On a certain generalization of the
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Abstract

Given an analytic self-mapping s of the open unit disk ID and given a
Blaschke product b of degree k, we present necessary and sufficient condi-
tions for s — b to have exactly k zeros inside ID. As a corollary, we obtain
a Carathéodory-Julia-Wolff type theorem for meromorphic functions of the
form s/b.

1 Introduction

Let ID be the open unit disk of the complex plane and let T be the unit circle. The
class of all functions s analytic on ID and mapping ID into itself will be denoted by
S. The values of s and s” at ty € T will be understood in the sense of nontangential
limits

s(to) :== lim s(z) and §'(tp) := lim §'(z), (1.1)

z—rtp z—rto

provided the latter limits exist. In (1.1) and in what follows, we write z—t if
a point z € D tends to a boundary point ¢y € T nontangentially, i.e., so that
|z —ty| < a(1l — |z|) for some a > 1. We will write z — ¢y if z tends to £y unre-
strictedly (in ID or in C which will be clear from the context).

If s € Sand A € T, the function R (gfigg) is positive and harmonic in ID and

therefore, there exists a non-negative Borel measure j; 5 (called the Aleksandrov-
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Clark measure of s at A) on T such that
A+ s( - ]z|2
3%( ) 12)
v fe—gpterl®)

In particular, one can define the measure y, ;) if the limit s(fo) exists and [s(to)| =
1. On the other hand, if this is the case, then the limit

1—]s(z)?
ds(tg) = lim
S( O) Zl—>f0 1_|Z|2

(1.3)

also exists (finite or infinite). The following theorem due to G. Julia [7], C. Cara-
théodory [6] and R. Nevanlinna [9] (see also [10, Chapter 6]) relates the characters
from (1.1)—(1.3).

Theorem 1.1. For s € S and ty € T, the following are equivalent:

1@ ,
(1) d:= llgltl(;lfm < o9 (2)  ds(to) < oo
(8)  The limits (1.1) exist and satisfy |s(tp)| = 1 and tos'(to)s(to) € R.
(4) The limit s(tg) exists, |s(tg)| = 1, and the corresponding Aleksandrov-

Clark measure gy ) has an atom at t.

Moreover, if these conditions hold, then

Fre TS 1
d= ds(to) = tps (to)S(to) = m > 0. (1.4)

We will denote by By the set of all Blaschke products of degree k. Since ev-
ery b € By is analytic on T, it is defined everywhere on T along with all its
derivatives. Furthermore, the existence of the finite limit dj(tg) is obvious and
the equalities (1.4) are verified directly using the Taylor expansion of b at ¢ty and
the symmetry relation b(z) = 1/b(1/z). The following proposition follows im-
mediately from Theorem 1.1.

Lemma 1.2. Lets € S, b € By, tg € T and let us assume that the boundary limit s(ty)
exists and equals b(tg). Then the following are equivalent:

1. The limit s'(t) exist and satisfies tob(ty) (b'(to) —s'(tp)) > 0.
2. The limit ds(to) exists and satisfies ds(ty) < dy(to).
3. The Aleksandrov-Clark measures pig ;) and py p ;) have atoms at to which satisfy

Hsp(to) ({to}) = o p(ty) ({t0})-

Let us consider the function f of the form f = s — b wheres € S, b € By and
let us denote by Np(f) the number of zeros of f (counted with multiplicities) in
D. It follows from the Schwarz-Pick lemma that if s # b, then Np(s — b) < k.
The following theorem is the main result of this note.
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Theorem 1.3. Lets € Sand b € By and let us assume that s # b. Then Np(s —b) < k
if and only if there exists a point to € T such that the boundary limits s(to) and ds(to)
exist and satisfy

S(to) = b(i’o) and ds(to) < db(tO)- (15)

Moreover, if Np(s — b) = n < k, then there are at most k — n points ty € T subject to
(1.5).

Observe that by Lemma 1.2, the second condition in (1.5) can be equivalently

replaced by inequality fob(t) (b'(to) — s'(to)) > 0 or by inequality pg j4)({t0}) >
Mo bte) ({t0})-

Theorem 1.3 clarifies how distinct s and b must be on T in order to guarantee
Np(s —b) = k. Using the boundary interpolation results from [5] it can be shown
that for each b € By and any sequence {t;};>1 C T, there exists s € S such that

s(z) —=b(z) =0(z—t;) as z=t; for i=1,2,... (1.6)

and still Np(s — b) = k. Theorem 1.3 shows that in this case we have necessarily
ds(t;) > dy(t;) for every i > 1.

To conclude the introduction we remark that in case b(z) = z, Theorem 1.3
amounts to the Carathéodory-Julia-Wolff theorem: If s € S (s # id) has no fixed
points in ID, then there exists a unique point ty € T such that s(tg) = to and ds(ty) =
s'(to) < 1. In Section 3 we will extend this theorem to the class of meromorphic
functions of the form s/b where s € S and b is a finite Blaschke product.

2 Proof of Theorem 1.3

To prove Theorem 1.3 we will use the following auxiliary construction. Let us
assume that Np(s —b) = n < k = degb and let z,...,z, be the zeros of the
function s — b of respective multiplicities ny,...,ny so that ny + ... +n, = n.
Then s and b have the same n; first Taylor coefficients at z; fori = 1,..., /. Let us
denote these Taylor coefficients by ¢;;:

V(@) _ W) _ i for j=0,..m—1i=1,..0 @.1)

J! J!

Let T = diag{Tj, ..., T} be the diagonal block matrix with the diagonal block T;
equal the upper triangular n; X n; Jordan block with the number z; € ID on the
main diagonal, let E be the row vector

E=[E ... E/, where E;=[1 0 ...0] €C!*"

and let C € C" be defined from the numbers ¢;; as follows:
C= [Cl e Cd , Where C;= [Ei,O .. 'Ei,ni—l] S Cclxm,
We next let P € C"*" to denote the Schwarz-Pick matrix

L r:O,...,nj—l
1 9™ 1—b(2)b(Q)

p= _ _
mir! 9zm90  1—2zL | 2-.,

(2.2)
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which is known to be positive definite whenever n := n; + ... +ny < k :=
degb. This matrix can be alternatively defined as the unique solution of the Stein
equation

P—T*PT =E'E—-C*C (2.3)
where T, E and C are defined as above. The verification of (2.3) for P of the
form (2.2) is straightforward and the uniqueness follows from the fact that all the
eigenvalues of T are in ID. We next define the 2 x 2 matrix function

O(z) = L — (1 —2zfi)K(z, )], where J= { (1) _(1) } , (2.4)

p is an arbitrary point in T and

K(z, ) = { fj } (I —zT) 'P~ (I, —aT*) "' [ E* C*].

An easy computation based solely on the Stein identity (2.3) shows that

] = 0(2)]0(z)" = (1~ [z[*)K(z 2) (2.5)
which implies in particular that © is J-inner in ID:
O(z)JOkz)* <JifzeD, O()]O(t)" =] ifteT. (2.6)

Another calculation based on (2.3) gives

() \"
da@@)_ngl_ﬁ”O_ﬁ%J . (2.7)

The role of the function © in interpolation theory is justified by the following
well-known result. In its formulation, we use the symbol BH* to denote the
closed unit ball of the Hardy space H* of the unit disk.

Theorem 2.1. Let © = [SE zi] be defined as in (2.4). Then the linear fractional formula

O+ 62
0210 + 62

establishes a one-to-one correspondence between BH® and the set of all functions
g € BH® such that

gV (z) =jleij for j=0,...,m—1i=1,..0L (2.9)
Furthermore, if o € By, then Te[o] € By

g =Telo] : o€ BH®, (2.8)

The set BH*® (sometimes called the Schur class) consists of all analytic func-
tions mapping ID into the closed unit disk ID so that the inclusion S C BH® is
clear. On the other hand, if a function f € BH® does not belong to S, it follows
from the maximum modulus principle that f is a unimodular constant function
(thatis, f € Bp). Thus, BH* = S U By. We supplement Theorem 2.1 by several
simple observations. We first observe that for ¢ and ¢ related as in (2.8),

[1 —g} O = Ug [1 —(T} ’ where Ug 1= 911 - 921g. (210)

It follows from (2.10) that if u¢(J) = 0, then @(J) is not invertible so that
det®({) = 0. Thus we conclude from (2.7) that ug(z) # Oforeveryz & {z1,...,z}.
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Lemma 2.2. Let g and o be related as in (2.8) and let ty € T. Then
1. The limit g(to) exists if and only if o(ty) exists.
2. [g(to)| = 1 i and only if |0 (t0)| = 1.
3. In the latter case, the limits dq(to) and d,(to) are related by

dilto) = [1 ~g(0)] Kltorto) |_es] + o) Potto). @10

Proof: The first statement follows directly from (2.8). The second statement
follows from (2.10) since ®(ty) is J-unitary (see the second formula in (2.6)). To
complete the proof we multiply both parts of (2.5) by the row-vector [1 —g(z)]

on the left, by its adjoint on the right, divide the resulting equality by 1 — |z|? and
take into account formula (2.4) for | to get
1-I3(2)|” 1 21— (2)?
—— =1 — — —_ . .
1— ’Z|2 [ g(Z)] K(Z/Z) _g(z) +|ug(z)| 1— ’Z|2 (2 12)

Upon passing to the limit as z—fy in the latter equality we get (2.11). Since the
first term on the right hand side of (2.12) tends to a finite limit and since u(ty) # 0,
the limits d¢(tg) and d,(to) in (2.11) are finite or infinite simultaneously. u

Lemma 2.3. Let s € S and b € By meet conditions (2.1). Then
s=Tels] and b= T@[E] forsome s € BH* and be B, (2.13)

Furthermore, the limits s(ty) and ds(to) exist and satisfy (1.5) if and only if the limits
S(to) and ds(to) exist and satisfy

g(to) = b(to) and dg(to) < d’g(to) (214)

Proof: The first statement follows from Theorem 2.1. The existence part of the
second statement follows from Lemma 2.2. The equivalence of the first equalities
in (1.5) and (2.14) follows since © is analytic and invertible at ty5. Now let us
assume that all the limits in (1.5) and (2.14) exist and that s(tg) = b(to). By part
(3) in Lemma 2.2,

ds(to) = [1 —s(to)] K(to, to) |:—SETO)} |15 (to) [*d5(to), (2.15)
dilto) = [1 ~b(t)] Klto,t0) |_pis] + o) e, (216

where according to (2.10), us = 611 — 6215 and u, = 617 — 01b. Due to the as-
sumption s(tg) = b(tp), the first terms on the right in (2.15) and (2.16) are equal
and also u;(tg) = uy(tp). Subtracting (2.16) from (2.15) we get

ds(to) — dp(to) = |up(to)|* (ds(to) — dy(to))
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and since u(tg) # 0, the equivalence of inequalities in (1.5) and (2.14) follows. =

Proof of Theorem 1.3: To prove the sufficiency part we will argue via contradic-
tion. Let us assume that Np(s — b) = k and that (1.5) holds for some ¢ty € T. By
Lemma 2.3, s and b are of the form (2.13) where be Bi_r = By. Thus b= vyeT
and therefore, d;(ty) = 0. By Lemma 2.3, 5(tp) = 7 and 0 < ds(tg) < d;(to) = 0.
Since |s(fp)| = 1 and dz(ty) = 0, we conclude by the Julia lemma [7] that 5 = v
which implies that s = b. This contradicts the assumption of the theorem and
completes the proof of the sufficiency part.

The necessity part will be first proved for the case Np(s — b) = 0, that is,
under the assumption that s(z) # b(z) for every z € ID. Define

_r—l
oy

fr(z)

By Rouche theorem, Np(f;) = k for every r. Let us denote by {, one (any one) of
the zeros of f,. If the set {{,} had an accumulation point { € D, then we would
have s({) = b({) and f({) = 0 which contradicts the assumption Np(s — b) = 0.
Thus, {Cr} has an accumulation point tg € T. Take a sequence {(,,} converging
to tg. Thus,

s(z) —b(z) for r>1.

£

-1
——5(8r) = b(Cr) (2.17)
1
and therefore,
2
(e X G 7 v LA L O B [ (4]
1— (g2 11—, 2 =1z

Since b is a finite Blaschke product, the limit of the rightmost ratio in (2.18) exists
and equals d;(tg). Now we conclude from (2.18) that

(2.18)

1 s(z))?
= —5— < . .
d 11an>1t£1f T2 S dy(tg) < o0 (2.19)
Then by Theorem 1.1, the nontangential limits s(¢y) and ds(fo) exist and satisfy
s(tg) = b(tp) (due to (2.17)) and ds(tg) = d < dy(tp) (by (2.19)).
For the general case, let us assume that Np(s —b) =n < kand letzy,...,z, €
D be the zeros of the function s — b of respective multiplicities ny, ..., ny so that
11+ ...+ ny; = n. By Lemma 2.3, s and b are of the form (2.13) where s € BH®

and b € By_,,. Since s() # b({) and det®(Z) # 0 for every € D\ {z1,...,2},

it is readily seen that 5() # b(Z) for every such point {. On the other hand,
it is well known (see e.g., [3]) that the value o (z;) of the parameter ¢ in (2.8) at
the interpolation node z; completely determines the (n; + 1)-th Taylor coefficient
g\")(z;) /n;! of g = Te(0). Since we assumed that s — b has zero of multiplicity n;
at z;, i.e., that s(") (z;) # s()(z;), it then follows that §(z;) # b(z;) fori =1,..., k.
Thus Np (5 — b) = 0 and by the first part of the proof, there exists a point typ € T
such that the limits s(¢y) and dz(to) exist and satisfy relations (2.14). But then it
follows from Lemma 2.3 that the limits s(to) and d;(to) exist and satisfy relations

(1.5).
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To prove the last statement of the theorem (again via contradiction), we as-
sume that Np(s — b) = n < k and that there exist 7 := k—n+ 1 points f1,...,t €
T such that

s(t;) =b(t;) and ds(t;) <dp(t;) for i=1,...,r.

Then the functions § € BH® and b € By_, from representations (2.13) meet
conditions

5(t) =b(t;) and ds(t;) <dg(t;) for i=1,...,r, (2.20)
by Lemma 2.3. The r X r boundary Schwarz-Pick matrix

)i i)
1- E !

constructed from b is positive semidefinite. By Lemma 2.1 in [4],
rankP = min{r, degb}. (2.21)

Let us think for a moment that b is given and we are looking for a function
s € BH® satisfying interpolation conditions (2.20). Then we have a well-known
boundary Nevanlinna-Pick problem [9] which has a unique solution if and only if
the matrix P introduced just above is positive semidefinite and singular; see e.g.,
[2, 3, 5]. This is exactly what we have since by (2.21), rankP = degh =n —k <.
Thus, the only function s € BH® satisfying conditions (2.20) is the function b it-
self. Therefore, conditions (2.20) imply that s = b and therefore, that s = Tg 5] =
Te[b] = b which gives the desired contradiction. ]

3 The Carathéodory-Julia-Wolff theorem for generalized Schur
functions

In this concluding section we demonstrate that a version of Theorem 1.3 can
be formulated in terms of fixed points of meromorphic functions g of the form
g = s/% where s € BH® and a finite Blaschke product ¢ do not have common
zeros in ID. These functions (commonly known as generalized Schur functions)
appeared in [1, 11] in certain interpolation context and have been studied later in
[8]. We denote by Sy the class of generalized Schur functions ¢ with the denomi-
nator ¢ € By in the above representation. Let us say that a point zy € ID is a fixed
point of g of multiplicity (fixed point index) m if the function z — g(z) — z has
zero of multiplicity m at z.

Theorem 3.1. Let g € Sk. If g has less than k + 1 fixed points in 1D counted with
multiplicities, then there exists a boundary fixed point tg € T such that the angular
derivative §'(to) exists and satisfies g'(tg) < 1.
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Proof: The statement trivially holds true if ¢ is a unimodular constant (i.e.,
g € Bp). Also it is easily verified if g is of the form g = /¢ for v € By and ¢ € By
(k > 0). Indeed, every g of this form has no fixed points in C \ T and it has at
least one fixed point g € T. Then d(ty) = 7o and by (1.4),

dy(to) = to? (to)¥(to) = Tt50' (o) > 0. (3.1)

On the other hand, ¢'(ty) = —719192;5)3%) = —719/2(;;0) = —7t2¢'(ty) which together
7?1t

with (3.1) implies g’(t9) < 0, that is, even more than wanted.

Since BH® = S U B, it remains to consider the case where g is of the form
g = s/t forsome s € S and ¢ € By having no common zeros in D. Let b := z¢ €
By1. Then every zero of the function s — b is a fixed point for ¢ and vice versa.
Then we have from the assumption of the theorem that Np(s — b) < k+1; so we
conclude from Theorem 1.3 that there is a point fy € T such that the limits (1.1)
exist and satisfy

S(to) = b(to) = toﬂ(to) and tob(to) (b/(to) — S/(to)) > 0. (3.2)

Therefore the boundary limits g(to) and g'(tp) exist. It follows from the first
equality in (3.2) that g(t9p) = to so that tj is a fixed boundary point for g. We
now use equalities b = z® and s = g0 to write the second relation in (3.2) in
terms of g and ¢ as

0 < tob(to) (V' (to) — s (t0))

= totoW(to) (to®' (to) + ¥(to) — &'(to)d(to) — &(t0)?'(to)) = 1 —g'(to)

where the last equality follows since g(tg) = tp and |ty| = |0(fp)| = 1. Thus,
¢'(tp) < 1as desired. .

Note that in the classical case (k = 0), the boundary derivative ¢’(t() is nec-
essarily nonnegative at any boundary fixed point and thus, the bound g’ (tp) <1
for g € BH® means that [¢'(to)|] < 1. On the other hand, if ¢ € BH* has a
(unique) fixed point zj in D, then |¢'(z9)| < 1 by the Schwarz-Pick lemma. It
therefore follows that every function ¢ € BH™ has a unique fixed point zp € D
(the Denjoy-Wolff point of g) such that |g’(z0)| < 1. From complex dynamics point
of view, it might be of interest to characterize meromorphic (or at least rational)
functions ¢ € Si having a Denjoy-Wolff point (maybe not unique). The following
example shows that in general, such a point may not exist. Indeed, the function

oz z(2-2z)
88 =1 =%
1—%2

belongs to S and has two fixed points zg = 0 and ty = 1. Furthermore, ¢'(z) =

_%222%%{2 and thus ¢’(0) = ¢’(1) = —2 (which of course is consistent with Theo-

rem 3.1).
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