On functions convex in the direction of the real axis with real coefficients

Leopold Koczan Paweł Zaprawa

Abstract

The paper is concerned with the class $X^{(n)}$ consisting of all functions, which are n-fold symmetric, convex in the direction of the real axis and have real coefficients. For this class we determine the Koebe domain, i.e. the set $\bigcap_{f \in X^{(n)}} f(\Delta)$, as well as the covering domain, i.e. the set $\bigcup_{f \in X^{(n)}} f(\Delta)$. The results depend on the parity of $n \in N$. We also obtain the minorant and the majorant for this class. These functions are defined as follows.

If there exists an analytic, univalent function m satisfying the following conditions: m'(0) > 0, for every $f \in X^{(n)}$ there is $m \prec f$, and $\bigwedge_{f \in X^{(n)}} [k \prec f \Rightarrow k \prec m]$, then this function is called the minorant of $X^{(n)}$. Similarly, if there exists an analytic, univalent function M such that M'(0) > 0, for every $f \in X^{(n)}$ there is $f \prec M$, and $\bigwedge_{f \in X^{(n)}} [f \prec k \Rightarrow M \prec k]$, then this function is called the majorant of $X^{(n)}$.

If these functions exist, then $m(\Delta)$ and $M(\Delta)$ coincide with the Koebe domain and the covering domain for $X^{(n)}$, respectively.

Introduction

In the beginning we recall that an analytic function f is subordinated to an analytic and univalent function F in $\Delta \equiv \{\zeta \in C : |\zeta| < 1\}$ if and only if there exists an analytic function ω such that $\omega(0) = 0$, $\omega(\Delta) \subset \Delta$ and $f(z) = F(\omega(z))$ for $z \in \Delta$. Then we write $f \prec F$.

Received by the editors May 2010.

Communicated by F. Brackx.

2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C80.

Key words and phrases : covering domain, Koebe domain, convex in the direction of real axis, real coefficients.

Let S denote the set of all functions f analytic and univalent in Δ and normalized by f(0) = f'(0) - 1 = 0. Let $Y \subset S$ be the class of these functions in S which have real coefficient and which are convex in the direction of the imaginary axis. Similarly, let $X \subset S$ consist of the functions with real coefficients in S, which are convex in the direction of the real axis. We call a function f convex in the direction of the straight line f if the intersection of $f(\Delta)$ and each line f parallel to f is either f, or a segment, or a ray or an empty set.

For a given $\mathcal{Y} \subset S$, if there exists an analytic and univalent function m satisfying the following conditions: m'(0) > 0,

$$\bigwedge_{f \in \mathcal{Y}} m \prec f \tag{1}$$

and for every analytic function k, k(0) = 0, there is

$$\left(\bigwedge_{f \in \mathcal{Y}} k \prec f\right) \Rightarrow k \prec m,\tag{2}$$

then this function is called the minorant of \mathcal{Y} . The set $\bigcap_{f \in \mathcal{Y}} f(\Delta)$ is said to be the Koebe domain for \mathcal{Y} and is denoted by $K_{\mathcal{Y}}$. Clearly, if the Koebe domain is a simply connected set, then the minorant exists and $K_{\mathcal{Y}} = m(\Delta)$.

If there exists an analytic and univalent function M such that M'(0) > 0,

$$\bigwedge_{f \in \mathcal{Y}} f \prec M \tag{3}$$

and for every analytic function k, k(0) = 0, there is

$$\left(\bigwedge_{f\in\mathcal{Y}}f\prec k\right)\Rightarrow M\prec k,\tag{4}$$

then this function is called the majorant of \mathcal{Y} . The set $\bigcup_{f \in \mathcal{Y}} f(\Delta)$ is said to be the covering domain for \mathcal{Y} and is denoted by $L_{\mathcal{Y}}$. Notice that if the covering domain is a simply connected set, then the majorant exists. In this case $L_{\mathcal{Y}} = M(\Delta)$. EXAMPLES.

- **1.** For $\mathcal{Y} = S$ there is $m(z) = \frac{1}{4}z$, $z \in \Delta$, and hence $K_S = \Delta_{1/4}$. In S the majorant does not exist $(L_S = C)$.
- **2.** For $\mathcal{Y} = Y$ there is $m(z) = \frac{1}{2}z$, $z \in \Delta$, (McGregor, [5]) and hence $K_Y = \Delta_{1/2}$. The majorant does not exist $(L_Y = C)$.
- **3.** $\mathcal{Y}=CVR^{(2)}$, where $CVR^{(2)}$ is the class of univalent, convex and odd functions in Δ with real coefficients. The set $K_{CVR^{(2)}}$ was determined by Krzyż and Reade (see [1]). Then, m maps Δ onto the set $K_{CVR^{(2)}}$ and m'(0)>0. The function $M(z)=\int_0^1\frac{z}{\sqrt{(1-t^2)(1-t^2z^4)}}dt$ is the majorant of $CVR^{(2)}$ (see [4]).

In [2] the class $Y^{(n)}$ was considered. This is the set of n-fold symmetric functions from Y, i.e.

$$Y^{(n)} \equiv \{ f \in Y : f(\varepsilon z) = \varepsilon f(z), z \in \Delta \}$$
 , where $\varepsilon = e^{\frac{2\pi i}{n}}$.

For functions in $Y^{(n)}$ the property $f(\Delta) = \varepsilon f(\Delta)$ holds. In this case we say that the set $f(\Delta)$ is n-fold symmetric. The symbol aD is understood as $\{az : z \in D\}$. In the above mentioned paper the authors derived the Koebe set and the covering set as well as the minorant and the majorant in $Y^{(n)}$.

Now we are interested in another subclass of *S*, namely

$$X^{(n)} \equiv \{ f \in X : f(\varepsilon z) = \varepsilon f(z), z \in \Delta \} ,$$

where ε is defined as above.

It is known that if f is in X, then for each $t \in (0,1)$ the function f(tz)/t is also in X. The same is true for functions in $X^{(n)}$. Therefore, the Koebe set for $X^{(n)}$ is, in fact, a domain.

Observe that for even n, all functions from $X^{(n)}$ are odd. Hence

$$f \in X^{(n)} \Leftrightarrow -if(iz) \in Y^{(n)} \quad \text{for} \quad n = 4k - 2, \ k \in N,$$
 (5)

$$f \in X^{(n)} \Leftrightarrow f \in Y^{(n)}$$
 for $n = 4k$, $k \in N$. (6)

We conclude from (5-6) that one can transfer the results from $Y^{(n)}$ onto $X^{(n)}$.

Every function in $X^{(n)}$ has real coefficients. For this reason the set $f(\Delta)$ is symmetric with respect to the real axis. Another important property of the class $X^{(n)}$ is given in

Lemma 1. If $f \in X^{(n)}$ then the straight line $k : \zeta = e^{\frac{\pi i}{n}}t$, $t \in R$ is a symmetry axis of the set $f(\Delta)$.

Proof.

The symmetry with respect to the line $\zeta=e^{\frac{\pi i}{n}}t$, $t\in R$ means that for arbitrary $z,\zeta\in\Delta$, if

$$\overline{ze^{-\frac{\pi i}{n}}} = \zeta e^{-\frac{\pi i}{n}} \tag{7}$$

then

$$\overline{f(z)e^{-\frac{\pi i}{n}}} = f(\zeta)e^{-\frac{\pi i}{n}}.$$
 (8)

Assume that the condition (7) is satisfied. We can write it equivalently in the form

$$\zeta = \overline{z}e^{\frac{2\pi i}{n}} = \overline{z}\varepsilon. \tag{9}$$

From properties of $f \in X^{(n)}$ it follows that

$$\overline{f(z)}\varepsilon = f(\overline{z})\varepsilon = f(\overline{z}\varepsilon)$$
.

Applying (9) we obtain $\overline{f(z)}\varepsilon = f(\zeta)$. This condition is equivalent to (8).

Corollary 1. If $f \in X^{(n)}$, then each straight line $\zeta = e^{\frac{\pi i}{n}k}t$, $t \in R$, k = 0, 1, ..., 2n - 1, is a symmetric axis of $f(\Delta)$.

The next lemma follows from Lemma 1 and from properties of the class $X^{(n)}$

Lemma 2. The Koebe domain and the covering domain for $X^{(n)}$ are n-fold symmetric and symmetric with respect to the lines $\zeta = e^{\frac{\pi i}{n}k}t$, $t \in R$, k = 0, 1, ..., 2n - 1.

Lemma 3. The Koebe domain and the covering domain for $X^{(n)}$ are symmetric with respect to the imaginary axis.

Proof.

If $f \in X^{(n)}$ then g(z) = -f(-z) is also in $X^{(n)}$. Hence the sets $f(\Delta) \cap g(\Delta)$ and $f(\Delta) \cup g(\Delta)$ are symmetric with respect to the imaginary axis. From this

$$\bigcap_{f\in X^{(n)}} f(\Delta) = \bigcap_{f\in X^{(n)}} f(\Delta) \cap (-f(\Delta)) \quad \text{ and } \quad \bigcup_{f\in X^{(n)}} f(\Delta) = \bigcup_{f\in X^{(n)}} f(\Delta) \cup (-f(\Delta)) \ .$$

From convexity of the functions in $X^{(n)}$ in the direction of the real axis we get

Lemma 4. The Koebe domain for $X^{(n)}$ is convex in the direction of the real axis.

For a fixed n we use the notation: $\Lambda_j = \{\zeta \in C : 2(j-1)\pi/n \le \operatorname{Arg}\zeta \le 2j\pi/n\}$, j = 1, 2, ..., n, and $\Lambda = \{\zeta \in C : 0 \le \operatorname{Arg}\zeta \le \pi/n\}$. Furthermore, we will write ∂D to denote the boundary of a set D.

By Lemma 2, we need to determine the boundaries of the Koebe domain and the covering domain for $X^{(n)}$ in the set Λ only.

1 Koebe domain for $X^{(n)}$ and odd n.

Let n be a fixed odd integer, $n \ge 3$. We consider two families of open and n-fold symmetric polygons which are symmetric with respect to the real axis.

The first family consists of polygons such that their successive vertices u, v, w belong to Λ and $\operatorname{Arg} u = 0$, $\operatorname{Arg} v \in (0, \frac{\pi}{n})$, $\operatorname{Arg} w = \frac{\pi}{n}$. The polygons' interior angles corresponding with the vertices u, v, w are of the measure $\pi(1 - \frac{1}{n})$, $\pi(1 + \frac{1}{n})$ and $\pi(1 - \frac{3}{n})$, respectively. It means that the measure of the angle with the vertex lying on the real positive semi-axis is equal to $\pi(1 - \frac{1}{n})$. From the above it follows that polygons of the described type have 4n sides.

This set of polygons is extended on limiting cases. If u=v (hence $\operatorname{Arg} v=0$), then we obtain polygons having 2n sides of the same length and angles measuring $\pi(1+\frac{1}{n})$ and $\pi(1-\frac{3}{n})$ alternately. If v=w (hence $\operatorname{Arg} v=\frac{\pi}{n}$) then we obtain regular polygons having 2n sides and all angles measuring $\pi(1-\frac{1}{n})$.

We denote this family of polygons by V_1 . Polygons of this family are shown in Figure 1.

For n=3 the sets of the family \mathcal{V}_1 are unbounded. Every fourth vertex of such a polygon is extended to infinity. For this reason both sides adjacent to every such vertex are parallel. In this way we obtain a star-shaped set with three unbounded strips. The thickness of strips is growing as Arg v tends to $\frac{\pi}{3}$.

In cases Arg v=0 and Arg $v=\frac{\pi}{3}$ these sets become a regular hexagon and a three-pointed unbounded star, respectively (see Figure 2).

Despite the unboundedness of these sets, we still call them polygons (of the generalized type).

Figure 1: Polygons: **a)** n=5 , $\operatorname{Arg} v = \frac{\pi}{12}$ **b)** n=5 , $\operatorname{Arg} v = 0$.

The second family of polygons, denoted by V_2 , is defined as follows:

$$\mathcal{V}_2 = \{-W : W \in \mathcal{V}_1\} .$$

Let $f \in X^{(n)}$ and let n be an odd integer greater than or equal to 3. Assume that w, $\operatorname{Arg} w \in [0, \frac{\pi}{n}]$, is the omitted value of f. Because of real coefficients, the function f also omits \overline{w} . From this and from n-fold symmetry of f, the set

$$\Omega = \{ w \varepsilon^j, \overline{w} \varepsilon^j : j = 0, 1, \dots, n - 1 \}$$
(10)

is disjoint from $f(\Delta)$.

All the points in Ω have the same modulus. Therefore, they can be arranged in accordance with the increase of the argument as follows:

$$0 \le \arg w \le \arg \overline{w}\varepsilon \le \arg w\varepsilon \le \arg \overline{w}\varepsilon^2 \le \cdots \le \arg w\varepsilon^{n-1} \le \arg \overline{w}\varepsilon^n \le 2\pi \ . \tag{11}$$

Now we take three successive points from Ω (in accordance with the order of (11)) in the following way. By w^* we denote the point which has the greatest imaginary part among the points in Ω and by w_L^* and w_R^* the points directly preceding and succeeding w^* . The choice of w^* is unique because each set $\Lambda e^{\frac{\pi}{n}ki}$, $k=0,1,\ldots,2n-1$, contains only one point of Ω and because the set $\Lambda e^{\frac{\pi}{n}\frac{n-1}{2}i}$ is symmetric with respect to the imaginary axis. It is easy to check that $w^* \in \Lambda_{j_0+1}$, where $j_0 = \operatorname{Ent}(\frac{n}{4})$, and $w_L^* = \overline{w^*} \varepsilon^{\frac{n-1}{2}} = \overline{w^*} e^{\pi(1-\frac{1}{n})i}$, $w_R^* = w_L^* \varepsilon = \overline{w^*} \varepsilon^{\frac{n+1}{2}} = \overline{w^*} e^{\pi(1+\frac{1}{n})i}$.

Additionally, we assume that $w^* \in \partial f(\Delta)$. This means that each point of Ω belongs to $\partial f(\Delta)$. The function f is convex in the direction of the real axis, thus f omits all points lying on the ray $l_R: \zeta = w^* + t$, $t \geq 0$, or on the ray $l_L: \zeta = w^* - t$, $t \geq 0$.

Figure 2: Polygons: **a)** n=3 , $\operatorname{Arg} v = \frac{\pi}{6}$ **b)** n=3 , $\operatorname{Arg} v = \frac{\pi}{3}$.

I. Suppose that $f(\Delta) \cap l_R = \emptyset$. From the symmetry of $f \in X^{(n)}$ with respect to the straight line $\zeta = t\varepsilon^{j_0}$, $t \geq 0$, the ray $k_R : \zeta = (\overline{w^*} + t)\varepsilon^{2j_0}$, $t \geq 0$, is also disjoint from $f(\Delta)$. From the n-fold symmetry of f, each ray of the form $l_R \varepsilon^j$ and $k_R \varepsilon^j$, $j = 0, 1, \ldots, n-1$, is disjoint from $f(\Delta)$.

Moreover, since $w_L^* \notin f(\Delta)$, one of two rays starting from w_L^* and parallel to the real axis is also disjoint from $f(\Delta)$. This ray appears to be $p_R: \zeta = w_L^* + t$, $t \ge 0$.

Indeed, if the ray $\zeta=w_L^*-t$, $t\geq 0$, were disjoint from $f(\Delta)$, then, from the symmetry with respect to the straight line $\zeta=te^{\frac{\pi}{2}(1-\frac{1}{n})i}$, $t\geq 0$ (by Corollary 1), the ray $\zeta=w^*-te^{\pi(1-\frac{1}{n})i}$, $t\geq 0$, would be disjoint from $f(\Delta)$. From this w^* and w_L^* would not belong to $\partial f(\Delta)$, a contradiction.

From the properties of $X^{(n)}$ it follows that each straight line $p_R \varepsilon^j$, j = 0, 1, ..., n-1, and its reflection in the real axis have no common points with $f(\Delta)$.

We conclude from the above argument that $f(\Delta)$ is contained in a polygon with one vertex in w^* . One can verify that this polygon belongs to the family \mathcal{V}_1 when n=4k+1, $k\in N$, and to the family \mathcal{V}_2 when n=4k-1, $k\in N$.

II. If $f(\Delta) \cap l_L = \emptyset$ then each ray $l_L \varepsilon^j$, j = 0, 1, ..., n-1, and its reflection in the real axis have no common points with $f(\Delta)$. Similarly as in I., it can be proved that $f(\Delta)$ is disjoint from $q_L : \zeta = w_R^* - t$, $t \ge 0$. From the properties of $X^{(n)}$ it follows that each ray $q_L \varepsilon^j$, j = 0, 1, ..., n-1, and its reflection in the real axis have no common points with $f(\Delta)$.

From above, $f(\Delta)$ is contained in a polygon with one vertex in w^* . This polygon is a member of \mathcal{V}_2 when n=4k+1, $k\in N$, and is a member of \mathcal{V}_1 when n=4k-1, $k\in N$.

By the Schwarz-Christoffel formulae there exists exactly one analytic function which maps Δ univalently onto a fixed polygon of the family V_1 and has positive

derivative in 0. This function is

$$\Delta \ni z \mapsto A \int_0^z \sqrt[n]{\frac{(\zeta^n - e^{in\varphi})(\zeta^n - e^{-in\varphi})}{(\zeta^n + 1)^3(\zeta^n - 1)}} d\zeta \text{ , for a suitable } \varphi \in \left[0, \frac{\pi}{n}\right]. \quad (12)$$

From now on we choose the principal branch of the *n*-th root. It can be easily checked that the above formula is still valid for $\varphi = 0$ and $\varphi = \frac{\pi}{n}$.

Putting suitable *A* into (12) we get the function with classical normalization

$$\Delta \ni z \mapsto \int_0^z \sqrt[n]{\frac{(1 - \zeta^n e^{-in\varphi})(1 - \zeta^n e^{in\varphi})}{(1 + \zeta^n)^3 (1 - \zeta^n)}} d\zeta. \tag{13}$$

We denote this function by $F_{1,\varphi}$ and the polygon $F_{1,\varphi}(\Delta)$ by $A_{1,\varphi}$. With this notation $\mathcal{V}_1 = \{\lambda A_{1,\varphi} : \lambda > 0, \varphi \in [0,\frac{\pi}{n}]\}.$

Moreover, let

$$v_1(\varphi) \equiv F_{1,\varphi}(e^{i\varphi}). \tag{14}$$

For a fixed φ , the point $v_1(\varphi)$ coincides with the vertex of the polygon $A_{1,\varphi}$ such that its argument is from the range $[0,\frac{\pi}{n}]$. Hence, v_1 is given by the formula

$$v_1: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n)(1-t^n e^{2in\varphi})}{(1+t^n e^{in\varphi})^3(1-t^n e^{in\varphi})}} dt , \qquad (15)$$

and it is an injective function on $[0, \frac{\pi}{n}]$.

In a similar way, there is exactly one analytic function which maps Δ univalently onto a fixed polygon of the family \mathcal{V}_2 and has positive derivative in 0. By the definitions of \mathcal{V}_1 and \mathcal{V}_2 , a function f maps Δ onto a polygon of the family \mathcal{V}_1 if and only if a function g, satisfying g(z) = -f(-z), maps Δ onto a polygon of the family \mathcal{V}_2 . Therefore, $F_{2,\varphi}: z \mapsto -F_{1,\varphi}(-z)$ is typically normalized and $F_{2,\varphi}(\Delta) \in \mathcal{V}_2$.

Let

$$v_2(\varphi) \equiv F_{2,\varphi}(e^{i\varphi}) . \tag{16}$$

Hence, we can write

$$v_2: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n)(1-t^n e^{2in\varphi})}{(1+t^n e^{in\varphi})(1-t^n e^{in\varphi})^3}} dt \ . \tag{17}$$

Let us define

$$F_1(z) = z \int_0^1 \sqrt[n]{\frac{(1-t^n)(1-t^nz^{2n})}{(1+t^nz^n)^3(1-t^nz^n)}} dt$$

and

$$F_2(z) = z \int_0^1 \sqrt[n]{\frac{(1-t^n)(1-t^nz^{2n})}{(1+t^nz^n)(1-t^nz^n)^3}} dt$$

Theorem 1. *Let* $n \ge 3$ *be odd.*

- 1. The minorant of the class $\{f \in X^{(n)} : f(\Delta) \in \mathcal{V}_1\}$ is
 - a) F_1 for n = 4k 1, $k \in N$,
 - b) F_2 for n = 4k + 1, $k \in N$,
- 2. The minorant of the class $\{f \in X^{(n)} : f(\Delta) \in \mathcal{V}_2\}$ is
 - a) F_2 for n = 4k 1, $k \in N$,
 - b) F_1 for n = 4k + 1, $k \in N$.

Proof.

For n=4k-1, $k \in N$, and for a fixed $\varphi \in [0,\frac{\pi}{n}]$ we have

$$F_1(e^{i\varphi}) = e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n)(1-t^n e^{2in\varphi})}{(1+t^n e^{in\varphi})(1-t^n e^{in\varphi})^3}} dt.$$

Hence, values $F_1(e^{i\varphi})$ and $v_1(\varphi)$ are equal. Moreover, F_1 is n-fold symmetric and one-to-one on the boundary of Δ . This means that F_1 is univalent in whole Δ and from this reason F_1 is the minorant of $\{f \in X^{(n)} : f(\Delta) \in \mathcal{V}_1\}$.

Analogously, one can prove the theorem in other cases.

Theorem 2. Let $n \geq 3$ be odd. Then $K_{X^{(n)}} = F_1(\Delta) \cap F_2(\Delta)$.

Proof.

Let $n \ge 3$ be an odd fixed number. Let us denote by K the Koebe domain for $X^{(n)}$. From Theorem 1 we know that

$$K \subset F_1(\Delta) \cap F_2(\Delta)$$
 (18)

Suppose that $w = \varrho e^{i\varphi} \in \Lambda$ is a boundary point of K. Then the point w^* , which has the greatest imaginary part among the points of Ω , belongs to

$$K \cap \left\{ \zeta \in C : \frac{n-1}{2n} \pi \le \arg \zeta \le \frac{n+1}{2n} \pi \right\}$$

From Lemma 3, $-\overline{w}^*$ also belongs to this set. Without a loss of generality we can assume that

$$\operatorname{Re} - \overline{w^*} \le 0 \le \operatorname{Re} w^*$$
.

We shall discuss three possibilities.

If the open segment with endpoints w^* and $-\overline{w^*}$ is contained in K, then $w^* \neq -\overline{w^*}$ and there exists a function $f \in X^{(n)}$ such that $w^* \in \partial f(\Delta)$. Hence

$$\{w^*+t\,:\,t\geq 0\}\cap f(\Delta)=arnothing \quad \{-\overline{w^*}-t\,:\,t\geq 0\}\cap g(\Delta)=arnothing$$
 ,

where $g(z) \equiv -f(-z)$. This implies

$$f \prec F_{1,\varphi}$$
 and $g \prec F_{2,\varphi}$,

but the normalization of f leads to $f \equiv F_{1,\varphi}$ and $g \equiv F_{2,\varphi}$. Therefore,

$$\partial K \subset \partial F_1(\Delta) \cup \partial F_2(\Delta)$$
.

This and (18) results in $K = F_1(\Delta) \cap F_2(\Delta)$.

In the second case, if the open segment with endpoints w^* and $-\overline{w^*}$ is disjoint from K, then the whole straight line passing through these points is also disjoint from K. There exist functions $f,h\in X^{(n)}$ such that $w^*\in\partial f(\Delta),-\overline{w^*}\in\partial h(\Delta)$ and

$$\{w^*+t: t \geq 0\} \cap f(\Delta) = \emptyset \quad \text{and} \quad \{-\overline{w^*}+t: t \geq 0\} \cap h(\Delta) = \emptyset.$$

Now we conclude that

$$f \prec F_{1,\varphi}$$
 and $h \prec F_{1,\varphi}$.

Then $f \equiv F_{1,\varphi} \equiv h$, and consequently $w^* = -\overline{w^*}$, a contradiction. Finally, if $w^* = -\overline{w^*}$, i.e. Arg $w^* = \frac{\pi}{2}$, then $w^* \in \partial F_{1,\varphi}(\Delta)$ and $w^* \in \partial F_{2,\varphi}(\Delta)$.

The functions F_1 and F_2 are n-fold symmetric and connected by relation $F_1(-z) = -F_2(z), z \in \Delta$. Observe that for all $z \in \Delta$

$$F_1(e^{i\frac{\pi}{n}})=e^{i\frac{\pi}{n}}F_2(z).$$

From the argument similar to this used in the proof of Lemma 1, the curves $\{F_1(e^{i\theta}), \theta \in [0, \frac{\pi}{n}]\}$ and $\{F_2(e^{i\theta}), \theta \in [0, \frac{\pi}{n}]\}$ are symmetric with respect to the ray $\zeta = e^{\frac{\pi i}{2n}}t$, $t \geq 0$. This and Lemma 2 result in

Corollary 2. The set $K_{X^{(n)}}$ for odd $n \geq 3$ is 2n-fold symmetric.

Since $K_{X^{(n)}} \cap \Lambda e^{\frac{n-1}{2n}\pi i}$, or equivalently,

$$K_{X^{(n)}} \cap \left\{ \zeta \in C : \frac{n-1}{2n} \pi \le \arg \zeta \le \frac{n+1}{2n} \pi \right\}$$

is convex in the direction of the real axis, each point of the boundary of $K_{X^{(n)}}$, n=4k-1, which has argument from $\frac{n-1}{2n}\pi$ to $\frac{\pi}{2}$, is a vertex of some polygon of the family \mathcal{V}_1 and each point which has argument from $\frac{\pi}{2}$ to $\frac{n+1}{2n}\pi$ is a vertex of some polygon of the family \mathcal{V}_2 . The same is true in the case n=4k+1 but with exchanged families \mathcal{V}_1 and \mathcal{V}_2 . Combining this and Theorem 2 we obtain

Theorem 3. Let $n \geq 3$ be odd. The boundary of the Koebe domain for $X^{(n)}$ in the set Λ coincides with

$$\{F_1(e^{i\theta}), \theta \in [0, \frac{\pi}{2n}]\} \cap \{F_2(e^{i\theta}), \theta \in [\frac{\pi}{2n}, \frac{\pi}{n}]\}$$
.

Considering 2n-fold symmetry of this boundary it is sufficient to describe this curve in any sector of the measure $\frac{\pi}{n}$. The boundary of the Koebe domain for $X^{(n)}$ can be written simply as follows:

Corollary 3. Let $n \geq 3$ be odd. The boundary of the Koebe domain for $X^{(n)}$ is of the form

$$\bigcup_{j=0,\ldots,2n-1}e^{j\frac{\pi}{n}}\cdot\left\{F_{1}(e^{i\theta})\;,\;\theta\in\left[-\frac{\pi}{2n},\frac{\pi}{2n}\right]\right\}\;.$$

At the end of this paragraph it is interesting to look at one special case of the polygons discussed above. For n = 3 and $\varphi = 0$ the function $F_{2,0}$ takes form

$$F_{2,0}(z) = \int_0^z \frac{\sqrt[3]{1 + \zeta^3}}{1 - \zeta^3} d\zeta.$$
 (19)

Since $F_{2,0}(\Delta) = -F_{1,0}(\Delta)$, the set $F_{2,0}(\Delta)$ is a three-pointed unbounded star (in Figure 2b the set $F_{1,0}(\Delta)$ is shown). All three bounded vertices of this polygon lie on the circle of the radius

$$a = |F_{2,0}(-1)| = \int_0^1 \frac{\sqrt[3]{1-t^3}}{1+t^3} dt = \frac{\sqrt[3]{2}}{6} B(\frac{1}{3}, \frac{2}{3}) = \frac{\sqrt[3]{2}}{6} \Gamma(\frac{1}{3}) \Gamma(\frac{2}{3}).$$

The symbols B and Γ stand for the Beta and the Gamma functions.

Therefore,

$$a = \frac{\sqrt[3]{2}}{3\sqrt{3}}\pi = 0.761\dots$$

which yields that the width of each strip of this star equals

$$d = \frac{\sqrt[3]{2}}{3}\pi = 1.319\dots.$$

The function (19) will also appear in paragraph 4.

2 Koebe domain for $X^{(n)}$ and even n.

Let n be a fixed even integer, $n \ge 2$. From (5-6) and Theorem 4 established in [2] we obtain

Theorem 4. Let $n \geq 2$ be even. The minorant of the class $X^{(n)}$ is of the form

1.
$$G_1(z)=z\int_0^1 \sqrt[n]{rac{(1-t^n)^2(1-t^nz^{2n})^2}{(1+t^nz^n)^4(1-t^nz^n)^2}}dt$$
 for $n=4k-2$, $k\in N$,

2.
$$G_2(z) = z \int_0^1 \sqrt[n]{\frac{(1-t^n)^2(1-t^nz^{2n})^2}{(1-t^nz^n)^4(1+t^nz^n)^2}} dt$$
 for $n = 4k$, $k \in N$.

From this theorem we get the corollaries

Corollary 4. *Let* n *be a fixed even integer,* n = 4k - 2 *,* $k \in N$.

- 1. $G_1(\Delta)$ is the Koebe domain for $X^{(n)}$,
- 2. The boundary of the Koebe domain for $X^{(n)}$ in Λ_1 is $v_2^1([0, \frac{\pi}{n}])$, where v_2^1 is given by

$$v_2^1: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n)^2(1-t^ne^{2in\varphi})^2}{(1+t^ne^{in\varphi})^4(1-t^ne^{in\varphi})^2}} dt.$$

Figure 3: Polygons: **a)** n=3 , $\operatorname{Arg} v = \frac{\pi}{12}$ **b)** n=3 , $\operatorname{Arg} v = \frac{\pi}{6}$.

Corollary 5. Let n be a fixed even integer, n = 4k, $k \in N$.

- 1. $G_2(\Delta)$ is the Koebe domain for $X^{(n)}$,
- 2. The boundary of the Koebe domain for $X^{(n)}$ in Λ_1 is $v_2^2([0,\frac{\pi}{n}])$, where v_2^2 is given by

$$v_2^2: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n)^2(1-t^ne^{2in\varphi})^2}{(1-t^ne^{in\varphi})^4(1+t^ne^{in\varphi})^2}} dt.$$

3 Covering domain for $X^{(n)}$ and odd n.

Let n be a fixed odd integer, $n \geq 3$. We consider a family of open and n-fold symmetric polygons such that their successive vertices u, v, w belong to Λ and $\operatorname{Arg} u = 0$, $\operatorname{Arg} v \in (0, \frac{\pi}{n})$, $\operatorname{Arg} w = \frac{\pi}{n}$. The polygons' interior angles are of the measure $\pi(1+\frac{1}{n})$ and $\pi(1-\frac{2}{n})$ alternately. The measure of the angle with the vertex lying on the real positive semi-axis is equal to $\pi(1+\frac{1}{n})$. From the above it follows that polygons of the described type have 4n sides.

For $n \neq 3$, this family of polygons is extended on limiting cases. If u = v (hence $\operatorname{Arg} v = 0$), then we obtain polygons having 2n sides of the same length and angles measuring $\pi(1-\frac{3}{n})$ and $\pi(1+\frac{1}{n})$ alternately. If v=w (hence $\operatorname{Arg} v=\frac{\pi}{n}$), then we obtain polygons having 2n sides of the same length and angles measuring $\pi(1+\frac{1}{n})$ and $\pi(1-\frac{3}{n})$ alternately.

In case n=3 the limiting polygons become three-pointed stars described in paragraph 2.

We denote this family of polygons by \mathcal{U} . The polygons of this family are shown in Figures 3 and 4.

Figure 4: Polygons: **a)** n=5 , $\operatorname{Arg} v = \frac{3\pi}{20}$ **b)** n=7 , $\operatorname{Arg} v = 0$.

Let $f \in X^{(n)}$ and let n be odd integer greater than or equal to 3. Assume that $w \in \partial f(\Delta)$ and $\operatorname{Arg} w \in [0, \frac{\pi}{n}]$ for $n \neq 3$ or $\operatorname{Arg} w \in (0, \frac{\pi}{n})$ for n = 3. Because of real coefficients, \overline{w} also belongs to $\partial f(\Delta)$. From this and from n-fold symmetry of f, the set Ω given by (10) is contained in $\partial f(\Delta)$.

Like in the case of the Koebe domain, we choose three successive, in accordance with the order of (11), points from Ω : the w^* point which has the greatest imaginary part among the points in Ω and the w_L^* , w_R^* points directly preceding and succeeding w^* . One can check that $w_L^* \in \Lambda_{k_0}$ and $w_R^* \in \Lambda_{k_0+1}$, where $k_0 = \operatorname{Ent}(\frac{n+2}{4})$.

We claim that the segment $s_L = \{\zeta = w_L^* - t, t \geq 0\} \cap \Lambda_{k_0}$ is contained in $\operatorname{cl}(f(\Delta))$.

Assume that it is not the case. Hence, there exists $w_0 \in s_L$ such that $w_0 \notin f(\Delta)$. It follows that each ray $\zeta = (w_0 - t)\varepsilon^j$, $t \ge 0$, $j = 0, 1, \ldots, n-1$, and its reflection in the real axis are disjoint from $f(\Delta)$. Therefore, $f(\Delta)$ is contained in the polygon which has sides included in these rays. It means that $w_L^* \notin \partial f(\Delta)$, a contradiction.

Similarly, we can prove that $s_R = \{\zeta = w_R^* + t, t \geq 0\} \cap \Lambda_{k_0+1}$ is contained in $\operatorname{cl}(f(\Delta))$.

By Corollary 1, the segments $s_L \varepsilon^j$ and $s_R \varepsilon^j$, j = 0, 1, ..., n - 1, and their reflection in the real axis are contained in the closure of $f(\Delta)$. Consequently, $f(\Delta)$ is contained in some polygon of the family \mathcal{U} .

The only analytic function which maps Δ univalently onto a fixed polygon of the family \mathcal{U} and has positive derivative in 0 is of the form

$$\Delta \ni z \mapsto B \int_0^z \sqrt[n]{\frac{(\zeta^n + 1)(\zeta^n - 1)}{(\zeta^n - e^{in\varphi})^2(\zeta^n - e^{-in\varphi})^2}} d\zeta \text{ , for a suitable } \varphi \in \left[0, \frac{\pi}{n}\right]. \quad (20)$$

We take the principal branch of the *n*-th root. The above formula is still valid for $\varphi = 0$ and $\varphi = \frac{\pi}{n}$.

Putting suitable *B* into (20) we get the function with typical normalization

$$\Delta \ni z \mapsto \int_0^z \sqrt[n]{\frac{(1+\zeta^n)(1-\zeta^n)}{(1-\zeta^n e^{-in\varphi})^2 (1-\zeta^n e^{in\varphi})^2}} d\zeta.$$
 (21)

We denote this function by G_{φ} and the polygon $G_{\varphi}(\Delta)$ by B_{φ} . With this notation $\mathcal{U} = \{\lambda B_{\varphi} : \lambda > 0, \varphi \in [0, \frac{\pi}{n}]\}.$

Moreover, let

$$u_1(\varphi) \equiv G_{\varphi}(e^{i\varphi}) \ . \tag{22}$$

The point $u_1(\varphi)$ coincides with the vertex of the polygon B_{φ} such that the argument of this vertex is from the range $\left[0, \frac{\pi}{n}\right]$. Hence u_1 is given by the formula

$$u_1: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto \int_0^1 \sqrt[n]{\frac{(1 + t^n e^{in\varphi})(1 - t^n e^{in\varphi})}{(1 - t^n)^2 (1 - t^n e^{2in\varphi})^2}} dt.$$
 (23)

and it is an injective function on $[0, \frac{\pi}{n}]$.

The following theorem can be proved in the same way as Theorems 1-2.

Theorem 5. *Let n be a fixed odd integer, n* \geq 3. *The function*

$$G(z) = z \int_0^1 \sqrt[n]{\frac{(1+t^n z^n)(1-t^n z^n)}{(1-t^n)^2(1-t^n z^{2n})^2}} dt$$

is the majorant for the class $X^{(n)}$.

Theorem 6. For odd $n, n \geq 3$, there is $L_{X^{(n)}} = G(\Delta)$.

One can easily check that |G(z)| < |G(1)| for $z \in \Delta$. Hence,

Corollary 6.

$$\sup \left\{ |f(z)| : f \in X^{(n)}, z \in \Delta \right\} = \begin{cases} \frac{B\left(\frac{1}{n}, \frac{n-3}{2n}\right)}{n\sqrt[n]{4}} & \text{for } n \ge 5\\ \infty & \text{for } n = 3. \end{cases}$$

4 Covering domain for $X^{(n)}$ and even n.

From (5-6) and from Corollary 13 in [2] we get

Theorem 7. Let n be a fixed even integer, $n \ge 4$. The majorant of the class $X^{(n)}$ is of the form

1.
$$H_1(z)=z\int_0^1 \sqrt[n]{rac{(1-t^nz^n)^2}{(1-t^n)^2(1-t^nz^{2n})^2}}dt$$
 for $n=4k-2$, $k\in N$,

2.
$$H_2(z) = z \int_0^1 \sqrt[n]{\frac{(1+t^nz^n)^2}{(1-t^n)^2(1-t^nz^{2n})^2}} dt$$
 for $n = 4k$, $k \in N$.

This results in

Corollary 7. *Let n be a fixed even integer,* n = 4k - 2 *,* k = 2, 3, ...

- 1. $H_1(\Delta)$ is the covering domain for $X^{(n)}$,
- 2. The boundary of the covering domain for $X^{(n)}$ in Λ_1 coincides with $u_2^1([0,\frac{\pi}{n}])$, where u_2^1 is given by the formula

$$u_2^1: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1-t^n e^{in\varphi})^2}{(1-t^n)^2(1-t^n e^{2in\varphi})^2}} dt.$$

Corollary 8. Let n be a fixed even integer, n = 4k, $k \in N$.

- 1. $H_2(\Delta)$ is the covering domain for $X^{(n)}$,
- 2. The boundary of the covering domain for $X^{(n)}$ in Λ_1 coincides with $u_2^2([0,\frac{\pi}{n}])$, where u_2^2 is given by the formula

$$u_2^2: \left[0, \frac{\pi}{n}\right] \ni \varphi \mapsto e^{i\varphi} \int_0^1 \sqrt[n]{\frac{(1+t^n e^{in\varphi})^2}{(1-t^n)^2(1-t^n e^{2in\varphi})^2}} dt.$$

Theorem 8. The covering domain for $X^{(2)}$ is whole C.

The latter is a simple consequence of

$$C = h_0(\Delta) \cup h_1(\Delta) \subset \bigcup_{f \in X^{(2)}} f(\Delta)$$
,

where $h_0(z) = \frac{z}{1+z^2}$ and $h_1(z) = \frac{1}{2} \log \frac{1+z}{1-z}$. Both functions h_0 and h_1 belong to $X^{(2)}$.

Directly from Corollary 15 in [2] we get

Corollary 9. *For even n we have*

$$\sup\{|f(z)| : f \in X^{(n)}, z \in \Delta\} = \begin{cases} \frac{B\left(\frac{1}{n}, \frac{n-4}{2n}\right)}{n\sqrt[n]{4}} & \text{for } n \ge 6\\ \infty & \text{for } n = 2 \text{ or } n = 4. \end{cases}$$

References

- [1] Krzyz, J., Reade, M.O., Koebe domains for certain classes of analytic functions. *J. Anal. Math.* 18, 185-195 (1967).
- [2] Koczan, L., Sobczak-Kneć, M., Zaprawa, P., On functions convex in the direction of the imaginary axis with real coefficients, accepted for publication in *Demonstratio Mathematica*.
- [3] Koczan, L., Zaprawa, P., On typically real functions with *n*-fold symmetry, *Ann.Univ.Mariae Curie Sklodowska Sect.A* Vol. LII,No.2, 103-112 (1998).

- [4] Koczan, L., Zaprawa, P., Covering domains for the class of convex *n*-fold symmetric functions with real coefficients. *Bull. Soc. Sci. Lett. Lódz, Sér. Rech. Déform.* 52, No.37, 129-135 (2002).
- [5] McGregor, M., On three classes of univalent functions with real coefficients. *J. London Math. Soc.* 39, 43-50 (1964).

Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland l.koczan@pollub.pl, p.zaprawa@pollub.pl