X∗ a free pointed G-space. For any pointed G-space, the
associated free pointed G-space is the quotient

EG ⋉ X := EG × X/EG × {x0} ,

with G-action induced from the diagonal action on EG × X. A homotopy fixed
point for a G-space X is a G-map f : EG → X. and we have:
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5.5 Lemma. Any pointed G-space X∗ has a G-map r : EG ⋉ X → X which is
a pointed homotopy equivalence; if X∗ is a free pointed G-space, the map r is a G-
homotopy equivalence.

Proof. We have a diagram of G-spaces:

(5.6)
EG × {x0}

�

�
j

//

ph.e.
��

EG × X
s // //

qh.e.
��

ϕ

vv
EG ⋉ X

r
��

{x0}
�

� // X
Id // X

where the vertical maps are projections onto the second factor. Since each row is a
cofibration sequence and p and q are Borel G-equivalences, so is r. If the pointed
action on X∗ is free, r induces homotopy equivalences on all fixed point sets
(which consist only of the basepoint for all {e} 6= H ≤ G), so by [JS, Theorem
(1.1)] r is in fact a G-homotopy equivalence.

5.7 Lemma. A G-space X with action ϕ : G → Aut(X) has a homotopy fixed point
corresponding to each weak lift of ϕ to a pointed action ϕ∗ : G → Aut∗(Y∗).

Proof. A weak lift of ϕ to a pointed action ϕ∗ : G → Aut∗(Y∗) yields a fixed
point y0 ∈ Y, and thus a homotopy fixed point for Y∗ = (Y, y0) given by
the constant map cy0 : EG → Y (which is a G-map). This lifts to a homotopy

fixed point f̂ : (Id, cy0) : EG → EG × Y. Since Id×h : EG × Z → EG × Y is
a G-map of free G-CW complexes (§1.7) which is also a homotopy equivalence,
it is actually a G-homotopy equivalence by [JS, Theorem (1.1)], with G-inverse

h−1 : EG × Y → EG × Z. The G-map k ◦ h−1 ◦ f̂ : EG → X is the corresponding
homotopy fixed point for X.

Conversely, if f : EG → X is a G-map, we may factor f in the model category
G-Top (see §1.5) as a G-cofibration followed by a G-fibration weak equivalence:

EG
f̃
−→ Z

p
−→→ X,. If we let Y := Z/EG denote the (homotopy) cofiber of f̃ ,

with quotient G-map p′ : Z → Y, then Y has a basepoint y0 (corresponding to
EG ⊆ Z), fixed under the G-action, and p′ is a Borel G-equivalence since EG
is contractible. Thus the G-action on Y∗ = (Y, y0) yields the required pointed
lift.

5.8 Proposition. Any pointed homotopy action Φ∗ : BG → B haut∗(X∗) can be
realized by a (free) pointed G-action.

Proof. Pulling back the universal fibration Bj of (1.2) along Φ := i′ ◦Φ
∗ yields

the following (homotopy) pullback square:

(5.9)

BG
σ

''

=

))

Φ∗

%%
Eθ

PB

//

θ
��

B haut∗(X∗)

Bj
����

BG Φ // B haut(X)
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so we can use Φ
∗ to obtain a homotopy section σ : BG → Eθ as indicated.

We now use the lower left homotopy pullback square in (1.3) to obtain a
homotopy fixed point f : EG → X1:

(5.10)

EG
f

''

σ◦q

**

=

$$
X1

PB

//

��

EG

q
����

Eθ
θ // BG ,

where X1 ≃ X. Hence by Lemma 5.7 we obtain a pointed G-action on a pointed
space Y∗ homotopy equivalent to X.
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