
Constant angle surfaces in Minkowski space
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Abstract

A constant angle surface in Minkowski space is a spacelike surface whose
unit normal vector field makes a constant hyperbolic angle with a fixed time-
like vector. In this work we study and classify these surfaces. In particular,
we show that they are flat. Next we prove that a tangent developable surface
(resp. cylinder, cone) is a constant angle surface if and only if the generating
curve is a helix (resp. a straight line, a circle).

1 Introduction and statement of results

A constant angle surface in Euclidean three-dimensional space E3 is a surface
whose tangent planes make a constant angle with a fixed constant vector field of
the ambient space [1, 9]. These surfaces generalize the concept of helix, that is,
curves whose tangent lines make a constant angle with a fixed vector of E3. This
kind of surfaces are models to describe some phenomena in physics of interfaces
in liquids crystals and of layered fluids [1]. Constant angle surfaces have been
studied for arbitrary dimension in Euclidean space En [3, 12] and in different
ambient spaces, e.g. S2 ×R, H2 ×R and Nil3 [2, 4, 5].

In this work we extend the concept of constant angle surfaces to a Lorentzian
ambient space. Let E3

1 denote the three-dimensional Minkowski space, that is, the

real vector space R
3 endowed with the Lorentzian metric

〈 , 〉 = (dx1)
2 + (dx2)

2 − (dx3)
2
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where (x1, x2, x3) are the canonical coordinates in R
3. In Minkowski space E3

1 and
due to the variety of causal character of a vector, there is not a natural concept
of angle between two arbitrary vectors and only it is possible to define the angle
between timelike vectors.

Consider a (connected) surface M and a smooth immersion x : M → E3
1. We

say that x is a spacelike immersion if the induced metric on M via x is a Rieman-
nian metric. This is equivalent to saying that any unit normal vector field ξ of M
is timelike at each point. In particular, if x : M → E3

1 is a spacelike immersion,
then the surface M is orientable.

Definition 1.1. Let x : M → E3
1 be a spacelike immersion and let ξ be a unit normal

vector field on M. We say that M is a constant angle surface if there is a fixed timelike
vector U such that ξ makes a constant hyperbolic angle with U.

In Theorem 3.4 we give a local description of any constant angle spacelike sur-
face. As a consequence, we prove that they are ruled and flat surfaces (Corollary
3.6). Thus they must be tangent developable surfaces, cylinders and cones. In
Section 4 we deal with tangent surfaces showing in Theorem 4.1 that

A tangent developable surface is a constant angle surface if and only if the
generating curve is a helix.

Finally we consider in Section 5 cylinders and cones. We show (see Theorems 5.1
and 5.3)

The only spacelike cylinders that are constant angle surfaces are planes. A
cone is a constant angle surface if and only if the generating curve is a circle
contained in a spacelike plane.

2 Preliminaries

Most of the following definitions can be found in O’Neill’s book [11]. Let E3
1

be the three-dimensional Minkowski space. A vector v ∈ E3
1 is said spacelike if

〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0, and lightlike if 〈v, v〉 = 0 and v 6= 0. The

norm (length) of a vector v is given by |v| =
√

|〈v, v〉|.
In Minkowski space E3

1 one can define the angle between two vectors only if

both are timelike. We describe this fact. If u, v ∈ E3
1 are two timelike vectors, then

〈u, v〉 6= 0. We say that u and v lie in the same timelike cone if 〈u, v〉 < 0. This
defines an equivalence binary relation with exactly two equivalence classes. If v
lies in the same timelike cone than E3 := (0, 0, 1), we say that v is future-directed.
For timelike vectors, we have the Cauchy-Schwarz inequality given by

|〈u, v〉| ≥
√

−〈u, u〉
√

−〈v, v〉
and the equality holds if and only if u and v are two proportional vectors. In the
case that both vectors lie in the same timelike cone, there exists a unique number
θ ≥ 0 such that

〈u, v〉 = −|u||v| cosh(θ).

This number θ is called the hyperbolic angle between u and v.
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Remark 2.1. We point out that the above reasoning cannot work for other pairs of vec-
tors, even if they are spacelike. For example, the vectors u = (cosh(t), 0, sinh(t)) and
v = (0, cosh(t), sinh(t)) are spacelike vectors with |u| = |v| = 1 for any t. However
the number 〈u, v〉 = − sinh(t)2 takes arbitrary values from 0 to −∞. Thus, there is no
θ ∈ R such that cos(θ) = 〈u, v〉.

We also need to recall the notion of Lorentzian cross-product × : E3
1 × E3

1 →
E3

1. If u, v ∈ E3
1, the vector u × v is defined as the unique one that satisfies

〈u × v, w〉 = det(u, v, w), where det(u, v, w) is the determinant of the matrix
whose columns are the vectors u, v and w with respect to the usual coordinates.
An easy computation gives

u × v = (u2v3 − u3v2, u3v1 − u1v3, u2v1 − u1v2).

As the cross-product in Euclidean 3-space, the Lorentzian cross-product in Min-
kowski space has similar algebraic and geometric properties, such as the anti-
symmetry or the orthogonality on both factors.

Let x : M → E3
1 be an immersion of a surface M into E3

1. We say that x is
spacelike (resp. timelike, lightlike) if the induced metric on M via x is Rieman-
nian (resp. Lorentzian, degenerated). This is equivalent to assert that a (local)
normal vector ξ is timelike (resp. spacelike, lightlike). As the concept of angle
is given only for timelike vectors, we have to consider those immersions whose
unit normal vector is timelike, that is, spacelike immersions. Let x be a spacelike
immersion. At any point p ∈ M, it is possible to choose a unit normal vector
ξ(p) such that ξ(p) is future-directed, i.e. 〈ξ(p), E3〉 < 0. This shows that if x is a
spacelike immersion, the surface M is orientable.

Denote X(M) the space of tangent vector fields on M. Let X, Y ∈ X(M). We

write by
∼
∇ and ∇ the Levi-Civita connections of E3

1 and M respectively. More-
over,

∇XY = (
∼
∇XY)⊤

where the superscript ⊤ denotes the tangent part of the vector field
∼
∇XY. We de-

fine the second fundamental form of x as the tensorial, symmetric map
σ : X(M)×X(M) → X(M)⊥ given by

σ(X, Y) = (
∼
∇XY)⊥

where by ⊥ we mean the normal part. The Gauss formula can be written as

∼
∇XY = ∇XY + σ(X, Y). (1)

We denote by Aξ(X) = A(X) the tangent component of −
∼
∇Xξ, that is, Aξ(X) =

−(
∼
∇Xξ)⊤ . Because 〈

∼
∇Xξ, ξ〉 = 0, we have the so-called Weingarten formula

∼
∇Xξ = −Aξ(X). (2)

The map A : X(M) → X(M) is called the Weingarten endomorphism of the immer-
sion x.We have then 〈AX, Y〉 = 〈X, AY〉. As a consequence, the Weingarten endo-
morphism is diagonalizable, that is, if p ∈ M, the map Ap : TpM → TpM defined
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by Ap(v) = (AX)p is diagonalizable, where X ∈ X(M) is a vector field that ex-
tends v. The eigenvalues of Ap are called the principal curvatures and they will be
denoted by λi(p). Moreover, if X, Y ∈ X(M), we have 〈A(X), Y〉 = 〈σ(X, Y), ξ〉
and

σ(X, Y) = −〈σ(X, Y), ξ〉ξ = −〈A(X), Y〉ξ.
∼
∇XY = ∇XY − 〈A(X), Y〉ξ.

Let {v1, v2} be a basis in the tangent plane TpM and denote

σij = 〈σ(vi , vj), ξ〉 = 〈A(vi), vj〉.

If we assume that this basis is orthonormal, we have from (1) and (2)

∼
∇vi

Vj = ∇vi
Vj − σijξ. (3)

∼
∇vi

ξ = σi1v1 + σi2v2. (4)

where Vi is a tangent vector field that extends vi.

3 Classification of constant angle surfaces in E3
1

Let M be a constant angle spacelike surface in E3
1 whose unit normal vector field ξ

is assumed to be future-directed. Without loss of generality, we assume that U is
a unitary vector and after an isometry of the ambient space, we can take U as E3.
Denote by θ the hyperbolic angle between ξ and U, that is, cosh(θ) = −〈ξ, U〉. If
θ = 0, then ξ = U on M. This means that x describes the immersion of an affine
plane parallel to Ox1x2. Throughout this work, we discard the trivial case that
θ = 0.

We decompose U as

U = U⊤ + cosh(θ)ξ

where U⊤ is the projection of U on the tangent plane of M. Let

e1 =
U⊤

|U⊤| ,

which defines a unit tangent vector field on M and consider e2 a unit vector field
on M orthogonal to e1 in such a way that {e1, e2, ξ} defines a positively oriented
unit orthonormal basis for every point of M. We write now the vector U in the
following form

U = sinh(θ)e1 + cosh(θ)ξ. (5)

As U is a constant vector field,
∼
∇e2U = 0 and (5) gives

sinh(θ)
∼
∇e2e1 + cosh(θ)

∼
∇e2ξ = 0. (6)

Taking the normal component and using (3), we obtain

sinh(θ)〈
∼
∇e2e1, ξ〉 = − sinh(θ)σ21 = 0.
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Since θ 6= 0, we conclude σ21 = σ12 = 0. By combining (4) and (6), it follows that

∼
∇e2e1 = − coth(θ)σ22 e2.

Analogously, we have
∼
∇e1

U = 0 and (5) yields

sinh(θ)
∼
∇e1

e1 + cosh(θ)
∼
∇e1

ξ = 0.

The normal component of the above expression together with (3) gives
σ11 sinh(θ) = 0, that is, σ11 = 0. We can summarize the above computations
with a description of ∇ as follows:

Theorem 3.1. With the above notations, the Levi-Civita connection ∇ for a constant
angle spacelike surface in E3

1 is given by

∇e1
e1 = 0.

∇e1
e2 = 0, ∇e2e1 = − coth(θ)σ22 e2.

∇e2e2 = coth(θ)σ22 e1.

Moreover, with respect to {e1, e2}, the Weingarten map takes the form

(

0 0
0 −σ22

)

.

At this moment one can choose coordinates u and v such that ∂
∂u = e1 and

∂
∂v = β e2, where β is a certain smooth function on the surface.

Corollary 3.2. Given a constant angle spacelike surface M in E3
1, there exist local co-

ordinates u and v such that the metric on M writes as 〈 , 〉 = du2 + β2dv2, where
β = β(u, v) is a smooth function on M, i.e. the coefficients of the first fundamental form
are E = 1, F = 0 and G = β2.

Now, we will consider that the parametrization x(u, v) given by the above
Corollary. We know that A(xu) = 0 and σ11 = σ12 = 0. From Theorem 3.1 one
obtains

xuu = 0

xuv =
βu

β
xv

xvv = −ββu xu +
βv

β
xv + β2σ22ξ

On the other hand, we have

ξu =
∼
∇xu ξ = 0.

ξv =
∼
∇xv ξ = βσ22e2 = σ22 xv.
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As ξuv = ξvu = 0, it follows
∼
∇xu(σ22xv) = 0. Using the fact that σ12 = 0,

∼
∇xu xv =

∼
∇xv xu and Theorem 3.1, we obtain

0 = (σ22)uxv + σ22

∼
∇xu xv = (σ22)uxv − coth(θ)σ2

22xv.

Therefore
(σ22)u − coth(θ)σ2

22 = 0. (7)

Also, we use the expression of xuv to conclude that

(σ22)u + σ22
βu

β
= 0

that is, (βσ22)u = 0 and then, there exists a smooth function ϕ = ϕ(v) depending
only on v such that

βσ22 = ϕ(v). (8)

Moreover, by combining (7) and (8), we have

βu

β
= − coth(θ)σ22.

Proposition 3.3. Consider a constant angle spacelike surface x = x(u, v) in E3
1 where

(u, v) are the coordinates given in Corollary 3.2. If σ22 = 0 on M, then x describes an
affine plane.

Proof. We know that βu = 0 on M. Thus xuv = 0 and hence, xu is a constant
vector. From (5), ξ is a constant vector field along M, and so, x parameterizes a
(spacelike) plane.

Here and in the rest of the work, we will assume that σ22 6= 0. By solving
equation (7), we obtain a function α = α(v) such that

σ22(u, v) =
1

− coth(θ) u + α(v)
.

Then (8) yields

β(u, v) = ϕ(v)
(

− coth(θ) u + α(v)
)

.

Consequently,

xuu = 0 (9)

xuv =
coth(θ)

coth(θ)u − α(v)
xv (10)

xvv = ϕ2 coth(θ)(− coth(θ)u + α)xu

+
(ϕ′

ϕ
+

α′

− coth(θ)u + α

)

xv + ϕ2(− coth(θ)u + α)ξ. (11)

From (5) we have
〈xu, U〉 = sinh(θ), 〈xv, U〉 = 0
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or equivalently
〈x, U〉u = sinh(θ), 〈x, U〉v = 0.

Then
〈x, U〉 = sinh(θ)u + µ, µ ∈ R.

The parametrization of x is now (up to vertical translations)

x(u, v) = (x1(u, v), x2(u, v),− sinh(θ)u).

As E = 1, there exists a function φ : M → R such that

xu = (cosh(θ) cos φ(u, v), cosh(θ) sin φ(u, v),− sinh(θ)).

Since xuu = 0, one obtains φu = 0, that is, φ = φ(v) and hence

xu = (cosh(θ) cos(φ(v)), cosh(θ) sin(φ(v)),− sinh(θ))

= cosh(θ)(cos(φ(v)), sin(φ(v)), 0) − sinh(θ)(0, 0, 1).

Denoting by
f (v) = (cos(φ(v)), sin(φ(v)))

we can rewrite xu as

xu = cosh(θ)( f (v), 0) − sinh(θ)(0, 0, 1).

We compute xuv:
xuv = cosh(θ)( f ′(v), 0). (12)

An integration with respect to u leads to

xv = cosh(θ)(u f ′(v) + h(v), 0) (13)

where h = h(v) is a smooth curve in R
2. From (10) and (13)

xuv =
1

coth(θ)u − α(v)

cosh2(θ)

sinh(θ)
(u f ′(v) + h(v), 0).

Comparing with (12) one gets

h = − tanh(θ)α(v) f ′(v)

and so,
xv = cosh(θ)

(

u − tanh(θ)α(v)
)

( f ′(v), 0).

The value of xvv is now

xvv = cosh(θ)(u − tanh(θ)α(v))( f ′′ (v), 0)− sinh(θ)α′(v)( f ′(v), 0). (14)

Multiplying the two expressions of xvv in (11) and (14) by xu, we conclude

φ′(v) =
1

sinh(θ)
ϕ(v).
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We do a change in the variable v to get φ′ = 1 for any v, that is, φ(v) = v. It is
not difficult to see that this does not change the second derivatives of x in (9), (10)
and (11). Then

xu = cosh(θ)(cos(v), sin(v), 0)− sinh(θ)(0, 0, 1).

xv =
(

cosh(θ)u − sinh(θ)α(v)
)

(− sin(v), cos(v), 0).

The above reasoning can be written in the following

Theorem 3.4. Let M be a constant angle spacelike surface in Minkowski space E3
1 which

is not totally geodesic. Up to a rigid motion of the ambient space, there exist local coordi-
nates u and v such that M is given by the parametrization

x(u, v) =
(

u cosh(θ)
(

cos(v), sin(v)
)

+ ψ(v),−u sinh(θ)
)

(15)

with

ψ(v) = sinh(θ)
(

∫

α(v) sin(v),−
∫

α(v) cos(v)
)

(16)

where α is a smooth function on a certain interval I. Here θ is the hyperbolic angle
between the unit normal of M and the fixed direction U = (0, 0, 1).

Proposition 3.5. A constant angle spacelike surface is flat.

Proof. At each point p ∈ M, we consider {v1(p), v2(p)} a basis of eigenvectors
of the Weingarten endomorphism Ap. In particular, λi(p) = −σii(p). As the

function 〈ξ, U〉 is constant, a differentiation along vi(p) yields 〈
∼
∇vi(p)ξ, U〉 = 0,

i = 1, 2. Using (4), we obtain

λ1(p)〈v1(p), U〉 = λ2(p)〈v2(p), U〉 = 0.

Assume that at the point p, λ1(p)λ2(p) 6= 0. By using the continuity of the prin-
cipal curvature functions, we have 〈v1(q), U〉 = 〈v2(q), U〉 = 0 for every point q
in a neighborhood Np of p. This means that U is a normal vector in Np and hence
it follows θ = 0: contradiction. Thus λ1(p)λ2(p) = 0 for any p, that is, K = 0 on
M.

As in Euclidean space, all flat surfaces are characterized to be locally isometric
to planes, cones, cylinders or tangent developable surfaces.

Corollary 3.6. Any constant angle spacelike surface is isometric to a plane, a cone, a
cylinder or a tangent developable surface.

The fact that a constant angle (spacelike) surface is a ruled surface appears in
Theorem 3.4. Exactly, the parametrization (15) writes as

x(u, v) = (ψ(v), 0) + u
(

cosh(θ)
(

cos(v), sin(v)
)

,− sinh(θ)
)

,

which proves that our surfaces are ruled. Next we present some examples of
surfaces obtained in Theorem 3.4.
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Example 1. We take different choices of the function α in (16).

1. Let α(v) = 0. After a change of variables, ψ(v) = (0, 0) and

x(u, v) = u(cosh(θ)(cos(v), sin(v)),− sinh(θ)).

This surface is a cone with the vertex the origin and whose basis curve is a
circle in a horizontal plane. See Figure 1, left.

2. Let α(v) = 1. Then ψ(v) = − sinh(θ)(cos(v), sin(v)) and

x(u, v) = − sinh(θ)(cos(v), sin(v), 0)+u(cosh(θ)(cos(v), sin(v)),− sinh(θ)).

Again, this surface is a cone based in a horizontal circle.

3. Consider α(v) = 1/ sin(v). Then ψ(v) = sinh(θ)(v,− log(| sin(v)|)) and

x(u, v) = sinh(θ)(v,− log(| sin(v)|), 0)+u(cosh(θ)(cos(v), sin(v)),− sinh(θ)).

See Figure 1, right.

-2

0

2

-2
0

2

-2

0

2

-2

0

2

-2
0

2

0

10

0

10

-5

0

5

0

10

0

10

Figure 1: Constant angle surfaces corresponding to several choices of α in Theo-
rem 3.4: α(v) = 0 (left) and α(v) = 1/ sin(v) (right).

4 Tangent developable constant angle surfaces

In this section we study tangent developable surfaces that are constant angle sur-
faces (see [10] for the Euclidean ambient space). Given a regular curve γ : I → E3

1,
we define the tangent surface M generated by γ as the surface parameterized by

x(s, t) = γ(s) + tγ′(s), (s, t) ∈ I ×R.

The tangent plane at a point (s, t) of M is spanned by {xs, xt}, where

xs = γ′(s) + tγ′′(s), xt = γ′(s).
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The surface is regular at those points where t(γ′(s)× γ′′(s)) 6= 0. Without loss of
generality, we will assume that t > 0.

On the other hand, since M is a spacelike surface and γ(s) ∈ M, the curve γ
must be spacelike. We parameterize γ such that s is the arc-length parameter, that
is, 〈γ′(s), γ′(s)〉 = 1 for every s. As a consequence, γ′′(s) is orthogonal to γ′(s).
We point out that although γ is a spacelike curve, the acceleration vector γ′′(s)
can be of any causal character, that is, spacelike, timelike or lightlike. However,
the surface M is spacelike, which implies that γ is not an arbitrary curve. Indeed,
by computing the first fundamental form {E, G, F} of M with respect to basis
{xs, xt}, we obtain

(

E F
F G

)

(s, t) =

(

1 + t2〈γ′′(s), γ′′(s)〉 1
1 1

)

.

M is spacelike if and only if EG − F2
> 0. This is equivalent to 〈γ′′(s), γ′′(s)〉 > 0,

that is, γ′′(s) is spacelike for any s.
The tangent vector T(s) and the normal vector N(s) are defined by T(s) =

γ′(s), N(s) = γ′′(s)/κ(s), respectively, where κ(s) = |γ′′(s)| > 0 is the curvature
of γ at s. The Frenet Serret frame of γ at each point s associates an orthonormal
basis {T(s), N(s), B(s)}, where B(s) = T(s)× N(s) is called the binormal vector
([6, 8]). We remark that B(s) is a unit timelike vector. The corresponding Frenet
equations are







T′ = κN
N′ = −κT +τB
B′ = τN.

The function τ(s) = −〈N′(s), B(s)〉 is called the torsion of γ at s. For tangent

surfaces x, the unit normal vector field ξ to M is ξ = (xs × xt)/
√

EG − F2 =
−B(s).

In order to give the next result, recall the concept of a helix in Minkowski
space. A spacelike (or timelike) curve γ = γ(s) parameterized by the arc-length
is called a helix if there exists a vector v ∈ E3

1 such that the function 〈γ′(s), v〉 is
constant. This is equivalent to saying that the function τ/κ is constant.

Theorem 4.1. Let M be a tangent developable spacelike surface generated by γ. Then M
is a constant angle surface if and only if γ is a helix with τ2

< κ2. Moreover the direction
U with which M makes a constant hyperbolic angle θ can be taken such that

U =
1√

κ2 − τ2

(

− τ(s)T(s) + κ(s)B(s)
)

(17)

and the angle θ is determined by the relation

cosh(θ) =
κ√

κ2 − τ2
. (18)

Proof. 1. Assume that M makes a constant angle with a fixed direction U, with
〈U, U〉 = −1. Then 〈B(s), U〉 is a constant function c with c < 0. By
differentiation with respect to s, and using the Frenet equation, we have
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τ〈N(s), U〉 = 0 for any s. If 〈N(s0), U〉〉 6= 0 at some point s0, then τ = 0
in a neighborhood of s0. This means that the binormal B(s) is a constant
vector V, γ is a planar curve and ξ = −V is constant on M. Thus, ξ makes
constant angle not only with the vector U (which is fix from the beginning),
but with any timelike vector. Hence U could be replaced by other vector,
for example by V. Equations (17) and (18) are trivial. Finally, γ is a helix
with τ2

< κ2 and the surface is a (spacelike) affine plane.

If 〈N(s), U〉 = 0 on I, and because 〈U, U〉 = −1 = 〈T(s), U〉2 − c2, the
function 〈T(s), U〉 is a constant function. Therefore γ is a helix in E3

1 again.
A differentiation of 〈N(s), U〉 = 0 gives 〈T(s), U〉 = cτ/κ. Thus −1 =

c2τ2/κ2 − c2, which shows that τ2
< κ2. Moreover, c = −κ/

√
κ2 − τ2. As

U = 〈T(s), U〉T(s)− cB(s), we get the expression (17). Finally (18) is trivial.

2. Conversely, let γ = γ(s) be a helix and let x = x(s, t) be the corresponding
tangent surface. We know that τ/κ is a constant function. If τ = 0, γ is a
planar curve. Then the tangent surface generated by γ is a plane, which is
a constant angle surface. If τ 6= 0, let us define

U(s) = −τ

κ
T(s) + B(s).

Using the Frenet equations, we have dU/ds = 0, that is, U is a constant
vector. Moreover, 〈ξ, U〉 = −〈B(s), U〉 = 1. Thus M is a constant angle
surface. The hyperbolic angle θ is given by

cosh(θ) =
〈ξ, U〉

√

−〈U, U〉
=

κ√
κ2 − τ2

.

We present two examples of constant angle surfaces that are tangent surfaces.
After an isometry of the ambient space, we assume that U = E3. From (18)

if τ/κ = a, with |a| < 1, then cosh(θ) = 1/
√

1 − a2. Moreover 〈T(s), U〉 =
− sinh(θ) and 〈γ(s), E3〉 = − sinh(θ)s + b, with b ∈ R. After an appropriate
change of variables, we take b = 0 and we write

γ(s) = (γ1(s), γ2(s), sinh(θ)s).

Because s is the arc-length parameter, there exists a smooth function λ(s) such
that γ′(s) = (cosh(θ) cos(λ(s)), cosh(θ) sin(λ(s)), sinh(θ)). An easy computa-
tion leads to

N(s) = (− sin(λ(s)), cos(λ(s)), 0)

B(s) = (− sinh(θ) cos(λ(s)),− sinh(θ) sin(λ(s)),− cosh(θ)).

The curvature is κ(s) = cosh(θ)λ′(s) and the torsion is τ(s) = − sinh(θ)λ′(s).
Example 2. We take λ(s) = s. An integration yields

γ(s) = (cosh(θ) sin(s),− cosh(θ) cos(s), sinh(θ)s).
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Figure 2: A constant angle tangent developable surface with κ(s) = cosh(θ) and
τ(s) = − sinh(θ). Here θ = 2 and U = (0, 0, 1).

Here κ(s) = cosh(θ) and τ(s) = − sinh(θ) and γ is a helix where both the cur-
vature and torsion functions are constant. A picture of the curve γ and the corre-
sponding tangent surface appears in Figure 2.

Example 3. We take λ(s) = s2. Recall that the Fresnel functions are defined as

FrS(x) =
∫ x

0
sin

(πt2

2

)

dt FrC(x) =
∫ x

0
cos

(πt2

2

)

dt.

Then

γ(s) =

(

√

π
2 cosh(θ)FrC

(

√

2
π s

)

,
√

π
2 cosh(θ)FrS

(

√

2
π s

)

, sinh(θ)s

)

is a helix where κ(s) = 2 cosh(θ)s and τ(s) = −2 sinh(θ)s. Figure 3 shows the
curve γ and the generated tangent surface.

Remark. We can extend the concept of constant angle surfaces for tangent
developable timelike surfaces. Let M be a tangent surface generated by a curve
γ such that M is timelike. Then γ is a spacelike curve (with γ′′ timelike) or γ
is a timelike curve (with γ′′ spacelike). Assume that γ is parameterized by the
arc-length s. Denote by {T, N, B} the Frenet frame of γ, that is, T(s) = γ′(s),
N(s) = γ′′(s)/κ(s), with κ(s) = |γ′′(s)| and B(s) = T(s) × N(s). The Frenet
equations are







T′ = κN
N′ = κT +τB
B′ = ǫτN
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Figure 3: A constant angle tangent developable surface with κ(s) = 2s cosh(θ)
and τ(s) = −2s sinh(θ). Here θ = 2 and U = (0, 0, 1).

where τ(s) = 〈N′(s), B(s)〉 and 〈T(s), T(s)〉 = ǫ = −〈N(s), N(s)〉, ǫ ∈ {1,−1}.
Anyway, B is always spacelike. We assume that there exists a fixed vector U ∈ E3

1
such that the function 〈ξ, U〉 is constant. Then it is not difficult to show that this
condition is equivalent to saying that γ is a planar curve (τ = 0, and M is an
affine plane), or 〈N(s), U〉 = 0 for any s. In this case, the first Frenet equation
yields 〈T′(s), U〉 = 0 and thus, 〈T(s), U〉 is a constant function. This means that
γ is a helix of E3

1. This generalizes Theorem 4.1 for tangent timelike surfaces.
We point out that our parametrization of M, x(s, t) = γ(s) + tγ′(s) where γ is

a helix given by

γ(s) =

(

cosh(θ)
∫

cos(λ(s)), cosh(θ)
∫

sin(λ(s)), sinh(θ)s

)

does not satisfy the conditions of Corollary 3.2 since F 6= 0. In order to obtain the
parametrization given in Theorem 3.4, we do a change of parameters given by

u = −(s + t) , v = π + λ(s).

Now we obtain xs = −xu + λ′xv and xt = −xu.
But xt = (cosh(θ) cos(λ(s)), cosh(θ) sin(λ(s)), sinh(θ)) or, in terms of u and v

xu = (cosh(θ) cos(v), cosh(θ) sin(v),− sinh(θ)).

Similarly xs = xt + tλ′(s) (− cosh(θ) sin(λ(s)), cosh(θ) cos(λ(s)), 0). It follows

xv =
(

u + λ−1(v − π)
)

cosh(θ) (− sin(v), cos(v), 0).

Consequently, the function α involved in the general formula can be expressed as

α(v) = − coth(θ) λ−1(v − π).
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5 Constant angle cylinders and cones

In this section we consider cylinders and cones that are constant angle (spacelike)
surfaces. A ruled surface is called a cylinder if it can be parameterized by x(s, t) =
γ(s) + tv, where γ is a regular curve and v is a fixed vector. The regularity of the
cylinder is given by the fact that γ′(s)× v 6= 0. A cone is a ruled surface that can
be parameterized by x(s, t) = tγ(s), where γ is a regular curve. The vertex of the
cone is the origin and the surface is regular wherever t

(

γ(s)× γ′(s)
)

6= 0.

Theorem 5.1. The only constant angle (spacelike) cylinders are planes.

Proof. Let M be a spacelike cylinder generated by a curve γ and a fixed direction
v. As the surface is spacelike, v is a spacelike vector, for which we will assume
|v| = 1. We can suppose that γ is contained in a plane Π such that v is orthogonal
to Π. In particular, Π is a timelike plane. The unit normal vector is ξ(s, t) =
ξ(s) = γ′(s)× v.

By contradiction, we assume that γ is not a straight line, that is, κ(s) 6= 0 at
some interval. We consider {T, N, B} the Frenet frame of γ. As γ is a planar curve,
B(s) = ±v and so, ξ(s) = ±N(s) := γ′′(s)/κ(s). Let U be the unit (timelike)
vector such that the function 〈ξ(s), U〉 is constant, that is, 〈N(s), U〉 is constant.
By differentiation with respect to s, using the Frenet equations and since γ is a
planar curve, we obtain 〈T(s), U〉 = 0 for any s. A new differentiation gives
κ(s)〈N(s), U〉 = 0 for any s. As κ(s) 6= 0, we have 〈N(s), U〉 = 0, for any s.
However, N(s) and U are both timelike vectors and thus, the product 〈N(s), U〉
can never vanish: contradiction. Consequently, κ(s) = 0 for any s, that is, γ is a
straight line and then M is a (spacelike) plane.

Remark 5.2. We point out that this result is more restrictive than the corresponding
in Euclidean space E3. In E3, any cylinder is a constant angle surface: it suffices to
take U as the vector that defines the rulings of the cylinder. The difference in Lorentzian
ambient is that our surfaces are spacelike and the vector U is timelike, which imposes
extra conditions.

For the next result concerning cones, we recall that a (spacelike) circle in Min-
kowski space is a planar curve with constant curvature [7, 8]. We also point out
that the plane Π containing the circle can be of any causal character. Indeed, after
a rigid motion of E3

1, a spacelike circle can be viewed as follows: a Euclidean
circle in a horizontal plane (if Π is spacelike), a hyperbola in a vertical plane (if Π

is timelike) and a parabola in a π/4-inclined plane (if Π is lightlike).

Theorem 5.3. Let M be a (spacelike) cone. Then M is a constant angle surface if and
only if the generating curve is a circle in a spacelike plane or it is a straight line (and M
is a plane).

Proof. Let M be a cone, for which one can assume that its vertex is the origin of
R

3. Let x(s, t) = tγ(s) be a parametrization of M, where t 6= 0 and γ(s) 6= 0,
s ∈ I. As xs = tγ′(s) is spacelike, 〈γ′(s), γ′(s)〉 > 0. On the other hand, xt

must be spacelike, this means that 〈γ(s), γ(s)〉 > 0. We can change γ(s) by a
proportional vector and suppose that γ lies in the unit Minkowski sphere of E3

1,
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that is, in the de Sitter space S
2
1 = {x ∈ E3

1; x2
1 + x2

2 − x2
3 = 1}. Thus, |γ(s)| = 1 for

any s ∈ I. Without loss of generality, we suppose that γ = γ(s) is parameterized
by the arc-length. Then γ(s) and γ′′(s) are orthogonal to γ′(s). The unit normal
vector field ξ on M is collinear to xs × xt. Denoting by T(s) = γ′(s), we have
ξ = T(s)× γ(s). In particular,

γ′′(s) = −γ(s)− 〈γ′′(s), ξ(s)〉ξ(s). (19)

Assume that M is a constant angle surface and let U be the unit timelike vector
such that 〈ξ(s), U〉 is constant. By differentiation with respect to s, we have

〈γ′′(s)× γ(s), U〉 = 0 (20)

for any s. Substituting in (20) the value of γ′′(s) obtained in (19), we get

〈γ′′(s), γ′(s)× γ(s)〉〈γ′(s), U〉 = 0.

We discuss the two possibilities:

1. If 〈γ′′(s), γ′(s) × γ(s)〉 6= 0 at some point, then 〈γ′(s), U〉 = 0 for any s.
This means that γ(s) lies in a plane orthogonal to U and so, this plane must
be spacelike. Thus the acceleration γ′′(s) is a spacelike vector. Then we can
take the Frenet frame of γ, namely {T, N, B}, where B = T× N is a timelike
vector. Moreover, B(s) = ±U. If κ(s) = 0 for any s, then γ is a straight
line and the surface is a plane. On the contrary, since 〈T(s), γ(s)〉 = 0, by
taking the derivative, one obtains κ(s)〈N(s), γ(s)〉 + 1 = 0. On the other
hand, because γ is a planar curve (τ = 0), the derivative of the function
〈N(s), γ(s)〉 vanishes. This means that 〈N(s), γ(s)〉 is constant and so, κ(s)
is constant.

2. Assume 〈γ′′(s), γ′(s) × γ(s)〉 = 0 for any s. As γ(s) and γ′(s) are orthog-
onal spacelike vectors, then γ′′(s) is a spacelike vector. Again, we consider
the Frenet frame {T, N, B} where B is a timelike vector. The above equation
writes now as κ(s)〈B(s), γ(s)〉 = 0. If κ(s) = 0 for any s, then γ is a straight
line again. Suppose now 〈B(s), γ(s)〉 = 0. Similar to the previous case, be-
cause γ(s) ∈ S

2
1, it follows 〈T(s), γ(s)〉 = 0 and κ(s)〈N(s), γ(s)〉 + 1 = 0. In

particular, 〈N(s), γ(s)〉 6= 0 and then, the derivative of 〈B(s), γ(s)〉 implies
τ = 0, that is, γ is a planar curve. Finally, the derivative of 〈N(s), γ(s)〉 is
zero, namely 〈N(s), γ(s)〉 is constant, and then, κ(s) is constant too.

As an example of constant angle cones, Figure 1 (left) shows a cone based on
a circle contained in a (horizontal) spacelike plane.
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