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Abstract

In previous work the author constructed a convolution algebra and an
isomorphic multiplication algebra of one-dimensional associated homoge-
neous distributions with support in R. In this paper we investigate the var-
ious algebraic substructures that can be identified in these algebras. Besides
identifying ideals and giving polynomial representations for six subalgebras,
it is also shown that both algebras contain an interesting Abelian subgroup,
which can be used to construct generalized integration/derivation operators
of complex degree on the whole line R.

1 Introduction

In a series of preceding papers, [2]–[7], the author embarked on an in-depth study
of the set H′ (R) of Associated Homogeneous Distributions (AHDs) based on (i.e.,
with support in) the real line R, [9], [8]. The elements of H′ (R) are the distribu-
tional analogues of power-log functions with domain in R and contain the major-
ity of the distributions one encounters in (one-dimensional) physics applications

(including the δ and η , 1
π x−1 distributions). For an introduction to AHDs, an

overview of their properties and possible applications of this work, the reader is
referred to [2] (or [1]).

The main result of this study was the construction of a convolution algebra
and an isomorphic multiplication algebra of AHDs on R. The multiplication al-

Received by the editors March 2011.
Communicated by F. Brackx.
2000 Mathematics Subject Classification : 46F10, 46F30, 47D03.
Key words and phrases : Associated Homogeneous Distribution, Convolution Algebra, Mul-

tiplication Algebra.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 137–153



138 G. R. Franssens

gebra provides a non-trivial example of how a distributional product can be de-
fined, for an important subset of distributions containing a derivation and the
delta distribution, and how this is influenced by Schwartz’ impossibility theo-
rem, [12]. Both constructed algebras are non-commutative and non-associative,
but in a minimal and interesting way, see [6], [7].

In this paper, we examine the various abstract algebraic substructures that can
be identified in these algebras. We consider their ideals and isolate the following
substructures: (i) a special substructure, (ii) their general polynomial structure
and (iii) polynomial representations of six subalgebras. The identified special
substructure (i) further contains an interesting Abelian subgroup, which is useful
for the construction of convolution or multiplication operators acting as general-
ized integration/derivation operators of complex degree on the whole line R.

We use the notation and definitions introduced in [2] (or [1]). For shorthand,
we will write H′ for H′ (R) from now on. For a typical element f z

m ∈ H′, the
superscript denotes its degree of homogeneity z and its subscript its order of as-
sociation m.

2 Structures

From the construction of the convolution product (∗), given in [4]–[5], and the
multiplication product (.), defined in [2, eq. (82)] based on the generalized con-
volution theorem, together with the product formulas derived in [6, Theorem 6]
and [7, Theorem 8], it follows that:

(i.1) (H′, ∗) and (H′, .) are non-commutative, non-associative unital deriva-
tion magmas. Both structures are isomorphic under Fourier transformation.

(i.2) If (the non-unique) extensions of partial distributions in H′ (i.e., the “reg-
ularized” elements) are identified as equivalence sets, then (H′, ∗) and (H′, .) are
derivation monoids for equivalence sets of AHDs on R. We adopt the latter iden-
tification throughout this paper.

(ii) Let G ′ denote the linear space of finite sums of elements of H′ over C. Then,

F ′
∗ , (G ′,+, ∗) and F ′

· , (G ′,+, .) are non-associative unital derivation rings,
which are in addition non-commutative, non-associative derivation algebras over
C.

2.1 Ideals

Definition 1. Define the equivalence sets of extensions (indicated by the subscript e) in
H′,

[
f k
e

]
,

{
f k
e ∈ H′ : f k

e ∼ f k
e + cxk, ∀c ∈ C

}
, ∀k ∈ N,

[
f−l
e

]
,

{
f−l
e ∈ H′ : f−l

e ∼ f−l
e + cδ(l−1), ∀c ∈ C

}
, ∀l ∈ Z+.

The zero distribution 0 is a regular Homogeneous Distribution (HD) of unde-
fined degree. It is convenient to introduce the symbol 0z for the zero distribution
having degree of homogeneity z ∈ C. The purpose of the symbol 0z is only to be
able to denote equivalence sets such as

[
0k
]

and
[
0−l
]

.
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Definition 2. Define the sets,

N ′
0 ,

{[
0k
]

, ∀k ∈ N

}
,

E ′
0 ,

{[
0−l
]

, ∀l ∈ Z+

}
.

Theorem 3. The subsemigroup (N ′
0, ∗) is a proper and principal ideal of (H′, ∗).

Proof. (i) It is clear from [6, eq. (C.3.3) and Theorem 3] that (N ′
0, ∗) is a (proper)

subsemigroup of (H′, ∗). Further, from the half-lines representation given in [3,
Theorem 1] and [6, Theorem 1], it follows that (N ′

0, ∗) is an ideal of (H′, ∗).
(ii) From the normalized parity representation [3, Theorem 3] together with

[6, Theorem 2] follows that, for any k ∈ N and ∀m ∈ N,

cxk ∗
m

∑
n=0

(qn,e(z)D
n
z Φz

e + qn,o(z)D
n
z Φz

o)

generates all non-zero elements of N ′
0 if z runs over N and the zero distribution

if z ∈ C\N. Hence, N ′
0 is a principal ideal with countable infinite generators.

Theorem 4. The subsemigroup (E ′
0, .) is a proper and principal ideal of (H′, .).

Proof. By Fourier transformation and Theorem 3.

N ′
0 is not a prime ideal since it is not true that ∀ f , g ∈ H′, if f ∗ g ∈ N ′

0 then
f ∈ N ′

0 or g ∈ N ′
0, [10, p. 192]. A counter example is [6, eq. (48)]. We do have the

following.

Theorem 5. Let f ∈ H′. If f ∗ f ∈ N ′
0, then f ∈ N ′

0.

Proof. A. Assume that f is an AHD of order of association m > 0.
Let r ∈ C and k ∈ Z+. Due to [6, Theorem 6], any square root in (H′, ∗)

of a distribution rxk−1 must have degree of homogeneity k/2 − 1. Let f k/2−1
m ∈

H′, of degree k/2 − 1 and order m ∈ Z+, represented by the normalized parity
representation [6, eq. (51)],

f k/2−1
m =

m

∑
n=0

αn ∗ (Dn
wΦw

e )w=k/2 ,

wherein
αn = qn,eδ + qn,oη ∈ H′−1

0 ,

and qn,e, qn,o ∈ C. The highest term of association of f k/2−1
m ∗ f k/2−1

m is

(
αm ∗ (Dm

w Φw
e )w=k/2

)
∗
(
αm ∗ (Dm

w Φw
e )w=k/2

)
.

By [6, Theorems 3 and 4], this is equivalent to

(αm ∗ αm) ∗
((

D2m
k Φk

e

)
0
+ r1xk−1

)
+ r2xk−1,
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with r1, r2 ∈ C arbitrary and
(

D2m
k Φk

e

)
0
= D2m

k Φk
e iff k is even. It is easily verified

that ∀αm ∈ H′−1
0 , αm ∗ αm = 0 iff αm = 0. Hence, f k/2−1

m ∗ f k/2−1
m has order of

association 2m (if k is even) or 2m + 1 (if k is odd). Consequently, the equation

f k/2−1
m ∗ f k/2−1

m = rxk−1 can not have a solution in H′ if m ∈ Z+.
B. Assume that f is a homogeneous distribution.
Any homogeneous distribution of degree k/2 − 1 has a complex representa-

tion of the form [3, eq. (25)], c± ∈ C,

f k/2−1
0 = c+(x + i0)k/2−1 + c−(x − i0)k/2−1.

(i) For k = 2p + 2, ∀p ∈ N, we obtain, since (x ± i0)p = xp and by using
[6, eq. (C.3.3)],

f k/2−1
0 ∗ f k/2−1

0 = (c+(x + i0)p + c−(x − i0)p) ∗ (c+(x + i0)p + c−(x − i0)p) ,

= (c+ + c−)
2 (xp ∗ xp) ,

= (c+ + c−)
2 x2p+1.

Hence, f
p
0 = cxp ∈ N ′

0, for some c ∈ C.
(ii) For k = 2p + 1, ∀p ∈ N, we get from [2, eq. (345)] and [6, eqs. (47)–(49)],

f k/2−1
0 ∗ f k/2−1

0

=
(

c+(x + i0)k/2−1 + c−(x − i0)k/2−1
)
∗
(

c+(x + i0)k/2−1 + c−(x − i0)k/2−1
)

,

= c2
+

Φk/2
x+i0

1
2π Γ(1 − k/2)e−i(π/2)(k/2−1)

∗
Φk/2

x+i0
1

2π Γ(1 − k/2)e−i(π/2)(k/2−1)
+ r′xk−1

+c2
−

Φk/2
x−i0

1
2π Γ(1 − k/2)e+i(π/2)(k/2−1)

∗
Φk/2

x−i0
1

2π Γ(1 − k/2)e+i(π/2)(k/2−1)
,

or

f k/2−1
0 ∗ f k/2−1

0 =

r′xk−1 −
(2π)2

Γ2(1 − k/2)

(
c2
+e+ikπ/2

(
Φk

x+i0

)
0
+ c2

−e−ikπ/2
(

Φk
x−i0

)
0

)
.

Herein is, [2, eq. (349)],

e±ikπ/2
(

Φk
x±i0

)
0
=

1

2
(−1)k

(
1

2

xk−1 sgn

(k − 1)!
+

±i

π

xk−1

(k − 1)!
(ln |x| − ψ(k))

)
.

For f k/2−1
0 to be a convolutional square root of r′xk−1 requires that simultane-

ously,

c2
+ + c2

− = 0,

c2
+ − c2

− = 0,
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so c+ = c− = 0. Hence, there are no non-zero homogeneous distributions of

degree k/2 − 1 = p − 1/2 such that f k/2−1
0 ∗ f k/2−1

0 = rxk−1.

C. Collecting results, we showed that cxl−1, ∀l ∈ Z+, are the only distribu-
tions in H′ which square, with respect to the convolution product, to a distribu-
tion c′xk−1 with k ∈ Z+. Hence, if f ∗ f ∈ N ′

0 then is also f ∈ N ′
0.

From Theorem 5 follows in particular that there does not exist in (H′, ∗) a
distribution 1−1/2, of degree −1/2, such that 1−1/2 ∗ 1−1/2 = 1, i.e., the one dis-
tribution 1 has no convolutional square root in H′.

E ′
0 is not a prime ideal since it is not true that ∀ f , g ∈ H′, if f .g ∈ E ′

0 then
f ∈ E ′

0 or g ∈ E ′
0. A counter example is the Fourier transform of [6, eq. (48)]. We

also have the following.

Theorem 6. Let f ∈ H′. If f . f ∈ E ′
0, then f ∈ E ′

0.

Proof. By Fourier transformation and Theorem 5.

From Theorem 6 follows that there also does not exist in (H′, .) a distribution
δ1/2, of degree −1/2, such that δ1/2.δ1/2 = δ, i.e., the delta distribution δ has no
multiplicative square root in H′.

More generally, since 1 ∈ N ′
0, δ ∈ E ′

0 and N ′
0 ∩ E ′

0 = {0}, we have that ∀g ∈
N ′

0, ∄ f ∈ H′ : f ∗ g = δ and ∀g ∈ E ′
0, ∄ f ∈ H′ : f .g = 1.

2.2 Special substructure

The set of homogeneous distributions, H′
0, is not closed under convolution, be-

cause ∀ f a−1
0 , gb−1

0 ∈ H′
0 : a + b ∈ Z+, f a−1

0 ∗ gb−1
0 ∈ H′

1, where H′
1 denotes the set

of AHDs on R of order of association 1. However, a special subset SH′
1 is closed

under convolution ∀a, b ∈ C, as is shown in the proof of Theorem 8 below.

2.2.1 Definition

Definition 7. Let qe, qo ∈ A (C, C). Define, using the normalized parity representation,

SH′
1 ,

{
gz ∈ H′

1 : gz = qe (z) Φz+1
e + qo (z) Φz+1

o , ∀z ∈ C

}
(1)

and wherein any partial distribution Φz+1
e or Φz+1

o at z = k ∈ N is replaced by its
equivalence set of extensions.

In (1) it is not required that the coefficient functions qe, qo satisfy conditions [3,
eqs. (37)–(38)]. If these conditions were satisfied, then the normalized parity rep-
resentation [3, eq. (36)] assures that gz ∈ H′

0 and that gz is complex holomorphic
in C. Further, in a sufficiently small neighborhood of z = 2p (z = 2p + 1), p ∈ N,
Φz+1

e (Φz+1
o ) in (1) is to be replaced by its equivalence set of complex holomorphic

extensions
(
Φz+1

e

)
e

(
(
Φz+1

o

)
e
), which will be in H′

1, since they are proper AHDs

of first order of association. In particular at z = 2p (z = 2p + 1), Φ
2p+1
e (Φ

2p+2
o )

will contain a term proportional to xk ln |x|, k = 2p (2p + 1). Finally, there are
elements in H′

1 which are not in SH′
1 (e.g., DzΦz+1

e ). Hence, H′
0 ⊂ SH′

1 ⊂ H′
1.
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2.2.2 General properties

Theorem 8. The structure
(
SH′

1, ∗
)

is the largest proper submonoid of (H′, ∗).

Proof. (i) From the convolution product formula, [6, Theorem 6], readily follows
that (H′

1, ∗) is not closed, due to the presence of terms of the form DzΦz+1
e and

DzΦz+1
o . For any subset of H′

1 to be closed, it is necessary that it consists of AHDs
for which the coefficient functions q1,e(z) and q1,o(z) in its normalized parity rep-
resentation are zero. Such AHDs have a representation of the form (1).

Further, from the convolution product formula [6, Theorem 6], it readily fol-

lows that
(
H′

p, ∗
)

for p > 1 is not closed, due to the presence of terms of the form

Dn
z Φz+1

e and Dn
z Φz+1

o with n ∈ Z[1,p]. Consequently, no subset SH′
p can exist,

with H′
1 ⊂ SH′

p ⊂ H′
p, that is closed under convolution.

(ii) From [6, Theorem 4] follows that the convolution product of two elements
of SH′

1 is again in SH′
1. Hence

(
SH′

1, ∗
)

is closed. Since the convolution prod-
uct ∗ for equivalence sets of extensions is associative, [6, Theorem 3], and the
∗-identity δ ∈ SH′

1, it follows that
(
SH′

1, ∗
)

is a submonoid of (H′, ∗). Since SH′
1

is the largest proper subset of H′ that is closed,
(
SH′

1, ∗
)

is the largest proper
submonoid of (H′, ∗).

The closure of
(
SH′

1, ∗
)

is a consequence of the remarkable fact that the con-
volution products of extensions of the normalized parity basis AHDs at natural
degrees, being of order of association 1, result in a homogeneous distribution and
not an AHD of order 2 (as would normally be expected).

An equivalent form for the elements of SH′
1 is the parity representation,

SH′
1 ,

{
gz ∈ H′

1 : gz = pe (z) |x|
z + po (z)

(
|x|z sgn

)
, ∀z ∈ C

}
, (2)

with, [2, Appendix],

pe (z) =
qe (z)

2Γ (z + 1) cos
(

π
2 (z + 1)

) ,

po (z) =
qo (z) 1

2Γ (z + 1) sin
(

π
2 (z + 1)

) ,

and wherein any partial distribution |x|z or |x|z sgn at z = −k ∈ Z− is replaced
by its equivalence set of extensions.

Theorem 9. The structure
(
SH′

1, .
)

is the largest proper submonoid of (H′, .).

Proof. By Fourier transformation and Theorem 8.

Theorem 10. The set SH′
1 is invariant under Fourier transformation.

Proof. Any element gz ∈ SH′
1 can be represented in terms of the normalized

parity representation as in definition (1). Using the Fourier transforms [2, eqs.
(321)–(322) ],

F [Φz
e ] = |2πχ|−z , ∀z ∈ C\Zo,+,

F [Φz
o] = −i |2πχ|−z sgn, ∀z ∈ C\Ze,+,
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and [2, eqs. (325)–(326)] applied to general extensions,

F
[(

Φk
e

)
e

]
= (2π)−k

(
χ−k sgn

)
e

, ∀k ∈ Zo,+,

F
[(

Φk
o

)
e

]
= −i (2π)−k

(
χ−k sgn

)
e

, ∀k ∈ Ze,+,

we see that the Fourier transform F [gz] is of the form

gz = pe (z) |x|
z + po (z)

(
|x|z sgn

)

and wherein any partial distribution |x|z or |x|z sgn at z = −k ∈ Z− is replaced
by its equivalence set of extensions. The latter is the parity representation (2) for
an element of SH′

1.

Define SH′−1
1 , {a (z) δ + b (z) η, ∀a, b ∈ A (C, C)} ⊂ SH′

1. Any convolution

operator ω∗, with kernel ω ∈ SH′−1
1 , is a degree of homogeneity and order of

association preserving endomorphism of SH′
1.

Define SH′0
1 , {a (z) 1 + b (z) sgn , ∀a, b ∈ A (C, C)} ⊂ SH′

1. Any multipli-

cation operator ω., with kernel ω ∈ SH′0
1 , is a degree of homogeneity and order

of association preserving endomorphism of SH′
1.

2.2.3 Structure theorem

The only idempotents in
(
SH′

1, ∗
)

are 1
2 (δ ± iη) (the Heisenberg distributions)

and the only idempotents in
(
SH′

1, .
)

are 1± (the Heaviside distributions).

Definition 11. Define

I ′
∗,± ,

{
hz ∈ SH′

1 : hz =
1

2
(δ ± iη) ∗ f z, ∀ f z ∈ SH′

1

}
, (3)

I ′
·,± ,

{
hz ∈ SH′

1 : hz = 1±. f z, ∀ f z ∈ SH′
1

}
, (4)

and

I ′
∗ ,

{
gz ∈ SH′

1 : q2
e (z) + q2

o (z) 6= 0, ∀z ∈ C

}
, (5)

I ′
· ,

{
gz ∈ SH′

1 : p2
e (z)− p2

o (z) 6= 0, ∀z ∈ C

}
. (6)

The sets I ′
∗,± are proper and principal ideals of

(
SH′

1, ∗
)
. Consequently there

are zero divisors in
(
SH′

1, ∗
)
, since ∀ f a−1

− ∈ I ′
∗,− and ∀ f b−1

+ ∈ I ′
∗,+ holds that

f a−1
− ∗ f b−1

+ = 0, ∀ (a + b − 1) ∈ C\N. Further, it is easy to show, based on the

representation (1) and the linearly independence of Φz+1
e and Φz+1

o , ∀z ∈ C, that
I ′
∗,− ∩ I ′

∗,+ = {0}.

Similarly, I ′
·,± are proper and principal ideals of

(
SH′

1, .
)
. Consequently, ∀ f a

− ∈

I ′
·,− and ∀ f b

+ ∈ I ′
·,+ holds that f a

−. f b
+ = 0, ∀ (a + b) ∈ C\Z−. Further, I ′

·,− ∩
I ′
·,+ = {0}.

From (3), (4) and Theorem 10 follows that I ′
·,± = F

[
I ′
∗,±

]
, respectively. Also,

I ′
· = F [I ′

∗].
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Definition 12. The operators A± : H′ → H′ such that f 7→ f̂± , A± f , with

A± , ∓
1

2πi
(x ± i0)−1 ∗, (7)

= Φ0
x±i0∗, (8)

=
1

2
(δ ± iη) ∗, (9)

are generalized analyticity operators on R. The resulting distributions f̂± are said to
be complex analytic on R and are called the generalized analytic extensions of f on
R.

Eq. (8) shows that the kernels of the analyticity operators A± are the Heisen-
berg distributions Φ0

x±i0. A distribution complex analytic on R, can be regarded
as a generalization of what in physics is called an analytic signal. Hence, the
ideals I ′

∗,± consist of the complex analytic extensions of the elements in SH′
1.

It follows from [6, Theorem 4] that the set I ′
∗ consists of all the (uniquely)

invertible AHDs on R under convolution. From the associativity of equivalence
sets, [6, Theorem 3], and since δ ∈ I ′

∗ it follows that (I ′
∗, ∗) is an Abelian group.

The convolutional inverse,
(

gz−1
)−1

∗ , of

gz−1 = qe (z − 1) Φz
e + qo (z − 1)Φz

o ∈ SH′
1,

exists provided q2
e (z − 1) + q2

o (z − 1) 6= 0 and is given by

(
gz−1

)−1

∗
=

qe (z − 1)

q2
e (z − 1) + q2

o (z − 1)
Φ−z

e −
qo (z − 1)

q2
e (z − 1) + q2

o (z − 1)
Φ−z

o .

Similarly, from [7, Theorem 6] follows that the set I ′
· consists of all the (uniquely)

invertible AHDs on R under multiplication. From the associativity of equivalence
sets, [7, Theorem 3], and since 1 ∈ I ′

· it follows that (I ′
· , .) is an Abelian group.

The multiplicative inverse, (gz)−1
· , of

gz = pe (z) |x|
z + po (z)

(
|x|z sgn

)
∈ SH′

1,

exists provided p2
e (z)− p2

o (z) 6= 0 and is given by

(gz)−1
· =

pe (z)

p2
e (z)− p2

o (z)
|x|−z −

po (z)

p2
e (z)− p2

o (z)

(
|x|−z sgn

)
.

We have the following structure theorem for SH′
1.

Theorem 13. There holds, I ′
∗,− ∪ I ′

∗ ∪ I ′
∗,+ = SH′

1 = I ′
·,− ∪ I ′

· ∪ I ′
·,+.

Proof. A. SH′
1 = I ′

∗,− ∪ I ′
∗ ∪ I ′

∗,+.

Any element f z ∈ SH′
1 can be represented as in definition (1). If q2

e (z) +
q2

o (z) 6= 0, ∀z ∈ C, then f z ∈ I ′
∗. Else, if q2

e (z) + q2
o (z) = 0 for some z, then

qo (z) = ±iqe (z) and f z ∈ I ′
∗,− or f z ∈ I ′

∗,+.
B. Similarly, using (2).
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It will be shown elsewhere that among the elements of I ′
∗ are kernels of con-

volution operators that act as generalized complex order integration/derivation
operators for the whole line R. Similarly, among the elements of I ′

· are kernels of
multiplication operators which also act as a second type of (homomorphic) gen-
eralized complex order integration/derivation operators for the whole line R.

Both types of generalized integration over R are distinguished as follows.
Convolution operators, having kernels of negative integer degree of homogene-
ity z = −k ∈ Z− from I ′

∗, are generalized ‘multiplication’ derivations of the form

δ(k)∗ (since they satisfy Leibniz’ rule with respect to the multiplication product).
Multiplication operators, having kernels of non-negative integer degree of homo-
geneity z = k ∈ N from I ′

· , are generalized ‘convolution’ derivations of the form
xk. (since they satisfy Leibniz’ rule with respect to the convolution product). Also
see [2, Section 3.2].

2.3 General polynomial structure

Theorem 14. Any element of H′ is a polynomial in the variable (DwΦw
e )w=0, of degree

equal to the order of association, with coefficients in
(
SH′

1, ∗
)

and for which the external
product is convolution.

Proof. Using [6, eq. (38)], we can rewrite the representation [6, eq. (51)] for an
element of H′ of order of association m in the following form,

f z
m =

m

∑
n=0

(
αn (z) ∗ Φz+1

e

)
∗ (Dn

wΦw
e )w=0 . (10)

The coefficients in (10),

gz , αn (z) ∗ Φz+1
e ,

= (qn,e (z) δ + qn,o (z) η) ∗ Φz+1
e ,

= qn,e (z) Φz+1
e + qn,o (z) Φz+1

o ,

are elements of SH′
1, because (i) if z ∈ C\Z+, then gz ∈ H′

0 ⊂ SH′
1 and (ii) if

z = k ∈ Z+, either Φz+1
e or Φz+1

o is to be replaced by any extension
(

Φ
2p+1
e

)
e

or
(

Φ
2p+2
o

)
e
, respectively, and then gz ∈ SH′

1.

Further, by [6, eq. (38)] again, we have that

(
D

p
wΦw

e

)
w=0

∗
(

D
q
wΦw

e

)
w=0

=
(

D
p+q
w Φw

e

)
w=0

. (11)

Eqs. (10) and (11) shows that any element in H′ is a polynomial, in the variable
(DwΦw

e )w=0, with coefficients taken from SH′
1.

The normalized parity basis HD Φz
e is a generating distribution for the mono-

mial sequence {(Dn
wΦw

e )w=0 , ∀n ∈ N} through its Maclaurin series about z = 0.
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Using [2, eqs. (303), (10)–(11), (253), (173) and (259)–(260)], we find that (with γ
the Euler-Mascheroni constant),

ζe,∗ , (DwΦw
e )w=0 = γδ + π

(
1

2
(η sgn)0

)
. (12)

The elements of the monomial sequence, ζn
e,∗ = (Dn

wΦw
e )w=0, ∀n ∈ Z+, will be

called even associated delta distributions (because Φ0
e = δ). We will refer to expres-

sion (10) as the polynomial convolution representation of an AHD on R.

Theorem 15. Any element of H′ is a polynomial in the variable
(

Dw |x|w
)

w=0
, of degree

equal to the order of association, with coefficients in
(
SH′

1, .
)

and for which the external
product is multiplication.

Proof. By Fourier transformation and Theorem 14.

The polynomial representation now takes the form

f z
m =

m

∑
n=0

(
αn (z) . |x|z

)
.
(
Dn

w |x|w
)

w=0
, (13)

αn (z) = pn,e (z) 1 + ipn,o (z) (−i sgn) . (14)

The polynomial variable is in this case

ζe,· ,
(

Dw |x|w
)

w=0
= ln |x| . (15)

The elements of the monomial sequence, ζn
e,· =

(
Dn

w |x|w
)

w=0
= lnn |x|, ∀n ∈ Z+,

will be called even associated one distributions (because |x|0 = 1). We will refer to
expression (13) as the polynomial multiplication representation of an AHD on R. This
is the form that is classically used to represent AHDs.

2.4 Polynomial substructures

It follows from the product formula for (H′, ∗), [6, Theorem 6], and for (H′, .),
[7, Theorem 8], that all the following substructures are closed.

2.4.1 Half-line convolution subalgebras

Definition 16. For all a0,± ∈ A (C, C) : a0,±(z) 6= 0 in C and ∀an,± ∈ A (Ω ⊆ C, C) ,
∀n ∈ Z+, define

H′
0,±,∗ ,

{
f z
0,± ∈ H′

0 : f z
0,± = a0,±(z)Φ

z+1
± , ∀z ∈ C

}
, (16)

H′
±,∗ ,

{
f z
m,± ∈ H′ : f z

m,± =
m

∑
n=0

an,±(z)D
n
z Φz+1

± , ∀z ∈ Ω, ∀m ∈ N

}
. (17)

Obviously, H′
+,∗ ⊂ D′

R and H′
−,∗ ⊂ D′

L.
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Theorem 17. Any element of H′
±,∗ is a polynomial with coefficients from the Abelian

group
(
H′

0,±,∗, ∗
)

and in the variable (DwΦw
±)w=0, for the respective sign.

Proof. (i) Due to the fact that Φ0
± = δ and in view of the restrictions placed on

the coefficient functions a0,±, the properties [4, eqs. (22)–(23)] of the distributions

Φz+1
± and the commutativity of the convolution product in

(
H′

0,±,∗, ∗
)

, we have

that
(
H′

0,±,∗, ∗
)

are Abelian groups.

(ii) Due to [4, eqs. (22)–(23)], any f z
m,± ∈ H′

±,∗ can be written as

f z
m,± =

m

∑
n=0

(
an,±(z)Φ

z+1
±

)
∗ (Dn

wΦw
±)w=0 , (18)

showing that any element of H′
±,∗ is a polynomial with coefficients from H′

0,±,∗.

The normalized half-line basis AHDs Φz
± are generating distributions for the

respective polynomial sequences
{
(Dn

wΦw
±)w=0 , ∀n ∈ N

}
, through their Maclau-

rin series about z = 0. Using [2, eqs. (253), (10), (171) and (259)–(260)], we find
the polynomial variable in this case to be

ζ±,∗ , (DwΦw
±)w=0 = γδ + πη±,0. (19)

The elements ζn
±,∗ = (Dn

wΦw
±)w=0, ∀n ∈ Z+, will be called half-line associated delta

distributions (because Φ0
± = δ).

The sets H′
0,±,∗ contain the convolution kernels for complex degree integra-

tion/derivation over half-lines, so
(
H′

0,±,∗, ∗
)

is the structure which serves as

justification for the distributional generalization of the classical fractional calcu-
lus on half-lines.

Definition 18. Denote by F ′
0,±,∗ and F ′

±,∗ the set of all finite sums of elements of H′
0,±,∗

and H′
±,∗ over C, respectively.

The structures
(
F ′
±,∗,+, ∗

)
are convolution algebras over C, called the half-line

convolution subalgebras.

2.4.2 Complex multiplication subalgebras

Definition 19. For all c0,± ∈ A (C, C) : c0,±(z) 6= 0 in C and ∀cn,± ∈ A (Ω ⊆ C, C),
∀n ∈ Z+, define

H′
0,x±i0,· ,

{
f z
0,± ∈ H′

0 : f z
0,± = c0,±(z) (x ± i0)z , ∀z ∈ C

}
, (20)

H′
x±i0,· ,

{
f z
m,± ∈ H′ : f z

m,± =
m

∑
n=0

cn,±(z)D
n
z (x ± i0)z , ∀z ∈ Ω, ∀m ∈ N

}
. (21)

Obviously, H′
x±i0,· ⊂ Z ′

± (see [2]).
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Theorem 20. Any element of H′
x±i0,· is a polynomial with coefficients from the Abelian

group
(
H′

0,x±i0,·, .
)

and in the variable
(

Dw (x ± i0)w)
w=0

, respectively.

Proof. By Fourier transformation and Theorem 17.

The polynomial representation (18) now takes the form

f z
m,± =

m

∑
n=0

(
cn,±(z) (x ± i0)z) .

(
Dn

w (x ± i0)w)
w=0

, (22)

The complex basis AHDs (x ± i0)z are generating distributions for the respec-
tive polynomial sequences

{(
Dn

w (x ± i0)w)
w=0

, ∀n ∈ N
}

, through their Maclau-
rin series about z = 0. Using [2, eq. (189)], we find that the polynomial variable
in this case is

ζx±i0,· ,
(

Dw (x ± i0)w)
w=0

= ∓iπ1 − ln (x ∓ i0) = −

(
ln |x| ± iπ

1

2
sgn

)
. (23)

The elements ζn
x±i0,· =

(
Dn

w (x ± i0)w)
w=0

, ∀n ∈ Z+, will be called complex associ-

ated one distributions (because (x ± i0)0 = 1).

Definition 21. Denote by F ′
0,x±i0,· and F ′

x±i0,· the set of all finite sums of elements of

H′
0,x±i0,· and H′

x±i0,· over C, respectively.

The structures
(
F ′

x±i0,·,+, .
)

are multiplication algebras over C, called the

complex multiplication subalgebras.

2.4.3 Even convolution subalgebra

Definition 22. For all q0,e ∈ A (C, C) : q0,e(z) 6= 0 in C and ∀qn,e ∈ A (Ω ⊆ C, C),
∀n ∈ Z+, define

SH′
1,e,∗ ,

{
f z
1,e ∈ SH′

1 : f z
1,e = q0,e(z)Φ

z+1
e , ∀z ∈ C

}
, (24)

H′
e,∗ ,

{
f z
m,e ∈ H′ : f z

m,e =
m

∑
n=0

qn,e(z)D
n
z Φz+1

e , ∀z ∈ Ω, ∀m ∈ N

}
. (25)

At z = k ∈ Zo,+, the distributions Dn
z Φz

e in (24)–(25) are to be replaced by their equiv-
alence set of extensions.

Theorem 23. Any element of H′
e,∗ is a polynomial with coefficients from the Abelian

group
(
SH′

1,e,∗, ∗
)

and in the variable (DwΦw
e )w=0.

Proof. (i) Due to the fact that Φ0
e = δ and the restriction placed on the coefficient

function q0,e, the convolution property [6, eq. (38) with m = n = 0] of the dis-
tribution Φz+1

e and the commutativity of the convolution product of equivalence
sets in

(
SH′

1,e,∗, ∗
)
, we have that

(
SH′

1,e,∗, ∗
)

is an Abelian group.
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(ii) Due to [6, eq. (38)], any f z
m,e ∈ H′

e,∗ can be written as

f z
m,e =

m

∑
n=0

(
qn,e(z)Φ

z+1
e

)
∗ (Dn

wΦw
e )w=0 , (26)

showing that any element of H′
e,∗ is a polynomial with coefficients from SH′

1,e,∗
and in the variable ζe,∗ given by (12).

Definition 24. Denote by SF ′
1,e,∗ and F ′

e,∗ the set of all finite sums of elements of

SH′
1,e,∗ and H′

e,∗ over C, respectively.

The structure
(
SF ′

1,e,∗,+, ∗
)

is a non-associative ring with identity. The struc-

ture
(
F ′

e,∗,+, ∗
)

is a convolution algebra over C, called the even convolution subal-
gebra.

2.4.4 Even multiplication subalgebra

Definition 25. For all p0,e ∈ A (C, C) : p0,e(z) 6= 0 in C and ∀pn,e ∈ A (Ω ⊆ C, C),
∀n ∈ Z+, define

SH′
1,e,· ,

{
f z
1,e ∈ SH′

1 : f z
1,e = p0,e(z) |x|

z , ∀z ∈ C
}

, (27)

H′
e,· ,

{
f z
m,e ∈ H′ : f z

m,e =
m

∑
n=0

pn,e(z)D
n
z |x|

z , ∀z ∈ Ω, ∀m ∈ N

}
. (28)

At z = −k ∈ Zo,−, the distributions Dn
z |x|

z in (27)–(28) are to be replaced by their
equivalence set of extensions.

Theorem 26. Any element of H′
e,· is a polynomial with coefficients from the Abelian

group
(
SH′

1,e,·,+, .
)

and in the variable
(

Dw |x|w
)

w=0
.

Proof. By the Fourier transformation and Theorem 23.

The polynomial representation (26) now takes the form

f z
m,e =

m

∑
n=0

(
pn,e(z) |x|

z) .
(

Dn
w |x|w

)
w=0

, (29)

with the polynomial variable ζe,· given by (15).

Definition 27. Denote by SF ′
1,e,· and F ′

e,· the set of all finite sums of elements of SH′
1,e,·

and H′
e,· over C, respectively.

The structure
(
F ′

e,·,+, .
)

is a convolution algebra over C, called the even multi-
plication subalgebra.
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2.4.5 Complex convolution subalgebras

Definition 28. For all c0,± ∈ A (C, C) : c0,±(z) 6= 0 in C and ∀cn,± ∈ A (Ω ⊆ C, C),
∀n ∈ Z+, define

SH′
1,x±i0,∗ ,

{
f z
1,x±i0 ∈ H′

1 : f z
1,x±i0 = c0,±(z)Φ

z+1
x±i0, ∀z ∈ C

}
, (30)

H′
x±i0,∗ ,

{
f z
m,x±i0 ∈ H′ : f z

m,x±i0 =
m

∑
n=0

cn,±(z)D
n
z Φz+1

x±i0,

∀z ∈ Ω, ∀m ∈ N} . (31)

At z = k ∈ Z+, the distributions Dn
z Φz

x±i0 in (30)–(31) are to be replaced by their
equivalence set of extensions.

Theorem 29. Any element of H′
x±i0,∗ is a polynomial with coefficients from the Abelian

group
(
SH′

1,x±i0,∗, ∗
)

and in the variable
(

DwΦw
x±i0

)
w=0

, respectively.

Proof. (i) Due to the fact that the Heisenberg distributions Φ0
x±i0 are identity el-

ements in
(
SH′

1,x±i0,∗, ∗
)

and the restrictions placed on the coefficient functions
c0,±, the convolution properties [6, eqs. (47) and (49) with m = n = 0] of the
distributions Φz

x±i0 and the commutativity of the convolution product of equiva-

lence sets in
(
SH′

1,x±i0,∗, ∗
)
, we have that

(
SH′

1,x±i0,∗, ∗
)

are Abelian groups.
(ii) Due to [6, Corollary 5], any f z

m,x±i0 ∈ H′
x±i0,∗ can be written as

f z
m,x±i0 =

m

∑
n=0

(
cn,±(z)Φ

z
x±i0

)
∗
(

Dn
wΦw

x±i0

)
w=0

, (32)

showing that any element of H′
x±i0,∗ is a polynomial with coefficients from

SH′
1,x±i0,∗ in the variables

(
DwΦw

x±i0

)
w=0

, respectively.

The normalized complex basis AHDs Φz
x±i0 are generating distributions for

the respective polynomial sequences
{(

Dn
wΦw

x±i0

)
w=0

, ∀n ∈ N

}
, through their

Maclaurin series about z = 0. Using [2, eqs. (354), (10)–(11), (133), (152), (172),
(173) and (259)–(260)], we find that the polynomial variable in this case is

ζx±i0,∗ ,
(

DwΦw
x±i0

)
w=0

= γ
1

2
(δ ± iη) + π

1

2

(
1

2
(η sgn)0 ± i

1

π
η ln |x|

)
. (33)

The elements ζn
x±i0,∗ =

(
Dn

wΦw
x±i0

)
w=0

will be called associated normalized complex
distributions. Due to [2, eq. (346)], ζx+i0,∗ + ζx−i0,∗ = ζe,∗.

Definition 30. Denote by SF ′
1,x±i0,∗ and F ′

x±i0,∗ the set of all finite sums of elements

of SH′
1,x±i0,∗ and H′

x±i0,∗ over C, respectively.

The structures
(
F ′

x±i0,∗,+, ∗
)

are convolution algebras over C, called the com-

plex convolution subalgebras.
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2.4.6 Half-line multiplication subalgebras

Definition 31. For all a0,± ∈ A (C, C) : a0,±(z) 6= 0 in C and ∀an,± ∈ A (Ω ⊆ C, C),
∀n ∈ Z, define

SH′
1,±,· ,

{
f z
1,± ∈ H′

1 : f z
1,± = a0,±(z)x

z
± , ∀z ∈ C

}
, (34)

H′
±,· ,

{
f z
m,± ∈ H′ : f z

m,± =
m

∑
n=0

an,±(z)D
n
z xz

±, ∀z ∈ Ω, ∀m ∈ N

}
. (35)

At z = −k ∈ Z−, the distributions Dn
z xz

± in (34)–(35) are to be replaced by their
equivalence set of extensions.

Theorem 32. Any element of H′
±,· is a polynomial with coefficients from the Abelian

group
(
SH′

1,±,·, .
)

and in the variable (Dwxw
±)w=0, respectively.

Proof. By Fourier transformation and Theorem 29.

The polynomial representation (32) now takes the form

f z
m,± =

m

∑
n=0

(an,±(z)x
z
±) . (Dn

wxw
±)w=0 , (36)

The half-line basis AHDs xz
± are generating distributions for the respective poly-

nomial sequences
{
(Dn

wxw
±)w=0 , ∀n ∈ N

}
, through their Maclaurin series about

z = 0. Using [2, eq. (111)], we find for the polynomial variable in this case

ζ±,· , (Dwxw
±)w=0 = 1± ln |x| . (37)

The elements ζn
±,· = (Dn

wxw
±)w=0 = 1± lnn |x| will be called half-line associated step

distributions. Due to [2, eq. (130)], ζ+,· + ζ−,· = ζe,·.

Definition 33. Denote by SF ′
1,±,· and F ′

±,· the set of all finite sums of elements of

SH′
1,±,· and H′

±,· over C, respectively.

The structures
(
F ′
±,·,+, .

)
are multiplication algebras over C, called the half-

line multiplication subalgebras.

2.5 Factor ring structures

(i) In the algebra (F ′
∗/N ′

0,+, ∗) we have commutativity and associativity for the
convolution product, single-valuedness of critical products with resulting degree
k ∈ N, homogeneous and unique extensions at Z+ (e.g.,

(
Φk

e,o

)
0
), equivalence of

xk
+ with xk

−, etc., and this structure becomes a commutative and associative ring
with ∗-identity. This is a consequence of a forthcoming impossibility theorem,
stating that enforcing a prolongation of the convolution product from a subset
of distributions (for which the commutative and associative convolution prod-
uct is defined) to a superset of generalized functions, while retaining all product
properties, makes us loose the 1 ideal N ′

0.
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(ii) In the algebra (F ′
· /E

′
0,+, .) we have commutativity and associativity for

the multiplication product, single-valuedness of critical products with resulting

degree k ∈ Z−, homogeneous and unique extensions at Z− (e.g., x−k
±,0), equiv-

alence of η
(k)
+,0 with η

(k)
−,0, etc., and this structure becomes a commutative and as-

sociative ring with .-identity. This is a consequence of Schwartz’ impossibility
theorem, [12], stating that enforcing a prolongation of the multiplication product
from the set of continuous functions (for which the commutative and associative
multiplication product is defined) to a superset of generalized functions, while
retaining all product properties, makes us loose the δ ideal E ′

0.
(iii) In the algebras (F ′

∗/ (N ′
0 ∪ E ′

0) ,+, ∗) and (F ′
· / (N ′

0 ∪ E ′
0) ,+, .) we restore

associativity, single-valuedness and get homogeneous and unique extensions at
integer degrees of homogeneity. Both structures are homomorphic under the
Fourier transformation. Notice that N ′

0 ∪ E ′
0 is not an ideal, not with respect to

the convolution product nor with respect to the multiplication product.
(iv) When F ′

∗ or F ′
· is considered as an algebra of partial distributions, defined

only on DZ, all these partial distributions are regular. Then, the resulting distri-
butional convolution algebra is isomorphic to a convolution algebra of integrable
functions and the resulting distributional multiplication algebra is isomorphic to
a multiplication algebra of integrable functions.
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