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Abstract

A new class is introduced consisting of harmonic univalent functions on
the exterior unit disk defined by convolution. This class generates several
known and new subclasses of harmonic univalent functions as special cases.
A necessary and sufficient convolution condition is obtained for functions
to belong to the class. A corresponding general class of harmonic functions
with negative coefficients is also introduced, and coefficient condition that is
both necessary and sufficient is obtained for the class. Extreme points are also
determined. As applications, starlikeness conditions of the Liu-Srivastava
linear operator involving the generalized hypergeometric functions are dis-
cussed.

1 Introduction

Complex-valued harmonic univalent functions have recently been studied from
the perspective of geometric function theory. These studies were inspired by the
seminal works of Clunie and Sheil-Small [6], and also by Sheil-Small [21] on the
class SH consisting of complex-valued harmonic orientation-preserving univalent
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mappings f defined on the open unit disk U, and normalized at the origin by
f (0) = 0 and fz(0) = 1. Various subclasses of SH have since been investigated by
several authors (see for example [2, 4, 8, 9, 11, 18, 19, 22, 25]).

In [7], Hengartner and Schober investigated the family ΣH consisting of har-

monic orientation-preserving univalent mappings f defined on Ũ = {z : |z| > 1}
that map ∞ to ∞. Such a mapping admits a representation of the form

f (z) = Alog|z| + h(z) + g(z),

where

h(z) = αz +
∞

∑
n=0

anz−n, and g(z) = βz +
∞

∑
n=1

bnz−n

are analytic in Ũ, and |α| > |β|. In addition, the function defined by a = fz/ fz is
analytic and satisfies |a(z)| < 1. By applying an affine transformation

(α f − β f − αa0 + βa0)/(|α|
2 − |β|2), we may restrict our attention to the family

Σ
′

H of harmonic functions of the form

f (z) = z + Alog|z| +
∞

∑
n=1

anz−n +
∞

∑
n=1

bnz−n.

The subclass with no logarithmic singularity will be denoted by Σ
′′

H := { f ∈ Σ
′

H :

A = 0}. Thus functions f ∈ Σ
′′

H have the representation f = h + g, where

h(z) = z +
∞

∑
n=1

anz−n and g(z) =
∞

∑
n=1

bnz−n (1.1)

are analytic in Ũ. Several subclasses of the family Σ
′′

H have been studied in [1,
10, 12, 20]. In [10], the class of univalent harmonic functions starlike of a certain
order was considered, and sufficient coefficient conditions were obtained. In [20]
a class of harmonic functions related to the analytic univalent classes of uniformly
convex functions and parabolic starlike functions [17] was investigated.

Now let σ be a real constant satisfying |σ| = 1, and Φσ = φ1 + σφ2, where φ1

and φ2 are two analytic functions in Ũ, with

φ1(z) = z +
∞

∑
n=0

Anz−n and φ2(z) = z +
∞

∑
n=0

Bnz−n. (1.2)

In this paper, a new subclass of functions in Σ
′′

H defined by convolution is intro-
duced. This subclass encompasses several classes investigated earlier, particu-
larly those studied in [10, 20]. For that purpose, let us first recall the definition of
convolution of two harmonic mappings.

If f = h + g is given by (1.1), and Φσ by (1.2), then the convolution Φσ ∗ f in

Ũ is defined by

F(z) = (Φσ ∗ f )(z) = (φ1 + σφ2) ∗ (h + g)(z)

= z +
∞

∑
n=1

an Anz−n + σ
∞

∑
n=1

bnBnz−n.
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With F(z) = (Φσ ∗ f )(z) and 0 ≤ α < 1, the function f is said to belong to the

class ΣH(Φσ, α) provided F ∈ Σ
′′

H and

∂

∂θ
arg(F(reiθ )) > α

on |z| = r for each r > 1 and 0 ≤ θ < 2π. Specifically, the class ΣH(Φσ, α) is
given in the following definition:

Definition 1.1. Let σ be a real constant with |σ| = 1, and 0 ≤ α < 1. Let Φσ(z) =

φ1(z) + σφ2(z) be a given harmonic function in Ũ, where φ1 and φ2 are of the
form (1.2). A harmonic function f = h + g where h and g are of the form (1.1),

belongs to the class ΣH(Φσ, α) if Φσ ∗ f ∈ Σ
′′

H satisfies the inequality

ℜ

{
z(h ∗ φ1)

′(z)− σz(g ∗ φ2)′(z)

(h ∗ φ1)(z) + σ(g ∗ φ2)(z)

}
> α, (z ∈ Ũ). (1.3)

Several subclasses of harmonic functions are special cases of the class ΣH(Φσ, α).
Notable among these subclasses are the subclasses Σ∗

H(α) of harmonic starlike
functions and ΣKH(α) of harmonic convex functions investigated by Jahangiri
[10], where

ΣH (Φ1, α) = Σ∗
H(α) and ΣH (Φ−1, α) = ΣKH(α) (1.4)

respectively, with

Φ1(z) =
z

1 − 1/z
+

z

1 − 1/z
= z +

∞

∑
n=0

z−n +

(
z +

∞

∑
n=0

z−n

)

and

Φ−1(z) =
z − 2

(1 − 1/z)2
−

z − 2

(1 − 1/z)2
= z −

∞

∑
n=0

nz−n −

(
z −

∞

∑
n=0

nz−n

)
.

Thus the class ΣH(Φσ, α) provides a unified treatment of various subclasses of
harmonic mappings under appropriate choices of the parameter σ and harmonic
function Φ.

In the next section of this paper, a necessary and sufficient convolution condi-
tion is obtained for the class ΣH(Φσ, α), which as application, yields a sufficient
coefficient condition for the class. In Section 3, an appropriate general class of har-

monic functions in Σ
′′

H with negative coefficients is defined. Necessary and suf-
ficient coefficient conditions are obtained. Growth estimates and extreme points
are also determined for the class. In Section 4, starlikeness conditions of the Liu-
Srivastava operator involving the generalized hypergeometric functions are in-
vestigated. Since many operators can be expressed in terms of the hypergeomet-
ric functions, the inclusion results obtained here will be useful for several other
operators.

We shall require the following result:
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Theorem 1.1. [12] If f of the form (1.1) satisfies the inequality

∞

∑
n=1

n(|an |+ |bn|) ≤ 1, (1.5)

then f is a harmonic, orientation-preserving univalent function in Ũ.

2 Main Results

We now derive a convolution characterization for functions in the class ΣH(Φσ, α).

Theorem 2.1. (Convolution Condition) Let f = h + g ∈ Σ
′′

H , and 0 ≤ α < 1. A
function f belongs to ΣH(Φσ, α) if and only if

(h ∗ φ1) ∗

[
z + 2α−x−3

2−2α

(1 − 1/z)2

]
− σ(g ∗ φ2) ∗




(x+α)
(1−α)

z − 3x+1+2α
2−2α

(1 − 1/z)2


 6= 0, |x| = 1, |z| > 1.

Proof. A necessary and sufficient condition for f = h + g to be in the class
ΣH(Φσ, α), with h and g of the form (1.1), is given by (1.3). The condition (1.3)
holds if and only if

1

(1 − α)

{
z(h ∗ φ1)

′(z)− σz(g ∗ φ2)′(z)

(h ∗ φ1)(z) + σ(g ∗ φ2)(z)
− α

}
6=

x − 1

x + 1
; |x| = 1, x 6= −1, |z| > 1.

(2.1)

By a simple algebraic manipulation, (2.1) yields

0 6= (x + 1)[z(h ∗ φ1)
′(z)− σz(g ∗ φ2)′(z)]− α(x + 1)[(h ∗ φ1)(z) + σ(g ∗ φ2)(z)]

− (x − 1)(1 − α)[(h ∗ φ1)(z) + σ(g ∗ φ2)(z)]

= (h ∗ φ1) ∗

[
(x + 1)(z − 2)

(1 − 1/z)2
−

(x + 2α − 1)z

1 − 1/z

]

− σ(g ∗ φ2) ∗

[
(x + 1)(z − 2)

(1 − 1/z)2
+

(x + 2α − 1)z

(1 − 1/z)

]

= (h ∗ φ1) ∗

[
2(1 − α)z + (2α − x − 3)

(1 − 1/z)2

]

− σ(g ∗ φ2) ∗

[
2(x + α)z − (3x + 2α + 1)

(1 − 1/z)2

]
.

The latter condition, along with (1.3) for x = −1, establishes the result for all
|x| = 1.

An application of the convolution condition in Theorem 2.1 yields a sufficient
coefficient condition for harmonic functions to belong to the class ΣH(Φσ, α).
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Theorem 2.2. If f = h+ g of the form (1.1) and Φσ = φ1 + σφ2 of the form (1.2) satisfy
the coefficient inequality

∞

∑
n=1

(n + α)|an||An|+
∞

∑
n=1

(n − α)|bn||Bn| ≤ 1 − α,

then f ∈ ΣH(Φσ, α).

Proof. The given condition shows that the coefficients of Φσ ∗ f satisfy

∞

∑
n=1

n(|an ||An|+ |bn||Bn|) ≤ 1.

It follows from (1.5) in Theorem 1.1 that Φσ ∗ f ∈ Σ
′′

H . For h and g given by (1.1),
Theorem 2.1 gives

∣∣∣∣∣∣
(h ∗ φ1) ∗

[
z + 2α−x−3

2−2α

(1 − 1/z)2

]
− σ(g ∗ φ2) ∗




(x+α)
(1−α)

z − 3x+1+2α
2−2α

(1 − 1/z)2




∣∣∣∣∣∣

=

∣∣∣∣∣z +
∞

∑
n=1

[
n + 2 + (n + 1)

2α − x − 3

2 − 2α

]
an Anz−n

− σ
∞

∑
n=1

[
(n + 2)

x + α

1 − α
− (n + 1)

3x + 2α + 1

2 − 2α

]
bnBnz−n

∣∣∣∣∣

> |z|

[
1 −

∞

∑
n=1

n + α

1 − α
|an||An| − |σ|

∞

∑
n=1

n − α

1 − α
|bn||Bn|

]
.

The last expression is non-negative by hypothesis, and hence by Theorem 2.1, it
follows that f ∈ ΣH(Φσ, α).

Remark 2.1. The coefficient bound in Theorem 2.2 can also be found in [10]. How-
ever the approach is different in this paper.

Using the relations (1.4), along with Theorem 2.2 yield the following two
corollaries:

Corollary 2.1. [10] Let f = h + g be of the form (1.1), and 0 ≤ α < 1. If

∞

∑
n=1

[(n + α)|an|+ (n − α)|bn| ] ≤ 1 − α,

then f ∈ Σ∗
H(α).

Corollary 2.2. [10] Let f = h + g be of the form (1.1), and 0 ≤ α < 1. If

∞

∑
n=1

n [(n + α)|an|+ (n − α)|bn| ] ≤ 1 − α,

then f ∈ ΣKH(α).
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3 Harmonic mappings with negative coefficients

In this section, we shall devote attention to an appropriate subclass of harmonic

functions with negative coefficients. Let us denote by TΣ
′′

H the class consisting of

functions f = h + g ∈ Σ
′′

H , where

h(z) = z + σ
∞

∑
n=1

anz−n, and g(z) = −
∞

∑
n=1

bnz−n, an ≥ 0, bn ≥ 0. (3.1)

Let Φσ = φ1 + σφ2, where

φ1(z) = z + σ
∞

∑
n=0

Anz−n, φ2(z) = z + σ
∞

∑
n=0

Bnz−n, (An ≥ 0, Bn ≥ 0), (3.2)

are given analytic functions in Ũ, and the real constant σ satisfies |σ| = 1.
We shall use the notation

TΣH(Φσ, α) := ΣH(Φσ, α) ∩ TΣ
′′

H ,

and for the harmonic starlike situation, we let

TΣ∗
H(α) := Σ∗

H(α) ∩ TΣ
′′

H .

A necessary and sufficient coefficient condition is obtained for the class
TΣH(Φσ, α).

Theorem 3.1. Let f be of the form (3.1), and 0 ≤ α < 1. The function f belongs to
TΣH(Φσ, α) if and only if

∞

∑
n=1

n + α

1 − α
an An +

∞

∑
n=1

n − α

1 − α
bnBn ≤ 1. (3.3)

Proof. If f belongs to TΣH(Φσ, α), then (1.3) is equivalent to

ℜ

{
(1 − α)z − σ2 ∑

∞
n=1(n + α)an Anz−n − σ2 ∑

∞
n=1(n − α)bnBnz −n

z + σ2 ∑
∞
n=1 an Anz−n − σ2 ∑

∞
n=1 bnBnz −n

}
> 0

for z ∈ Ũ. Letting z → 1+ through real values yields condition (3.3). The fact that
condition (3.3) is sufficient is obtained from Theorem 2.2.

From (1.4), Theorem 3.1 yields the following result:

Corollary 3.1. [10] Let f be of the form (3.1), and 0 ≤ α < 1. Then f ∈ TΣ∗
H(α) if and

only if
∞

∑
n=1

[(n + α)an + (n − α)bn] ≤ 1 − α.

Also f ∈ TΣKH(α) if and only if

∞

∑
n=1

n [(n + α)an + (n − α)bn] ≤ 1 − α.
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Theorem 3.2. Let Φσ be of the form (3.2) with An ≥ A1 > 0, Bn ≥ B1 > 0, and
1 ≤ B1 ≤ A1. If f ∈ TΣH(Φσ, α), then for |z| = r > 1,

r −
1

B1
r−1 ≤ | f (z)| ≤ r +

1

B1
r−1.

Proof. First note that by assumptions,

(1 − α)B1

[
∞

∑
n=1

(|σ|an + bn)

]
≤

∞

∑
n=1

[(n + α)an An + (n − α)bnBn] ≤ 1 − α.

Thus,

| f (z)| =

∣∣∣∣∣z + σ
∞

∑
n=1

anz−n −
∞

∑
n=1

bnz−n

∣∣∣∣∣

≤ r + r−1

[
∞

∑
n=1

(|σ|an + bn)

]

≤ r +
1

B1
r−1.

The lower bound is obtained in a similar manner.

The lower bound is sharp with equality for f (z) = z − 1
σ2B1

z−1. The estimates

given in the corollary below improve the bounds obtained by Jahangiri [10].

Corollary 3.2. If f ∈ TΣ∗
H(α) or f ∈ TΣKH(α), then

r − r−1 ≤ | f (z)| ≤ r + r−1, |z| = r > 1.

The class TΣH(Φσ, α) is clearly convex. We now determine its extreme points.

Theorem 3.3. Let

h0(z) := z, hn(z) := z +
σ(1 − α)

(n + α)An
z−n,

and

g0(z) := z, gn(z) := z −
1 − α

(n − α)Bn
z −n, (n = 1, 2, · · · ).

A function f ∈ TΣH(Φσ, α) if and only if f can be expressed in the form

f (z) =
∞

∑
n=0

(λnhn(z) + γngn(z)),

where λn ≥ 0, γn ≥ 0, and ∑
∞
n=0(λn + γn) = 1.
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Proof. Let

f (z) =
∞

∑
n=0

(λnhn(z) + γngn(z))

= z + σ
∞

∑
n=1

λn
1 − α

(n + α)An
z−n −

∞

∑
n=1

γn
1 − α

(n − α)Bn
z −n.

Since

∞

∑
n=1

n + α

1 − α
λn

1 − α

(n + α)An
An +

∞

∑
n=1

n − α

1 − α
γn

1 − α

(n − α)Bn
Bn

=
∞

∑
n=1

(λn + γn) = 1 − λ0 − γ0 ≤ 1,

it follows from Theorem 3.1 that f ∈ TΣH(Φσ, α).
Conversely, if f ∈ TΣH(Φσ, α), then

an ≤
1 − α

(n + α)An
, and bn ≤

1 − α

(n − α)Bn
.

For n ≥ 1, set

λn =
n + α

1 − α
an An, γn =

n − α

1 − α
bnBn, 0 ≤ λ0 ≤ 1,

and

γ0 = 1 − λ0 −
∞

∑
n=1

(λn + γn).

Then it is easily seen that ∑
∞
n=0(λnhn(z) + γngn(z)) = f (z).

4 The Liu-Srivastava Linear Operator

As applications in this final section, we take the operator Φσ discussed in the
earlier sections to be the Liu-Srivastava operator involving the generalized hy-

pergeometric functions. For that purpose, first let us denote by Σ̃ the class of all

analytic functions f in Ũ of the form

f (z) = z +
∞

∑
k=0

akz−k.

For αj ∈ C (j = 1, 2, · · · , l) and βk ∈ C \ {0,−1,−2, · · · } (k = 1, 2, · · ·m),

the generalized hypergeometric function lFm(α1, · · · , αl; β1, · · · , βm; z) in Ũ is defined
by the infinite series

lFm(α1, · · · , αl; β1, · · · , βm; z) :=
∞

∑
k=0

(α1)k . . . (αl)k

(β1)k . . . (βm)k

z−k

k!
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(l ≤ m + 1; l, m ∈ N0 := {0, 1, 2, · · · }), where (a)n is the Pochhammer symbol
given by

(a)n :=
Γ(a + n)

Γ(a)
=

{
1, (n = 0);
a(a + 1)(a + 2) . . . (a + n − 1), (n ∈ N).

It is known [23, p.43] that the lFm series is absolutely convergent in C if l ≤ m,

and in Ũ if l = m + 1. Furthermore, if

ℜ

(
m

∑
j=1

β j −
l

∑
j=1

αj

)
> 0,

then the lFm series is absolutely convergent for |z| = 1. Corresponding to the
function z lFm(α1, · · · , αl; β1, · · · , βm; z), the Liu-Srivastava operator [5, 15, 16]

H(l,m)(α1, · · · , αl; β1, · · · , βm) : Σ̃ → Σ̃

is defined by the Hadamard product

H(l,m)(α1, · · · , αl; β1, · · · , βm) f (z) := z lFm(α1, · · · , αl; β1, · · · , βm; z) ∗ f (z)

= z +
∞

∑
n=0

(α1)n+1 . . . (αl)n+1

(β1)n+1 · · · (βm)n+1

anz−n

(n + 1)!
.

For convenience, we write

z lFm[α; β; z] := z lFm(α1, · · · , αl; β1, · · · , βm; z),

Hl,m[α; β] f (z) := H(l,m)(α1, · · · , αl; β1, · · · , βm) f (z).

Special cases of the Liu-Srivastava linear operator include the Carlson-Shaffer lin-

ear operator L(a, c) := H(2,1)(1, a; c) (studied among others by Liu and Srivastava
[14], Liu [13], and Yang [27]), the operator Dn+1 := L(n + 1, 1), which is analo-
gous to the Ruscheweyh derivative operator (investigated by Yang [26]), and the
operator

Jc :=
c

zc+1

∫ z

0
tc f (t)dt = L(c, c + 1) (c > 0)

(studied by Uralegaddi and Somanatha [24]).
Corresponding to f = h+ g given by (1.1), we define an operator L on f given

by
L[ f ] = Φσ ∗ f = (φ1 + σφ2) ∗ (h + g), (4.1)

where

φ1(z) = z lFm[λ; β; z] = z +
∞

∑
n=0

Anz−n, φ2(z) = z pFq[c; d; z] = z +
∞

∑
n=0

Bnz−n,

(4.2)
and

An =
(λ1)n+1 · · · (λl)n+1

(β1)n+1 · · · (βm)n+1

1

(n + 1)!
, Bn =

(c1)n+1 · · · (cp)n+1

(d1)n+1 · · · (dq)n+1

1

(n + 1)!
. (4.3)
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Of course here we are assuming that none of the denominator parameters can be
zero or a negative integer. A similar operator to L defined by (4.1) was recently
studied in the unit disk by Ahuja et al. [3].

Theorem 4.1. Let f = h + g ∈ Σ
′′

H be of the form (1.1), where the coefficients an and bn

satisfy

|an| ≤
1 − α

n + α
, and |bn| ≤

1 − α

n − α
, (n ≥ 1). (4.4)

Let φ1 and φ2 of the form (4.2) satisfy

m

∑
j=1

β j >

l

∑
j=1

|λj|,
q

∑
j=1

dj >

p

∑
j=1

|cj|,

where β j > 0 (j = 1, . . . , m) and dj > 0 (j = 1, . . . , q). If

lFm[|λ|; β; 1]−
∏

l
j=1 |λj|

∏
m
j=1 β j

+p Fq[|c|; d; 1]−
∏

p
j=1 |cj|

∏
q
j=1 dj

≤ 3 (4.5)

holds, then L[ f ] ∈ Σ∗
H(α).

Proof. In view of Theorem 2.2, it suffices to show that S ≤ 1 − α, where

S :=
∞

∑
n=1

(n + α)|an||An|+
∞

∑
n=1

(n − α)|bn||Bn|, (4.6)

where An and Bn are given by (4.3). Thus

S ≤ (1 − α)
∞

∑
n=1

[|An|+ |Bn|]

≤ (1 − α)

{
∞

∑
n=1

(|λ1|)n+1 · · · (|λl |)n+1

(β1)n+1 · · · (βm)n+1

1

(n + 1)!

+
∞

∑
n=1

(|c1|)n+1 · · · (|cp|)n+1

(d1)n+1 · · · (dq)n+1

1

(n + 1)!

}

= (1 − α)

{

lFm[|λ|; β; 1]− 1 −
∏

l
j=1 |λj|

∏
m
j=1 β j

+p Fq[|c|; d; 1]− 1 −
∏

p
j=1 |cj|

∏
q
j=1 dj

}

≤ 1 − α,

provided (4.5) holds.

Note that the hypergeometric condition (4.5) is independent of α.



Convolution of Harmonic Mappings On The Exterior Unit Disk 249

Example 4.1. Let l = 2 = p, m = 1 = q, β > 1 + |λ|, and d > 1 + |c| in Theorem
4.1. The Gauss summation formula [23, p.30] gives

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
, Re(c − a − b) > 0.

Using the property that Γ(z + 1) = zΓ(z) and the Gauss summation formula, the
condition (4.5) reduces to

β − 1

β − |λ| − 1
−

|λ|

β
+

d − 1

d − |c| − 1
−

|c|

d
≤ 3.

Let M(α) denote the class consisting of functions f = h + g of the form (1.1)
satisfying

∞

∑
n=1

[(n + α)|an|+ (n − α)|bn|] ≤ 1 − α.

It follows from Corollary 2.1 that M(α) ⊂ Σ∗
H(α), and under conditions (4.5),

the proof of Theorem 4.1 shows that L[M(α)] ⊂ M(α) also holds true. In partic-
ular, with M(α) = TΣ∗

H(α), the following corollary is obtained:

Corollary 4.1. Let L[ f ] be given by (4.1) with σ = 1. Further let φ1 and φ2 of the form
(4.2) satisfy

m

∑
j=1

β j >

l

∑
j=1

λj,
q

∑
j=1

dj >

p

∑
j=1

cj,

where λj ≥ 0, β j > 0, and cj ≥ 0, dj > 0. Then L[TΣ∗
H(α)] ⊂ TΣ∗

H(α) if

lFm[λ; β; 1]−
∏

l
j=1 λj

∏
m
j=1 β j

+p Fq[c; d; 1]−
∏

p
j=1 cj

∏
q
j=1 dj

≤ 3. (4.7)

Proof. It follows from Corollary 3.1 that the coefficients an and bn satisfy the con-
ditions (4.4) of Theorem 4.1. If the condition (4.7) holds true, it follows that
S ≤ 1 − α, where S is given by (4.6). Corollary 3.1 now gives L[ f ] ∈ TΣ∗

H(α).

References

[1] O. P. Ahuja and J. M. Jahangiri, Certain meromorphic harmonic functions,
Bull. Malays. Math. Sc. Soc. 25 (2002), 1-10.

[2] O. P. Ahuja, J. M. Jahangiri and H. Silverman, Convolutions for special
classes of harmonic univalent functions, Appl. Math. Lett. 16 (2003), no. 6,
905–909.

[3] O. P. Ahuja, S. B. Joshi and A. Swaminathan, Multivalent harmonic con-
volution operators associated with generalized hypergeometric functions,
preprint.



250 R. M. Ali – B. A. Stephen – K. G. Subramanian – S. K. Lee

[4] R. M. Ali, B.Adolf Stephen and K.G. Subramanian, Subclasses of harmonic
mappings defined by convolution, Appl. Math. Lett. 23 (2010) 1243-1247.

[5] R. M. Ali, V. Ravichandran, N. Seenivasagan, Subordination and superordi-
nation of the Liu-Srivastava linear operator on meromorphic functions, Bull.
Malays. Math. Sci. Soc. (2)31(2)(2008), 193–207.

[6] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci.
Fenn. Ser. A I Math. 9 (1984), 3–25.

[7] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer.
Math. soc. 299 (1987), 1-31.

[8] J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic
functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska
Sect. A 52 (1998), no. 2, 57–66.

[9] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal.
Appl. 235 (1999), 470-477.

[10] J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean
Math. Soc. 37 (2000), 291–301.

[11] J.M. Jahangiri, Y.C. Kim and H.M. Srivastava, Construction of a certain class
of harmonic close to convex functions associated with the Alexander integral
transform, Integral Transform. Spec. Funct., 14 (2003), 237242.

[12] J. M. Jahangiri and H. Silverman, Meromorphic univalent harmonic func-
tions with negative coefficients, Bull. Korean Math. Soc. 36 (1999), 763–770.

[13] J.-L. Liu, A linear operator and its applications on meromorphic p-valent
functions, Bull. Inst. Math. Acad. Sinica 31(1) (2003), 23–32.

[14] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of
meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), no. 2,
566–581.

[15] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent func-
tions associated with the generalized hypergeometric function, Math. Com-
put. Modelling 39(1) (2004), 21–34.

[16] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent
functions associated with a certain linear operator, Math. Comput. Modelling
39 (2004), no. 1, 35–44.

[17] F. Rønning, A survey on uniformly convex and uniformly starlike functions,
Ann. Univ. Mariae Curie-Skłodowska Sect. A 47 (1993), 123–134.

[18] T. Rosy, B. Adolf Stephen, K.G. Subramanian, J. M. Jahangiri, Goodman-
Rønning-type harmonic univalent functions, Kyungpook Math. J. 41 (2001),
no. 1, 45–54.



Convolution of Harmonic Mappings On The Exterior Unit Disk 251

[19] T. Rosy, B. Adolf Stephen, K.G. Subramanian, J. M. Jahangiri, Goodman-type
harmonic convex functions, J. Nat. Geom. 21 (2002), no. 1-2, 39–50.

[20] T. Rosy, B. Adolf Stephen, K.G. Subramanian and J. M. Jahangiri, A class of
harmonic meromorphic functions, Tamkang J. Math. 33 (2002), 5–9.

[21] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math.
Soc. (2) 42 (1990), no. 2, 237–248.

[22] H. Silverman, Harmonic univalent functions with negative coefficients,
J. Math. Anal. Appl. 220 (1998), no. 1, 283–289.

[23] H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Hor-
wood, Chichester, 1984.

[24] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike
univalent functions, Bull. Austral. Math. Soc. 43(1) (1991), 137–140.

[25] S. Yalcin, and M. Ozturk, A new subclass of complex harmonic functions,
Math. Ineq. Appl., 7 (2004), 55-61.

[26] D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst.
Math. Acad. Sinica 24(2) (1996), 151–157.

[27] D. Yang, Certain convolution operators for meromorphic functions, South-
east Asian Bull. Math. 25 (2001), no. 1, 175–186.

School of Mathematical Sciences
Universiti Sains Malaysia, 11800 USM Penang, Malaysia
email:rosihan@cs.usm.my,kgs@usm.my,sklee@cs.usm.my

Department of Mathematics
Madras Christian College, Chennai 600059, India
email:adolfmcc2003@yahoo.co.in


