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Abstract

A new formulation for a class of stochastic linear complementarity prob-

lems (SLCPs) with finitely many realizations is proposed, which reformu-

lates the SLCPs as a system of smoothing equations without any constraints

by an NCP function. Then, we extend an one step smoothing Newton method

to this formulation. Moreover, we show that this algorithm converges glob-

ally and local quadratically under mild assumptions.

1 Introduction

The stochastic linear complementarity problem (SLCP) is to find a vector x ∈ IRn

such that

x ≥ 0, F(x, w) = M(w)x + q(w) ≥ 0, xTF(x, w) = 0, (1)

where F : IRn × Ω → IRn denotes a vector valued function, (Ω, F , P) is a proba-

bility space with Ω ⊆ IRm, M(w) ∈ IRn×n and q(w) ∈ IRn for w ∈ Ω are random
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matrices and vectors. Because of the existence of a random elements w, however,

we cannot generally expect that there exists a vector x∗ satisfying (1). That is (1)

may not have a solution in general. Therefore, to present an appropriate deter-

ministic formulation of SLCP is an important issue. There have been proposed

three types of formulations of SLCP, the expected value (EV) formulation [1, 2],

the expected residual minimization (ERM) formulation [3, 4, 5, 6], and the SMPEC

formulation [7, 8].

This paper considers the following class of stochastic linear complementarity

problems in which Ω only has finitely many elements. Let Ω = {w1, w2, · · · , wm}.

Find an x ∈ IRn such that

x ≥ 0, F(x, wi) = M(wi)x + q(wi) ≥ 0, xTF(x, wi) = 0, i = 1, 2, · · · , m, m > 1. (2)

We suppose pi = P{wi ∈ Ω} > 0, i = 1, 2, · · · , m. In [6], problem (2) was

formulated equivalent to (3)-(4),

x ≥ 0, Mx + q ≥ 0, xT(Mx + q) = 0, (3)

M(wi)x + q(wi) ≥ 0, i = 1, 2, · · · , m, (4)

where M =
m

∑
i=1

pi M(wi) and q =
m

∑
i=1

piq(wi). Let F(x) be the expectation function

of the random function F(x, w), then F(x) = E[F(x, w)] = Mx+ q. Paper [6] refor-

mulated the problem (2) as a system of nonsmooth equations with nonnegative

constraints.

In this paper, we aim at modifying the constrained minimization reformula-

tion for (2) in [6]. By using the smoothing symmetric perturbed Fischer func-

tion (for short, denoted as the SSPF-function) [9], we propose a new formulation

for SLCP (2) with smoothing parameter, which reformulates (3)-(4) as a system

of smoothing equations without any constraints. We then extend the one step

smoothing Newton method in [10] to this problem. Under the assumptions that

M is a P0-matrix and the solution set of the linear complementarity problem (3)

is nonempty and bounded, the smoothing Newton algorithm is convergent glob-

ally and local quadratically.

Throughout this paper, we use the following notation. All vectors (vector

functions) are column vectors (vector functions). IR++ denotes the positive or-

thant in IR. For any vector u ∈ IRn, we denote by diag{ui, i = 1, 2, · · · , n} the

diagonal matrix whose ith diagonal element is ui. The symbol ‖ · ‖ stands for the

2-norm. For any locally Lipschitzian function F : IRn → IRn, by

∂BF(x) = { lim
xk∈DF ,xk→x

F′(xk)}, ∂F(x) = co(∂BF(x))

denote the B-subdifferential and the Clark subdifferential of F at x respectively,

in which DF ⊂ IRn denotes the set of points at which F is differentiable.

The following definitions will be used in this paper.
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Definition 1. The mapping F : IRn → IRn is said to be a P0-function if there is an index

i such that

xi 6= yi and (xi − yi)
[
Fi(x)− Fi(y)

]
≥ 0, f or all x, y ∈ IRn, x 6= y.

Definition 2. A matrix M ∈ IRn×n is said to be a P0-matrix if all its principal minors

are nonnegative.

Definition 3. Suppose that F : IRn → IRn is a locally Lipschitzian function. F is said

to be semismooth at x if F is directionally differentiable at x and for any V ∈ ∂F(x + h)

and ‖h‖ → 0,

‖F(x + h)− F(x) − Vh‖ = o(‖h‖).
F is said to be strongly semismooth at x if F is semismooth at x and

‖F(x + h)− F(x)− Vh‖ = O(‖h‖2).

2 The New Formulation and Algorithm

In this section, we reformulate the problem (2) as an unconstrained optimization

problem and then extend the one step smoothing Newton method in [10] to this

problem.

In the rest of this paper, we assume that M is a P0- matrix. Obviously, equation

(3) is a standard linear complementarity problem. Therefore, we can reformulate

it as a system of smooth equation by an NCP function. Here, we consider the

smoothing symmetric perturbed Fischer function (SSPF-function) [9] φ : IR3 → IR

defined by

φ(µ, a, b) = (1 + µ)(a + b)−
√
(a + µb)2 + (µa + b)2 + µ2. (5)

For µ = 0, φ(0, a, b) is the Fischer-Burmeister function with the following prop-

erty

φ(0, a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Define the function Φ : IRn+1 → IRn by

Φ(µ, x) =




φ(µ, x1, F1(x))
...

φ(µ, xn, Fn(x))


 . (6)

Then, (3) is equivalent to the equation Φ(0, x) = 0.

For any x ∈ IRn and µ ∈ IR, define the function f : IRn → IRn and g : IRn+1 →
IRn, respectively, as

f (x) = (e|x1 |−x1 − 1, e|x2|−x2 − 1, · · · , e|xn|−xn − 1)T
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and

g(µ, x) = (e
√

x2
1+µ2−x1 − 1, e

√
x2

2+µ2−x2 − 1, · · · , e
√

x2
n+µ2−xn − 1)T. (7)

Thus, f (x) ≥ 0, for all x ∈ IRn.

Set y = [y·1, y·2, · · · , y·m]T ∈ IRmn, where y·i ∈ IRn, i = 1, 2, · · · , m. Let z =

(µ, x, y) ∈ IRn(m+1)+1 and

H(z) =




µ

Φ(µ, x)

M(w1)x + q(w1)− g(µ, y·1)
M(w2)x + q(w2)− g(µ, y·2)

...

M(wm)x + q(wm)− g(µ, y·m)




. (8)

Hence, (3)-(4) is equivalent to finding a root of the following equation

H(z) = 0. (9)

Lemma 1. Let Φ : IRn+1 → IRn and H : IRn(m+1)+1 → IRn(m+1)+1 be defined by (6)

and (8), respectively. Then

(i) Φ is continuously differentiable at any (µ, x) ∈ IRn+1 with µ 6= 0. For µ = 0, Φ

is semismooth on IRn+1.

(ii) H is continuously differentiable and its Jacobian H′ is nonsingular at any

z = (µ, x, y) ∈ IR++ × IRn × IRmn.

(iii) H is locally Lipschitzian and strongly semismooth on IRn(m+1)+1.

Proof. (i) By Lemma 2.4 (a) in [10], (i) holds.

(ii) It follows from (i) and the definition (7) that H is continuously differen-

tiable on IR++ × IRn × IRmn. For any z = (µ, x, y) ∈ IR++ × IRn × IRmn, we have

that

H′(z) =




1 0 0 0 · · · 0

Φ′
µ(µ, x) Φ′

x(µ, x) 0 0 · · · 0

u1(z) M(w1) △1 0 · · · 0

u2(z) M(w2) 0 △2 · · · 0
...

um(z) M(wm) 0 0 · · · △m




, (10)

where ui(z) = g′µ(µ, y·i) and △i = g′y(µ, y·i), i = 1, 2, · · · , m.

For any x ∈ IRn, µ 6= 0, a straightforward calculation yields

g′x(µ, x) = diag
{( xi√

x2
i + µ2

− 1
)
e
√

x2
i +µ2−xi , i = 1, 2, · · · , n

}
.
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It is not difficult to see that
( xi√

x2
i +µ2

− 1
)
e
√

x2
i +µ2−xi 6= 0, then we have

|△i| 6= 0, i = 1, 2, · · · , m. (11)

Since M is a P0-matrix, F(x) must be a P0- function. In view of Lemma 2.4 (b) in

[10], the matrix Φ′
x(µ, x) is nonsingular. This together with (11) imply H′(x) is

nonsingular at any z = (µ, x, y) ∈ IR++ × IRn × IRmn.

(iii) Since F(x) = Mx + q, there must exist a constant L > 0 such that

‖F
′
(x1)− F

′
(x2)‖ = ‖M − M‖ ≤ L‖x1 − x2‖, ∀ x1, x2 ∈ IRn.

By Lemma 2.4 (c) in [10], H is strongly semismooth on IRn(m+1)+1.

Next, we employ the algorithm in [10] to solve the equation (9).

Define

ρ(z) = γ‖H(z)‖ · min{1, ‖H(z)‖}, 0 < γ < 1.

Algorithm

Step 0 Choose 0 < µ0 < 1 and δ, σ ∈ (0, 1). Let u = (µ0, 0) ∈ IR++ × IRn(m+1)

and (x0, y0) ∈ IRn × IRmn, Let z0 = (µ0, x0, y0). Choose γ ∈ (0, 1) such that

γ‖H(z0)‖ < 1. Set k = 0.

Step 1 If ||H(zk)|| = 0, stop. Otherwise, let ρk = ρ(zk).

Step 2 Compute △zk = (△µk ,△xk,△yk) ∈ IRn(m+1)+1 by

H(zk) + H′(zk)△zk = ρku. (12)

Step 3 Let mk be the smallest nonnegative integer such that

‖H(zk + δmk△zk)‖ ≤ [1 − σ(1 − γ)δmk ]‖H(zk)‖. (13)

Let αk = δmk .

Step 4 Set zk+1 = zk + αk△zk and k = k + 1. Go to Step 1.

Like the analysis in [10], in order to prove the algorithm is well-defined, we

should define the set

Ω = {z ∈ IRn(m+1)+1|µ ≥ ρ(z)µ0}.

Lemma 2. The algorithm is well-defined and generates an infinite sequence

{zk = (µk, xk, yk)} with µk ∈ IR++ and zk ∈ Ω for all k ≥ 0.

Proof. The result can be obtained immediately from Theorem 2.5 in [10].
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3 Convergence Analysis

The convergence properties of this method are summarized in the following the-

orem.

Assumption 1. The solution set of (3) is nonempty and bounded.

Theorem 1. Suppose that Assumption 1 is satisfied and M is a P0-matrix. Let

{zk = (µk, xk, yk)} be the iteration sequence generated by the algorithm. Then

(i) {zk} is bounded.

(ii) The sequences {‖H(zk)‖} and {µk} tend to zero and hence it has at least one

accumulation point z∗ = (µ∗, x∗, y∗) with H(z∗) = 0. Therefore, x∗ is a solution of

(3)-(4).

(iii) If all V ∈ ∂H(z∗) are nonsingular, then the whole sequence {zk} converges to

z∗ and the rate of convergence is quadratic.

Proof. (i) Define the level set

L(c) = {z ∈ IRn(m+1)+1|‖H(z)‖ ≤ ‖H(z0)‖ = c}.

Let L(c) = {x ∈ IRn|‖Φ(µ, x)‖ ≤ c}. Then L(c) ⊂ L(c). From line search (13), we

know {zk} ⊂ L(c). It follows from Assumption 1 and Theorem 3.6 (ii) in [10] that

{µk, xk} is bounded. So, we only to prove {yk} is bounded. Suppose ‖yk‖ → ∞,

then

‖M(wi)x
k + q(wi)− g(µk , yk

·i)‖ → ∞, i = 1, 2, · · · , m.

This contradicts the fact that zk ∈ L(c).

(ii) From Lemma 2, we known

µk+1 = µk + αk△µk = (1 − αk)µk + αkρkµ0 ≤ µk,

which implies that {µk} is monotonically decreasing and bounded. Thus, {µk}
is convergent. On the other hand, by (i) and (13), {‖H(zk)‖} is also monotoni-

cally decreasing and bounded and hence is convergent. Let z∗ = (µ∗, x∗, y∗) be

an accumulation point of {zk}. Without loss of generality, we assume that {zk}
converges to z∗. Then

lim
k→∞

‖H(zk)‖ = ‖H(z∗)‖, lim
k→∞

µk = µ∗, lim
k→∞

ρk = ρ∗ = γ‖H(z∗)‖min{1, ‖H(z∗)‖}.

If {‖H(zk)‖} does not converge to zero. Then

‖H(z∗)‖ > 0, ρ∗ > 0, 0 < ρ∗µ0 ≤ µ∗ ≤ µ0. (14)

So lim
k→∞

αk = 0 from (13). Thus, the stepsize α̃ =
αk

δ
does not satisfy the line search

criterion in Step 3 for any sufficiently large k, i.e., the following inequality holds

‖H(zk + α̃△zk)‖ >

[
1 − σ(1 − γ)α̃

]
‖H(zk)‖
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for any sufficiently large k, which implies that

‖H(zk + α̃△zk)‖ − ‖H(zk)‖
α̃

> −σ(1 − γ)‖H(zk)‖.

From µ∗ 6= 0, we know that H(·) is continuously differentiable at z∗. Letting

k → ∞, then above inequality gives

1

‖H(z∗)‖ (H(z∗))T H′(z∗)△z∗ ≥ −σ(1 − γ)‖H(z∗)‖. (15)

Additionally, by taking the limit on (12), we get

H′(z∗)△z∗ = −H(z∗) + ρ∗u. (16)

Combining (15) with (16), we have

ρ∗‖H(z∗)‖µ0 ≥ [1 − σ(1 − γ)]‖H(z∗)‖2.

Noting 0 < µ0 < 1 and the definition of ρk, then

γ‖H(z∗)‖2 ≥ [1 − σ(1 − γ)]‖H(z∗)‖2. (17)

(17) indicates (1 − σ)(1 − γ) ≤ 0, which contradicts the fact that σ, γ ∈ (0, 1).

Thus, H(z∗) = 0 and µ∗ = 0. According to the definition of H, we obtain

M(wi)x
∗ + q(wi) ≥ 0, i = 1, 2, · · · , m and Φ(0, x∗) = 0.

Therefore, x∗ is a solution of (3)-(4).

(iii) These results can be proved by following from Theorem 3.7 in [10].

Remark The conditions of global and local convergence in this paper are

weaker than those required by [6].
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