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Abstract

In this paper, by using an improved inequality, we improve an existence
theorem of periodic solutions for second order Hamiltonian system with a
p-Laplacian. Moreover, an estimate of solutions is also given. Our results
improve those in some known literatures.

1. Introduction

Consider the ordinary p-Laplacian system

{

d
dt Φp(ẋ(t)) +∇F(t, x(t)) = 0, a.e. t ∈ [0, T],

x(0) = x(T), ẋ(0) = ẋ(T).
(1.1)

where

Φp(u) = |u|p−2u =

(

N

∑
i=1

u2
i

)

p−2
2







u1
...

uN






,
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T > 0, p > 1, q > 1, 1/p + 1/q = 1, and F : [0, T]× R
N → R, (t, x) → F(t, x) is

measurable in t for every x ∈ R
N and continuously differentiable and convex in

x for almost every t ∈ [0, T].
When p = 2, there are many existence results of periodic solutions for system

(1.1) (see [1-6] and references therein). However, when p > 1, there are few
papers to study these problems. In [7] and [8], the authors considered system (1.1)
by using the dual least action principle and a generalized Mountain pass Lemma,
respectively, and they obtained some existence results of solutions for system
(1.1). In [9], we also considered system (1.1) by using the generalized Saddle
point Theorem and obtained that system (1.1) has multiple solutions. Especially,
in [7], Tian and Ge obtained the following results:
Theorem A Suppose F satisfies the following conditions:

(A1) there exists l ∈ L2 max{q,p−1}(0, T; R
N) such that for all y ∈ R

N and a.e. t ∈ [0, T],

F(t, y) ≥
(

l(t), |y|
p−2

2 y
)

;

(A2) there are constants α ∈ (0, T−p/q), αq−1 ∈ (0, T−q/p), p > 1, γ ∈ Lmax{q,p−1}

(0, T; R
N) such that for y ∈ R

N, and a.e. t ∈ [0, T],

F(t, y) ≤
α2

p
|y|p + γ(t);

(A3)
∫ T

0 F(t, y)dt → +∞, as |y| → ∞, y ∈ R
N.

Then, system (1.1) has at least one solution.
In our paper, by using the improved inequality, we improve the condition

(A2) and also obtain an estimate of periodic solution for system (1.1).

2. Preliminaries

In the following, we use | · | to denote the Euclidean norm in R
N. Let

W
1,p
T = {u : [0, T] → R

N| u(t) is absolutely continuous on [0, T],

u(0) = u(T) and u̇ ∈ Lp(0, T; R
N)}.

Then, it follows from [2] that W
1,p
T is a Banach space with the norm defined by

‖u‖
W

1,p
T

=

[

∫ T

0
|u(t)|pdt +

∫ T

0
|u̇(t)|pdt

]1/p

, u ∈ W
1,p
T .

It follows from [2] that W
1,p
T is also reflexive and uniformly convex Banach space.

Let

X = {v = (v1, v2) : v1 ∈ W
1,q
T (0, T; R

N), v2 ∈ W
1,p
T (0, T; R

N)}

with the norm ‖v‖ = ‖v1‖W
1,q
T

+ ‖v2‖W
1,p
T

. It is clear that X is a reflexive Banach

space.
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Let

W̃
1,p
T =

{

u ∈ W
1,p
T

∣

∣

∣

∣

∫ T

0
u(t)dt = 0

}

.

It is easy to know that W̃
1,p
T is a subset of W

1,p
T and W

1,p
T = R

N ⊕ W̃
1,p
T . Then X̃

stands for

X̃ = {v = (v1, v2) : v1 ∈ W̃
1,q
T (0, T; R

N), v2 ∈ W̃
1,p
T (0, T; R

N)},

and (W
1,p
T )∗ stands for the conjugate space of W

1,p
T . Then

X∗ =
{

f = ( f1, f2) : f1 ∈
(

W
1,q
T

)∗
, f2 ∈

(

W
1,p
T

)∗}

is the conjugate space of X. Furthermore, we define

Y = {u = (u1, u2) : u1 ∈ W
1,p
T (0, T; R

N), u2 ∈ W
1,q
T (0, T; R

N)}.

For h ∈ L1([0, T]; R
N), the mean value is defined by h̄ = 1/T

∫ T
0 h(t)dt. Besides

this, ‖ · ‖∞, ‖ · ‖Lk and ‖ · ‖
W1,k

T
stand for the norm in C0([0, T]), Lk([0, T]) and W1,k

T ,

respectively.
Γ0(R

N) denotes the set of all convex lower semi-continuous (l.s.c.) functions
F : R

N → (−∞,+∞] whose effective domain D(F) = {u ∈ R
N : F(u) < +∞}

is nonempty. Let H : [0, T] × R
2N → R, (t, u) → H(t, u) be a smooth Hamil-

tonian such that for each t ∈ [0, T], H(t, ·) ∈ Γ0(R
2N) is strictly convex and

H(t, u)/|u| → +∞, if |u| → ∞. The Fenchel transform H∗(t, ·) of H(t, ·) is de-
fined by

H∗(t, v) = sup
u∈R2N

{(v, u)− H(t, u)}

or

H∗(t, v) = (v, u)− H(t, u)

v = ∇H(t, u), or u = ∇H∗(t, v). (2.1)

If for u = (u1, u2), u1, u2 ∈ R
N, H(t, u) can be split into parts H(t, u) = H1(t, u1)+

H2(t, u2), then by (2.1), H∗(t, v) = H∗
1 (t, v1) + H∗

2 (t, v2), v = (v1, v2), v1, v2 ∈ R
N.

We denote by J the symplectic matrix. Then J2 = −I and (Ju, v) = −(u, Jv) for
all u, v ∈ R

2N. It is clear that (Jv̇, v) = (v̇2, v1) − (v̇1, v2), where v = (v1, v2),
vi ∈ C(0, T; R

N), i = 1, 2. The above knowledge and statement come from [2,7]
and the references therein.

Let x(t) = u1(t), Φp(ẋ(t)) = αu2(t). Then system (1.1) is equivalent to the
non-autonomous system







u̇2(t) +
1
α∇F(t, u1(t)) = 0, a.e. t ∈ [0, T],

−u̇1(t) + Φq(αu2(t)) = 0,
ui(0) = ui(T), i = 1, 2,

(2.2)

that is
{

Ju̇(t) +∇H(t, u(t)) = 0, a.e. t ∈ [0, T],
u(0) = u(T),

(2.3)
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where u = (u1, u2), H(t, u) = H1(t, u1) + H2(t, u2),

H1(t, u1) =
1

α
F(t, u1), H2(t, u2) =

αq−1

q
|u2|

q, (2.4)

where H : [0, T]× R
2N → R, Hi : [0, T]× R

N → R, i = 1, 2.
The dual action is defined on X by

ϕ(v) =
∫ T

0

[

1

2
(Jv̇(t), v(t)) + H∗

1 (t, v̇1(t)) + H∗
2 (t, v̇2(t))

]

dt,

where v = (v1, v2), H∗(t, v̇) = H∗
1 (t, v̇1) + H∗

2 (t, v̇2).

Lemma 2.1. (also see [9], Lemma 2.2) Let u ∈ W̃
1,p
T . Then

‖u‖∞ ≤

(

T

q + 1

)1/q (∫ T

0
|u̇(s)|pds

)1/p

, (2.5)

and
∫ T

0
|u(s)|pds ≤

TpΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(s)|pds, (2.6)

where

Θ(p, q) =
∫ 1

0

[

sq+1 + (1 − s)q+1
]p/q

ds.

Proof. Fix t ∈ [0, T]. For every τ ∈ [0, T], we have

u(t) = u(τ) +
∫ t

τ
u̇(s)ds. (2.7)

Set

φ(s) =

{

s, 0 ≤ s ≤ t,
T − s, t ≤ s ≤ T.

Integrating (2.7) over [0, T] and using the Hölder’s inequality, we obtain

T|u(t)| =

∣

∣

∣

∣

∫ T

0
u(τ)dτ +

∫ T

0

∫ t

τ
u̇(s)dsdτ

∣

∣

∣

∣

≤
∫ t

0

∫ t

τ
|u̇(s)|dsdτ +

∫ T

t

∫ τ

t
|u̇(s)|dsdτ

=
∫ t

0
s|u̇(s)|ds +

∫ T

t
(T − s)|u̇(s)|ds

=
∫ T

0
φ(s)|u̇(s)|ds

≤

(

∫ T

0
[φ(s)]qds

)1/q (∫ T

0
|u̇(s)|pds

)1/p

=
1

(q + 1)1/q

[

tq+1 + (T − t)q+1
]1/q

(

∫ T

0
|u̇(s)|pds

)1/p

. (2.8)
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Since tq+1 + (T − t)q+1 ≤ Tq+1 for t ∈ [0, T], it follows from (2.8) that (2.5) holds.
On the other hand, from (2.8), we have

Tp
∫ T

0
|u(t)|pdt ≤

1

(q + 1)p/q

(

∫ T

0
|u̇(s)|pds

)

∫ T

0

[

tq+1 + (T − t)q+1
]p/q

dt

≤
T1+p(q+1)/q

(q + 1)p/q

(

∫ T

0
|u̇(s)|pds

)

∫ 1

0

[

sq+1 + (1 − s)q+1
]p/q

ds

=
T2pΘ(p, q)

(q + 1)p/q

∫ T

0
|u̇(s)|pds.

It follows that (2.6) holds. The proof is complete.

Remark 2.1. Obviously, our Lemma 2.1 improve Proposition 1.1 in [2] which
shows that

‖u‖∞ ≤ T1/q‖u̇‖Lp , ‖u‖
p
Lp ≤ Tp‖u̇‖

p
Lp . (2.9)

Lemma 2.2. For every v = (v1, v2) ∈ X,
∫ T

0
(Jv̇(t), v(t))dt ≥ −

C

p
‖v̇2‖

p
Lp −

C

q
‖v̇1‖

q
Lq ; (2.10)

for every u = (u1, u2) ∈ Y,
∫ T

0
(Ju̇(t), u(t))dt ≥ −

C

q
‖u̇2‖

q
Lq −

C

p
‖u̇1‖

p
Lp , (2.11)

where

C =
T

(q + 1)1/q
+

T

(p + 1)1/p
.

Proof. Let v = v̄ + ṽ, where v̄ = 1/T
∫ T

0 v(s)ds. Then by Lemma 2.1, Hölder’s
inequality and Young’s inequality, for v ∈ X, we have
∫ T

0
(Jv̇(t), v(t))dt =

∫ T

0
(Jv̇(t), ṽ(t))dt

=
∫ T

0
[(v̇2(t), ṽ1(t))− (v̇1(t), ṽ2(t))]dt

≥ −‖ṽ1‖∞

∫ T

0
|v̇2(t)|dt − ‖ṽ2‖∞

∫ T

0
|v̇1(t)|dt

≥ −
T

(p + 1)1/p
‖v̇1‖Lq‖v̇2‖Lp −

T

(q + 1)1/q
‖v̇2‖Lp‖v̇1‖Lq

= −C‖v̇2‖Lp‖v̇1‖Lq

≥ −
C

p
‖v̇2‖

p
Lp −

C

q
‖v̇1‖

q
Lq .

Similarly to the above process, the result (2.11) holds for u = (u1, u2) ∈ Y.

Remark 2.2. Obviously, our Lemma 2.2 improve Lemma 3.3 in [7].

Lemma 2.3. [2, Proposition 1.4] Let G ∈ C1(RN , R) be a convex function. Then,
for all x, y ∈ R

N, we have

G(x) ≥ G(y) + (∇G(y), x − y).
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3. Main results and Proofs

Theorem 3.1 Suppose F satisfies (A1), (A3) and the following condition:

(A2)
′ there are constants α ∈ (0, (C/2)−p/q), αq−1 ∈ (0, (C/2)−q/p), γ ∈ Lmax{q,p−1}

(0, T; R
N) such that for all y ∈ R

N, and a.e. t ∈ [0, T],

F(t, y) ≤
α2

p
|y|p + γ(t),

where

C =
T

(q + 1)1/q
+

T

(p + 1)1/p
.

Then, system (2.3) has at least one solution u ∈ Y such that

v(t) =

(

v1(t)
v2(t)

)

= −J

[

u(t) −
1

T

∫ T

0
u(s)ds

]

=

(

−u2(t) +
1
T

∫ T
0 u2(s)ds

u1(t)−
1
T

∫ T
0 u1(s)ds

)

minimizes the dual action

ϕ : X → (−∞,+∞], v →
∫ T

0

[

1

2
(Jv̇(t), v(t)) + H∗(t, v̇(t))

]

dt,

that is to say, system (1.1) has at least one solution x ∈ W
1,p
T .

Proof. The proof is same as in [7]. We only need to replace Lemma 3.3 in [7] with
Lemma 2.2 and replace (2.9) with (2.5) in the process of proof.

Next, we consider the estimate of solutions for system (1.1).

Theorem 3.2 Assume that there exist α ∈
(

0, min
{

C−1, C−p/q
})

, β ≥ 0, γ ≥ 0
and δ > 0 such that

δ|y| − β ≤ F(t, y) ≤
α2

p
|y|p + γ (3.1)

for all t ∈ [0, T] and y ∈ R
N. Then each solution x of system (1.1) satisfies

∫ T

0
|x(t)|dt ≤

(γ + β)T

δ
+

TαqB1/pD1/q

δ(q + 1)1/q
, (3.2)

∫ T

0
|ẋ(t)|pdt ≤

pT(γ + β)

1 − Cα
, (3.3)

where

B =
pT(γ + β)

αq − Cαq+1
, D =

qT(γ + β)

α1−q/p − Cα
.

Proof. By (3.1), for u = (u1, u2) ∈ R
N × R

N, we have

δ

α
|u1| −

β

α
+

αq−1

q
|u2|

q

≤ H(t, u) =
1

α
F(t, u1) +

αq−1

q
|u2|

q

≤
α

p
|u1|

p +
γ

α
+

αq−1

q
|u2|

q. (3.4)
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Then, we have

(u, v)− H(t, u) ≥ (u, v)−
α

p
|u1|

p −
γ

α
−

αq−1

q
|u2|

q.

Since

(u, v)−
α

p
|u1|

p −
γ

α
−

αq−1

q
|u2|

q

= (u1, v1) + (u2, v2)−
α

p
|u1|

p −
γ

α
−

αq−1

q
|u2|

q

≤ |u1||v1| −
α

p
|u1|

p −
γ

α
+ |u2||v2| −

αq−1

q
|u2|

q

≤ sup
u1∈RN

{

|u1||v1| −
α

p
|u1|

p −
γ

α

}

+ sup
u2∈RN

{

|u2||v2| −
αq−1

q
|u2|

q

}

= α−q/p |v1|
q

q
−

γ

α
+

1

pα
|v2|

p.

Hence,

H∗(t, v) ≥ α−q/p |v1|
q

q
−

γ

α
+

1

pα
|v2|

p. (3.5)

By (2.1) and (3.4), we get

H∗(t, v) = (u, v)− H(t, u) ≤ (u, v) +
β

α
. (3.6)

Then

α−q/p |v1|
q

q
−

γ

α
+

1

pα
|v2|

p ≤ (u, v) +
β

α
. (3.7)

Note that

v = ∇H(t, u) =

(

∇H1(t, u1)
∇H2(t, u2)

)

=

(

1
α∇F(t, u1)

αq−1|u2|
q−2u2

)

.

Then by (2.1) and (3.7), we have

α−q/p

∣

∣

∣

1
α∇F(t, u1)

∣

∣

∣

q

q
−

γ

α
+

1

pα

∣

∣

∣
αq−1|u2|

q−2u2

∣

∣

∣

p
≤ (u,∇H(t, u)) +

β

α
,

that is
α−q/p−q

q
|∇F(t, u1)|

q −
γ

α
+

αq−1

p
|u2|

q ≤ (u,∇H(t, u)) +
β

α
.

For each solution u = (u1, u2) of system (2.3), it is easy to know that u1 is the solu-
tion of (1.1). By (2.2) and (2.3), we know ∇F(t, u1(t)) = −αu̇2(t) and
∇H(t, u(t)) = −Ju̇(t). Hence

α−q/p

q
|u̇2(t)|

q −
γ

α
+

αq−1

p
|u2(t)|

q ≤ (u(t),−Ju̇(t)) +
β

α
.
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Integrating the above inequality over [0, T] and using Lemma 2.2 and (2.2), we
obtain

α−q/p

q
‖u̇2‖

q
Lq −

γT

α
+

αq−1

p
‖u2‖

q
Lq ≤ −

∫ T

0
(u(t), Ju̇(t))dt +

βT

α

≤
C

q
‖u̇2‖

q
Lq +

C

p
‖u̇1‖

p
Lp +

βT

α

=
C

q
‖u̇2‖

q
Lq +

C

p
‖Φq(αu2)‖

p
Lp +

βT

α

=
C

q
‖u̇2‖

q
Lq +

Cαq

p
‖u2‖

q
Lq +

βT

α
.

So
(

α−q/p

q
−

C

q

)

‖u̇2‖
q
Lq +

(

αq−1

p
−

Cαq

p

)

‖u2‖
q
Lq ≤

T(β + γ)

α
.

Since α ∈
(

0, min
{

C−1, C−p/q
})

, we have

‖u2‖
q
Lq ≤

pT(γ + β)

αq − Cαq+1
= B, ‖u̇2‖

q
Lq ≤

qT(γ + β)

α1−q/p − Cα
= D.

Hence,

‖u̇1‖
p
Lp = ‖Φq(αu2)‖

p
Lp = αq‖u2‖

q
Lq ≤ Bαq. (3.8)

It follows that (3.3) holds. Since F is continuously differentiable and convex in x,
then by Lemma 2.3, (3.1), (2.2), (2.5), Hölder’s inequality and (3.8), we have

δ

∫ T

0
|u1(t)|dt − βT ≤

∫ T

0
F(t, u1(t))dt

≤
∫ T

0
[F(t, 0) + (∇F(t, u1(t)), u1(t))]dt

≤ γT −
∫ T

0
(αu̇2(t), u1(t))dt

≤ γT + α‖ũ1‖∞

∫ T

0
|u̇2(t)|dt

≤ γT + αT1/p‖ũ1‖∞

(

∫ T

0
|u̇2(t)|

qdt

)1/q

≤ γT + α
T

(q + 1)1/q
‖u̇1‖Lp‖u̇2‖Lq

≤ γT +
TαqB1/pD1/q

(q + 1)1/q
.

So, we get
∫ T

0
|u1(t)|dt ≤

(γ + β)T

δ
+

TαqB1/pD1/q

δ(q + 1)1/q
.

It follows that (3.2) holds. The proof is complete.
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