Regularity of a function related to the 2-adic
logarithm

Jan-Christoph Schlage-Puchta

For a function f: N — X mapping the positive integers to some set X, define
the g-kernel K, (f) as the set of functions {fi, : k € N,0 < ¢ < ¢*}, where

fre(n) = f(g*n+ £). The g-kernel is related to the concept of g-automaticity by
the following criterion due to Eilenberg [2] (see also [1, Theorem 6.6.2]).

Theorem 1. A function f is g-automatic if and only if K,(f) is finite.

The notion of g-regularity generalizes the concept of g-automaticity in the case
that X is the set of integers. A function f is called g-regular if K;(f) is contained
in a finitely generated Z-module.

Motivated by work of Lengyel [3] on the 2-adic logarithm, Allouche and Shal-
lit [1, Problem 16.7.4] asked whether the function

f(n) = min(k —va(k)), ey

k>n

where v, (k) is the 2-adic valuation, is 2-regular or not. Here we give a negative
answer to this question. More precisely, we show the following.

Theorem 2. The functions f: n — f(2%n) are Q-linearly independent.
For the proof we need the following simple statements concerning f.
Proposition 1. 1. We have f(n) = n — O(logn).

2. Forn = (272 — 3)2™ we have f(n) = min (n —m,n —m — £ —2+3-2"M).
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Proof. (1) We trivially have the bound f(n) < n. On the other hand we have

(k) < %, and hence f(n) > ming, k — %. Since the derivative of the
function t — 118% is1— @, which is positive for t > 2, for n > 2 the minimum
is attained for k = n and we conclude f(n) > n — }ggg, and the first claim is

proven.

(2) We want to show that as k runs over all integers >n the minimum in (1) is
attained at k = 1 or at k = 2/*"+2 = 5 4 3. 2™ From this our claim follows by
computing the value of k — v, (k) at these two positions. Assume first that k > n is
not divisible by 2 1. Then we have k — 15 (k) > n — v, (k) > n — m, which is what
we want to have. Next assume that v (k) > m and k < 2/7"+2, Then k = (2/+% —
2)2™, thatis, v5(k) = m+1,and wehavek — vy (k) = (n+2") —(m+1) > n—m,
which is also consistent with our claim. For k = 2(7"%2 we have k — v, (k) =
n—m—{—2+3-2" and thus it remains to consider the range k > 2/*"+2,
For 204m+2 < k< 20443 we have k — 1p(k) > 272 41— (L 4+ m+1) >
204m+2 _ (¢ 4+ m 4 2), and hence this range cannot contribute to the minimum.

Finally, if k > 2¢7%3, then k —vp(k) > k — 257 > 204"+3 — (0 4 m +3) >

204m+2 (¢ 4 m 4+ 2), and this range is also of no importance. Hence, the second
claim follows as well. n

We now turn to the proof of the theorem. Assume the family of functions
(fk0)k>0 was linearly dependent. Then there exist rational numbers Ay, ..., A,
not all 0, such that

4 .
ZMJQM)zO ()
j=0

holds for all integers n. Evaluating this equation asymptotically for n — oo we
see that the left hand side is n - ( Zf:o 2i /\]') + O(log n). This expression can only
vanish identically if

Y 2/A;=0. 3)

Let jo be the least integer satisfying A;; = 0. Then define ¢ = 3 - 2/o —1, and
putn = 2! — 3 into (2). We have

n—jo>n—jo—f—2+3-20=n—jy—1.
On the other hand we have
n—j<n—j—0—2+432=n—j—1-(j—jo) +3-(2/ —20)
for all j > jo, hence, by the second part of the proposition relation (2) becomes

. . p .
Ajp(2on —jo— € —2+3-200) + Z Ai(2n—j) =0. (4)
J=Jo
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Finally we put n’ = 2/*1 — 3 into (2). The same computation as the one used for
n yields the equation

. . p .
Ajy (200" —jo — € —3+3-200) + Z Ai(2n' —j) = 0. (5)
J=Jo

Note that the difference between (4) and (5) is that n is replaced by n’, and —2 is
replaced by —3. If we take the difference of (4) and (5), we therefore obtain

, P .
Ajp(2°(n" —n) +1) + Z A2l (n" —n) = 0.
J=Io

If we now multiply (3) by (n — n’), and subtract the result from the last equation,
all that remains is Aj; = 0. But jo was chosen subject to the condition A;; # 0.
Hence, the initial assumption that not all A]- are 0 is wrong, and we conclude that
there is no linear relation among the functions fy .

The reader might wonder why we restricted our attention to the functions fy .
Essentially the same method of proof can be used to show that the dimension
of the linear span (fig, fx,,- -, fyox-1) tends to infinity with k. However, things
become notationally more involved, since these functions are no longer linearly
independent. In fact, we have fi , = fi ;11 for every odd a and many more iden-
tities like this, that is, these functions are not even different, and to give a lower
bound for the dimension we have to choose a suitable subset.
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