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Abstract

The paper is concerned with the class X(n) consisting of all functions,
which are n-fold symmetric, convex in the direction of the real axis and have
real coefficients. For this class we determine the Koebe domain, i.e. the set
⋂

f∈X(n) f (∆), as well as the covering domain, i.e. the set
⋃

f∈X(n) f (∆). The
results depend on the parity of n ∈ N. We also obtain the minorant and the
majorant for this class. These functions are defined as follows.

If there exists an analytic, univalent function m satisfying the following
conditions: m′(0) > 0, for every f ∈ X(n) there is m ≺ f , and

∧

f∈X(n) [k ≺
f ⇒ k ≺ m], then this function is called the minorant of X(n). Similarly, if
there exists an analytic, univalent function M such that M′(0) > 0, for every
f ∈ X(n) there is f ≺ M, and

∧

f∈X(n) [ f ≺ k ⇒ M ≺ k], then this function is

called the majorant of X(n).

If these functions exist, then m(∆) and M(∆) coincide with the Koebe
domain and the covering domain for X(n), respectively.

Introduction

In the beginning we recall that an analytic function f is subordinated to an ana-
lytic and univalent function F in ∆ ≡ {ζ ∈ C : |ζ| < 1} if and only if there exists
an analytic function ω such that ω(0) = 0, ω(∆) ⊂ ∆ and f (z) = F(ω(z)) for
z ∈ ∆. Then we write f ≺ F.
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Let S denote the set of all functions f analytic and univalent in ∆ and normal-
ized by f (0) = f ′(0)− 1 = 0. Let Y ⊂ S be the class of these functions in S which
have real coefficient and which are convex in the direction of the imaginary axis.
Similarly, let X ⊂ S consist of the functions with real coefficients in S, which are
convex in the direction of the real axis. We call a function f convex in the direc-
tion of the straight line l if the intersection of f (∆) and each line k parallel to l is
either k, or a segment, or a ray or an empty set.

For a given Y ⊂ S, if there exists an analytic and univalent function m satisfy-
ing the following conditions: m′(0) > 0,

∧

f∈Y
m ≺ f (1)

and for every analytic function k, k(0) = 0, there is




∧

f∈Y
k ≺ f



 ⇒ k ≺ m, (2)

then this function is called the minorant of Y . The set
⋂

f∈Y f (∆) is said to be
the Koebe domain for Y and is denoted by KY . Clearly, if the Koebe domain is a
simply connected set, then the minorant exists and KY = m(∆).

If there exists an analytic and univalent function M such that M′(0) > 0,
∧

f∈Y
f ≺ M (3)

and for every analytic function k, k(0) = 0, there is




∧

f∈Y
f ≺ k



 ⇒ M ≺ k, (4)

then this function is called the majorant of Y . The set
⋃

f∈Y f (∆) is said to be the
covering domain for Y and is denoted by LY . Notice that if the covering domain
is a simply connected set, then the majorant exists. In this case LY = M(∆).
EXAMPLES.
1. For Y = S there is m(z) = 1

4 z , z ∈ ∆, and hence KS = ∆1/4. In S the majorant
does not exist (LS = C).
2. For Y = Y there is m(z) = 1

2z , z ∈ ∆, (McGregor, [5]) and hence KY = ∆1/2.
The majorant does not exist (LY = C).

3. Y = CVR(2), where CVR(2) is the class of univalent, convex and odd func-
tions in ∆ with real coefficients. The set KCVR(2) was determined by Krzyż and
Reade (see [1]). Then, m maps ∆ onto the set KCVR(2) and m′(0) > 0. The function

M(z) =
∫ 1

0
z√

(1−t2)(1−t2z4)
dt is the majorant of CVR(2) (see [4]).

In [2] the class Y(n) was considered. This is the set of n-fold symmetric func-
tions from Y, i.e.

Y(n) ≡ { f ∈ Y : f (εz) = ε f (z), z ∈ ∆} , where ε = e
2πi
n .
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For functions in Y(n) the property f (∆) = ε f (∆) holds. In this case we say that
the set f (∆) is n-fold symmetric. The symbol aD is understood as {az : z ∈ D}.
In the above mentioned paper the authors derived the Koebe set and the covering

set as well as the minorant and the majorant in Y(n).
Now we are interested in another subclass of S, namely

X(n) ≡ { f ∈ X : f (εz) = ε f (z), z ∈ ∆} ,

where ε is defined as above.
It is known that if f is in X, then for each t ∈ (0, 1) the function f (tz)/t is also

in X. The same is true for functions in X(n). Therefore, the Koebe set for X(n) is,
in fact, a domain.

Observe that for even n, all functions from X(n) are odd. Hence

f ∈ X(n) ⇔ −i f (iz) ∈ Y(n) for n = 4k − 2 , k ∈ N , (5)

f ∈ X(n) ⇔ f ∈ Y(n) for n = 4k , k ∈ N . (6)

We conclude from (5-6) that one can transfer the results from Y(n) onto X(n).
Every function in X(n) has real coefficients. For this reason the set f (∆) is

symmetric with respect to the real axis. Another important property of the class

X(n) is given in

Lemma 1. If f ∈ X(n) then the straight line k : ζ = e
πi
n t , t ∈ R is a symmetry axis of

the set f (∆) .

Proof.

The symmetry with respect to the line ζ = e
πi
n t , t ∈ R means that for arbitrary

z, ζ ∈ ∆, if

ze−
πi
n = ζe−

πi
n (7)

then

f (z)e−
πi
n = f (ζ)e−

πi
n . (8)

Assume that the condition (7) is satisfied. We can write it equivalently in the form

ζ = ze
2πi
n = zε. (9)

From properties of f ∈ X(n) it follows that

f (z)ε = f (z)ε = f (zε) .

Applying (9) we obtain f (z)ε = f (ζ). This condition is equivalent to (8).

Corollary 1. If f ∈ X(n), then each straight line ζ = e
πi
n kt , t ∈ R, k = 0, 1, . . . , 2n− 1,

is a symmetric axis of f (∆).

The next lemma follows from Lemma 1 and from properties of the class X(n)

Lemma 2. The Koebe domain and the covering domain for X(n) are n-fold symmetric

and symmetric with respect to the lines ζ = e
πi
n kt , t ∈ R, k = 0, 1, . . . , 2n − 1 .
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Lemma 3. The Koebe domain and the covering domain for X(n) are symmetric with
respect to the imaginary axis.

Proof.

If f ∈ X(n) then g(z) = − f (−z) is also in X(n). Hence the sets f (∆) ∩ g(∆) and
f (∆) ∪ g(∆) are symmetric with respect to the imaginary axis. From this

⋂

f∈X(n)

f (∆) =
⋂

f∈X(n)

f (∆)∩ (− f (∆)) and
⋃

f∈X(n)

f (∆) =
⋃

f∈X(n)

f (∆)∪ (− f (∆)) .

From convexity of the functions in X(n) in the direction of the real axis we get

Lemma 4. The Koebe domain for X(n) is convex in the direction of the real axis.

For a fixed n we use the notation: Λj = {ζ ∈ C : 2(j − 1)π/n ≤ Arg ζ ≤
2jπ/n}, j = 1, 2, ..., n, and Λ = {ζ ∈ C : 0 ≤ Arg ζ ≤ π/n}. Furthermore, we
will write ∂D to denote the boundary of a set D.

By Lemma 2, we need to determine the boundaries of the Koebe domain and

the covering domain for X(n) in the set Λ only.

1 Koebe domain for X(n) and odd n.

Let n be a fixed odd integer, n ≥ 3. We consider two families of open and n-fold
symmetric polygons which are symmetric with respect to the real axis.

The first family consists of polygons such that their successive vertices u, v,
w belong to Λ and Arg u = 0, Arg v ∈ (0, π

n ), Arg w = π
n . The polygons’ inte-

rior angles corresponding with the vertices u, v, w are of the measure π(1 − 1
n),

π(1 + 1
n) and π(1 − 3

n), respectively. It means that the measure of the angle with

the vertex lying on the real positive semi-axis is equal to π(1 − 1
n). From the

above it follows that polygons of the described type have 4n sides.
This set of polygons is extended on limiting cases. If u = v (hence Arg v = 0),

then we obtain polygons having 2n sides of the same length and angles measur-
ing π(1 + 1

n ) and π(1− 3
n) alternately. If v = w (hence Arg v = π

n ) then we obtain

regular polygons having 2n sides and all angles measuring π(1 − 1
n ).

We denote this family of polygons by V1. Polygons of this family are shown
in Figure 1.

For n = 3 the sets of the family V1 are unbounded. Every fourth vertex of such
a polygon is extended to infinity. For this reason both sides adjacent to every such
vertex are parallel. In this way we obtain a star-shaped set with three unbounded
strips. The thickness of strips is growing as Arg v tends to π

3 .
In cases Arg v = 0 and Arg v = π

3 these sets become a regular hexagon and a
three-pointed unbounded star, respectively (see Figure 2).

Despite the unboundedness of these sets, we still call them polygons (of the
generalized type).
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Figure 1: Polygons: a) n = 5 , Arg v = π
12 b) n = 5 , Arg v = 0.

The second family of polygons, denoted by V2, is defined as follows:

V2 = {−W : W ∈ V1} .

Let f ∈ X(n) and let n be an odd integer greater than or equal to 3. Assume
that w, Arg w ∈ [0, π

n ], is the omitted value of f . Because of real coefficients, the
function f also omits w. From this and from n-fold symmetry of f , the set

Ω = {wεj , wεj : j = 0, 1, . . . , n − 1} (10)

is disjoint from f (∆).
All the points in Ω have the same modulus. Therefore, they can be arranged

in accordance with the increase of the argument as follows:

0 ≤ arg w ≤ arg wε ≤ arg wε ≤ arg wε2 ≤ · · · ≤ arg wεn−1 ≤ arg wεn ≤ 2π .
(11)

Now we take three successive points from Ω (in accordance with the order
of (11)) in the following way. By w∗ we denote the point which has the greatest
imaginary part among the points in Ω and by w∗

L and w∗
R the points directly pre-

ceding and succeeding w∗. The choice of w∗ is unique because each set Λe
π
n ki,

k = 0, 1, . . . , 2n − 1, contains only one point of Ω and because the set Λe
π
n

n−1
2 i is

symmetric with respect to the imaginary axis. It is easy to check that w∗ ∈ Λj0+1,

where j0 = Ent(n
4 ), and w∗

L = w∗ε
n−1

2 = w∗eπ(1− 1
n )i, w∗

R = w∗
Lε = w∗ε

n+1
2 =

w∗eπ(1+ 1
n )i.

Additionally, we assume that w∗ ∈ ∂ f (∆). This means that each point of
Ω belongs to ∂ f (∆). The function f is convex in the direction of the real axis,
thus f omits all points lying on the ray lR : ζ = w∗ + t , t ≥ 0, or on the ray
lL : ζ = w∗ − t , t ≥ 0.
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Figure 2: Polygons: a) n = 3 , Arg v = π
6 b) n = 3 , Arg v = π

3 .

I. Suppose that f (∆)∩ lR = ∅. From the symmetry of f ∈ X(n) with respect to the
straight line ζ = tεj0 , t ≥ 0, the ray kR : ζ = (w∗ + t)ε2j0 , t ≥ 0, is also disjoint
from f (∆). From the n-fold symmetry of f , each ray of the form lRεj and kRεj,
j = 0, 1, . . . , n − 1, is disjoint from f (∆).

Moreover, since w∗
L /∈ f (∆), one of two rays starting from w∗

L and parallel to
the real axis is also disjoint from f (∆). This ray appears to be pR : ζ = w∗

L + t , t ≥
0.
Indeed, if the ray ζ = w∗

L − t , t ≥ 0, were disjoint from f (∆), then, from the

symmetry with respect to the straight line ζ = te
π
2 (1− 1

n )i , t ≥ 0 (by Corollary 1),

the ray ζ = w∗ − teπ(1− 1
n )i , t ≥ 0, would be disjoint from f (∆). From this w∗ and

w∗
L would not belong to ∂ f (∆), a contradiction.

From the properties of X(n) it follows that each straight line pRεj, j = 0, 1, . . . ,
n − 1, and its reflection in the real axis have no common points with f (∆).

We conclude from the above argument that f (∆) is contained in a polygon
with one vertex in w∗. One can verify that this polygon belongs to the family V1

when n = 4k + 1 , k ∈ N, and to the family V2 when n = 4k − 1 , k ∈ N.

II. If f (∆) ∩ lL = ∅ then each ray lLεj, j = 0, 1, . . . , n − 1, and its reflection
in the real axis have no common points with f (∆). Similarly as in I., it can be
proved that f (∆) is disjoint from qL : ζ = w∗

R − t , t ≥ 0. From the properties of

X(n) it follows that each ray qLεj, j = 0, 1, . . . , n − 1, and its reflection in the real
axis have no common points with f (∆).

From above, f (∆) is contained in a polygon with one vertex in w∗. This poly-
gon is a member of V2 when n = 4k + 1 , k ∈ N, and is a member of V1 when
n = 4k − 1 , k ∈ N.

By the Schwarz-Christoffel formulae there exists exactly one analytic function
which maps ∆ univalently onto a fixed polygon of the family V1 and has positive
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derivative in 0. This function is

∆ ∋ z 7→ A
∫ z

0

n

√

(ζn − einϕ)(ζn − e−inϕ)

(ζn + 1)3(ζn − 1)
dζ , for a suitable ϕ ∈

[

0,
π

n

]

. (12)

From now on we choose the principal branch of the n-th root. It can be easily
checked that the above formula is still valid for ϕ = 0 and ϕ = π

n .

Putting suitable A into (12) we get the function with classical normalization

∆ ∋ z 7→
∫ z

0

n

√

(1 − ζne−inϕ)(1 − ζneinϕ)

(1 + ζn)3(1 − ζn)
dζ . (13)

We denote this function by F1,ϕ and the polygon F1,ϕ(∆) by A1,ϕ. With this nota-
tion V1 = {λA1,ϕ : λ > 0 , ϕ ∈ [0, π

n ]}.
Moreover, let

v1(ϕ) ≡ F1,ϕ(e
iϕ). (14)

For a fixed ϕ, the point v1(ϕ) coincides with the vertex of the polygon A1,ϕ such
that its argument is from the range [0, π

n ]. Hence, v1 is given by the formula

v1 :
[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 − tn)(1 − tne2inϕ)

(1 + tneinϕ)3(1 − tneinϕ)
dt , (15)

and it is an injective function on [0, π
n ].

In a similar way, there is exactly one analytic function which maps ∆ univa-
lently onto a fixed polygon of the family V2 and has positive derivative in 0. By
the definitions of V1 and V2, a function f maps ∆ onto a polygon of the family
V1 if and only if a function g, satisfying g(z) = − f (−z), maps ∆ onto a polygon
of the family V2. Therefore, F2,ϕ : z 7→ −F1,ϕ(−z) is typically normalized and
F2,ϕ(∆) ∈ V2.

Let
v2(ϕ) ≡ F2,ϕ(e

iϕ) . (16)

Hence, we can write

v2 :
[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 − tn)(1 − tne2inϕ)

(1 + tneinϕ)(1 − tneinϕ)3
dt . (17)

Let us define

F1(z) = z
∫ 1

0

n

√

(1 − tn)(1 − tnz2n)

(1 + tnzn)3(1 − tnzn)
dt ,

and

F2(z) = z
∫ 1

0

n

√

(1 − tn)(1 − tnz2n)

(1 + tnzn)(1 − tnzn)3
dt ,
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Theorem 1. Let n ≥ 3 be odd.

1. The minorant of the class { f ∈ X(n) : f (∆) ∈ V1} is

a) F1 for n = 4k − 1 , k ∈ N,

b) F2 for n = 4k + 1 , k ∈ N,

2. The minorant of the class { f ∈ X(n) : f (∆) ∈ V2} is

a) F2 for n = 4k − 1 , k ∈ N,

b) F1 for n = 4k + 1 , k ∈ N.

Proof.
For n = 4k − 1 , k ∈ N, and for a fixed ϕ ∈ [0, π

n ] we have

F1(e
iϕ) = eiϕ

∫ 1

0

n

√

(1 − tn)(1 − tne2inϕ)

(1 + tneinϕ)(1 − tneinϕ)3
dt .

Hence, values F1(e
iϕ) and v1(ϕ) are equal. Moreover, F1 is n-fold symmetric and

one-to-one on the boundary of ∆. This means that F1 is univalent in whole ∆ and

from this reason F1 is the minorant of { f ∈ X(n) : f (∆) ∈ V1}.
Analogously, one can prove the theorem in other cases.

Theorem 2. Let n ≥ 3 be odd. Then KX(n) = F1(∆) ∩ F2(∆).

Proof.

Let n ≥ 3 be an odd fixed number. Let us denote by K the Koebe domain for X(n).
From Theorem 1 we know that

K ⊂ F1(∆) ∩ F2(∆) . (18)

Suppose that w = ̺eiϕ ∈ Λ is a boundary point of K. Then the point w∗, which
has the greatest imaginary part among the points of Ω, belongs to

K ∩
{

ζ ∈ C :
n − 1

2n
π ≤ arg ζ ≤ n + 1

2n
π

}

From Lemma 3, −w∗ also belongs to this set. Without a loss of generality we can
assume that

Re−w∗ ≤ 0 ≤ Re w∗ .

We shall discuss three possibilities.
If the open segment with endpoints w∗ and −w∗ is contained in K, then w∗ 6=

−w∗ and there exists a function f ∈ X(n) such that w∗ ∈ ∂ f (∆). Hence

{w∗ + t : t ≥ 0} ∩ f (∆) = ∅ and {−w∗ − t : t ≥ 0} ∩ g(∆) = ∅ ,

where g(z) ≡ − f (−z). This implies

f ≺ F1,ϕ and g ≺ F2,ϕ ,
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but the normalization of f leads to f ≡ F1,ϕ and g ≡ F2,ϕ. Therefore,

∂K ⊂ ∂F1(∆) ∪ ∂F2(∆) .

This and (18) results in K = F1(∆) ∩ F2(∆).
In the second case, if the open segment with endpoints w∗ and −w∗ is disjoint

from K, then the whole straight line passing through these points is also disjoint

from K. There exist functions f , h ∈ X(n) such that w∗ ∈ ∂ f (∆), −w∗ ∈ ∂h(∆) and

{w∗ + t : t ≥ 0} ∩ f (∆) = ∅ and {−w∗ + t : t ≥ 0} ∩ h(∆) = ∅ .

Now we conclude that
f ≺ F1,ϕ and h ≺ F1,ϕ .

Then f ≡ F1,ϕ ≡ h, and consequently w∗ = −w∗, a contradiction.

Finally, if w∗ = −w∗, i.e. Arg w∗ = π
2 , then w∗ ∈ ∂F1,ϕ(∆) and w∗ ∈ ∂F2,ϕ(∆).

The functions F1 and F2 are n-fold symmetric and connected by relation
F1(−z) = −F2(z), z ∈ ∆. Observe that for all z ∈ ∆

F1(e
i π

n ) = ei π
n F2(z) .

From the argument similar to this used in the proof of Lemma 1, the curves
{F1(e

iθ) , θ ∈ [0, π
n ]} and {F2(e

iθ) , θ ∈ [0, π
n ]} are symmetric with respect to

the ray ζ = e
πi
2n t , t ≥ 0. This and Lemma 2 result in

Corollary 2. The set KX(n) for odd n ≥ 3 is 2n-fold symmetric.

Since KX(n) ∩ Λe
n−1
2n πi, or equivalently,

KX(n) ∩
{

ζ ∈ C :
n − 1

2n
π ≤ arg ζ ≤ n + 1

2n
π

}

is convex in the direction of the real axis, each point of the boundary of KX(n) , n =

4k − 1, which has argument from n−1
2n π to π

2 , is a vertex of some polygon of the

family V1 and each point which has argument from π
2 to n+1

2n π is a vertex of some
polygon of the family V2. The same is true in the case n = 4k + 1 but with ex-
changed families V1 and V2. Combining this and Theorem 2 we obtain

Theorem 3. Let n ≥ 3 be odd. The boundary of the Koebe domain for X(n) in the set Λ

coincides with

{F1(e
iθ) , θ ∈ [0, π

2n ]} ∩ {F2(e
iθ) , θ ∈ [ π

2n , π
n ]} .

Considering 2n-fold symmetry of this boundary it is sufficient to describe this

curve in any sector of the measure π
n . The boundary of the Koebe domain for X(n)

can be written simply as follows:

Corollary 3. Let n ≥ 3 be odd. The boundary of the Koebe domain for X(n) is of the form

⋃

j=0,...,2n−1

ej
π
n · {F1(e

iθ) , θ ∈ [− π
2n , π

2n ]} .
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At the end of this paragraph it is interesting to look at one special case of the
polygons discussed above. For n = 3 and ϕ = 0 the function F2,0 takes form

F2,0(z) =
∫ z

0

3
√

1 + ζ3

1 − ζ3
dζ . (19)

Since F2,0(∆) = −F1,0(∆), the set F2,0(∆) is a three-pointed unbounded star (in
Figure 2b the set F1,0(∆) is shown). All three bounded vertices of this polygon lie
on the circle of the radius

a = |F2,0(−1)| =
∫ 1

0

3
√

1 − t3

1 + t3
dt =

3
√

2

6
B(1

3 , 2
3) =

3
√

2

6
Γ(1

3 )Γ(
2
3 ) .

The symbols B and Γ stand for the Beta and the Gamma functions.
Therefore,

a =
3
√

2

3
√

3
π = 0.761 . . . ,

which yields that the width of each strip of this star equals

d =
3
√

2

3
π = 1.319 . . . .

The function (19) will also appear in paragraph 4.

2 Koebe domain for X(n) and even n.

Let n be a fixed even integer, n ≥ 2. From (5-6) and Theorem 4 established in [2]
we obtain

Theorem 4. Let n ≥ 2 be even. The minorant of the class X(n) is of the form

1. G1(z) = z
∫ 1

0

n

√

(1 − tn)2(1 − tnz2n)2

(1 + tnzn)4(1 − tnzn)2
dt for n = 4k − 2 , k ∈ N,

2. G2(z) = z
∫ 1

0

n

√

(1 − tn)2(1 − tnz2n)2

(1 − tnzn)4(1 + tnzn)2
dt for n = 4k , k ∈ N.

From this theorem we get the corollaries

Corollary 4. Let n be a fixed even integer, n = 4k − 2 , k ∈ N.

1. G1(∆) is the Koebe domain for X(n),

2. The boundary of the Koebe domain for X(n) in Λ1 is v1
2([0, π

n ]), where v1
2 is given

by

v1
2 :

[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 − tn)2(1 − tne2inϕ)2

(1 + tneinϕ)4(1 − tneinϕ)2
dt.
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Corollary 5. Let n be a fixed even integer, n = 4k , k ∈ N.

1. G2(∆) is the Koebe domain for X(n),

2. The boundary of the Koebe domain for X(n) in Λ1 is v2
2([0, π

n ]), where v2
2 is given

by

v2
2 :

[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 − tn)2(1 − tne2inϕ)2

(1 − tneinϕ)4(1 + tneinϕ)2
dt.

3 Covering domain for X(n) and odd n.

Let n be a fixed odd integer, n ≥ 3. We consider a family of open and n-fold
symmetric polygons such that their successive vertices u, v, w belong to Λ and
Arg u = 0, Arg v ∈ (0, π

n ), Arg w = π
n . The polygons’ interior angles are of the

measure π(1 + 1
n ) and π(1 − 2

n) alternately. The measure of the angle with the

vertex lying on the real positive semi-axis is equal to π(1 + 1
n). From the above it

follows that polygons of the described type have 4n sides.
For n 6= 3, this family of polygons is extended on limiting cases. If u = v

(hence Arg v = 0), then we obtain polygons having 2n sides of the same length
and angles measuring π(1− 3

n) and π(1+ 1
n) alternately. If v = w (hence Arg v =

π
n ), then we obtain polygons having 2n sides of the same length and angles mea-

suring π(1 + 1
n) and π(1 − 3

n ) alternately.
In case n = 3 the limiting polygons become three-pointed stars described in

paragraph 2.
We denote this family of polygons by U . The polygons of this family are

shown in Figures 3 and 4.
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1

0

-1

-2

Figure 4: Polygons: a) n = 5 , Arg v = 3π
20 b) n = 7 , Arg v = 0.

Let f ∈ X(n) and let n be odd integer greater than or equal to 3. Assume that
w ∈ ∂ f (∆) and Arg w ∈ [0, π

n ] for n 6= 3 or Arg w ∈ (0, π
n ) for n = 3. Because of

real coefficients, w also belongs to ∂ f (∆). From this and from n-fold symmetry of
f , the set Ω given by (10) is contained in ∂ f (∆).

Like in the case of the Koebe domain, we choose three successive, in accor-
dance with the order of (11), points from Ω: the w∗ point which has the greatest
imaginary part among the points in Ω and the w∗

L, w∗
R points directly preced-

ing and succeeding w∗. One can check that w∗
L ∈ Λk0

and w∗
R ∈ Λk0+1, where

k0 = Ent(n+2
4 ).

We claim that the segment sL = {ζ = w∗
L − t, t ≥ 0} ∩ Λk0

is contained in
cl( f (∆)).
Assume that it is not the case. Hence, there exists w0 ∈ sL such that w0 /∈ f (∆). It
follows that each ray ζ = (w0 − t)εj, t ≥ 0, j = 0, 1, . . . , n − 1, and its reflection in
the real axis are disjoint from f (∆). Therefore, f (∆) is contained in the polygon
which has sides included in these rays. It means that w∗

L /∈ ∂ f (∆), a contradiction.
Similarly, we can prove that sR = {ζ = w∗

R + t, t ≥ 0} ∩ Λk0+1 is contained in
cl( f (∆)).

By Corollary 1, the segments sLεj and sRεj, j = 0, 1, . . . , n − 1, and their reflec-
tion in the real axis are contained in the closure of f (∆). Consequently, f (∆) is
contained in some polygon of the family U .

The only analytic function which maps ∆ univalently onto a fixed polygon of
the family U and has positive derivative in 0 is of the form

∆ ∋ z 7→ B
∫ z

0

n

√

(ζn + 1)(ζn − 1)

(ζn − einϕ)2(ζn − e−inϕ)2
dζ , for a suitable ϕ ∈

[

0,
π

n

]

. (20)

We take the principal branch of the n-th root. The above formula is still valid for
ϕ = 0 and ϕ = π

n .
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Putting suitable B into (20) we get the function with typical normalization

∆ ∋ z 7→
∫ z

0

n

√

(1 + ζn)(1 − ζn)

(1 − ζne−inϕ)2(1 − ζneinϕ)2
dζ . (21)

We denote this function by Gϕ and the polygon Gϕ(∆) by Bϕ. With this notation
U = {λBϕ : λ > 0 , ϕ ∈ [0, π

n ]}.
Moreover, let

u1(ϕ) ≡ Gϕ(e
iϕ) . (22)

The point u1(ϕ) coincides with the vertex of the polygon Bϕ such that the argu-
ment of this vertex is from the range [0, π

n ]. Hence u1 is given by the formula

u1 :
[

0,
π

n

]

∋ ϕ 7→
∫ 1

0

n

√

(1 + tneinϕ)(1 − tneinϕ)

(1 − tn)2(1 − tne2inϕ)2
dt . (23)

and it is an injective function on [0, π
n ].

The following theorem can be proved in the same way as Theorems 1-2.

Theorem 5. Let n be a fixed odd integer, n ≥ 3. The function

G(z) = z
∫ 1

0

n

√

(1 + tnzn)(1 − tnzn)

(1 − tn)2(1 − tnz2n)2
dt

is the majorant for the class X(n).

Theorem 6. For odd n, n ≥ 3, there is LX(n) = G(∆) .

One can easily check that |G(z)| < |G(1)| for z ∈ ∆. Hence,

Corollary 6.

sup
{

| f (z)| : f ∈ X(n), z ∈ ∆

}

=







B
(

1
n ,

n−3
2n

)

n n√4
for n ≥ 5

∞ for n = 3.

4 Covering domain for X(n) and even n.

From (5-6) and from Corollary 13 in [2] we get

Theorem 7. Let n be a fixed even integer, n ≥ 4. The majorant of the class X(n) is of the
form

1. H1(z) = z
∫ 1

0

n

√

(1 − tnzn)2

(1 − tn)2(1 − tnz2n)2
dt for n = 4k − 2 , k ∈ N,

2. H2(z) = z
∫ 1

0

n

√

(1 + tnzn)2

(1 − tn)2(1 − tnz2n)2
dt for n = 4k , k ∈ N.
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This results in

Corollary 7. Let n be a fixed even integer, n = 4k − 2 , k = 2, 3, . . . .

1. H1(∆) is the covering domain for X(n) ,

2. The boundary of the covering domain for X(n) in Λ1 coincides with u1
2([0, π

n ]),

where u1
2 is given by the formula

u1
2 :

[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 − tneinϕ)2

(1 − tn)2(1 − tne2inϕ)2
dt.

Corollary 8. Let n be a fixed even integer, n = 4k , k ∈ N.

1. H2(∆) is the covering domain for X(n) ,

2. The boundary of the covering domain for X(n) in Λ1 coincides with u2
2([0, π

n ]),

where u2
2 is given by the formula

u2
2 :

[

0,
π

n

]

∋ ϕ 7→ eiϕ
∫ 1

0

n

√

(1 + tneinϕ)2

(1 − tn)2(1 − tne2inϕ)2
dt.

Theorem 8. The covering domain for X(2) is whole C.

The latter is a simple consequence of

C = h0(∆) ∪ h1(∆) ⊂
⋃

f∈X(2)

f (∆) ,

where h0(z) =
z

1+z2 and h1(z) =
1
2 log 1+z

1−z . Both functions h0 and h1 belong to

X(2).
Directly from Corollary 15 in [2] we get

Corollary 9. For even n we have

sup{| f (z)| : f ∈ X(n), z ∈ ∆} =







B
(

1
n ,

n−4
2n

)

n n√4
for n ≥ 6

∞ for n = 2 or n = 4.
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