A note on monotone D-spaces®
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Abstract

A topological space (X, 7) is a D-space if for every function ¢: X — T
with x € ¢(x) for each x € X, {¢(x) : x € F} covers X for some closed
discrete subset F of X. The Michael line M, one of the most important ele-
mentary examples in general topology, is the Euclidean space R isolating the
irrationals. In this note we show that (1) the minimal dense linearly ordered
extension of M is hereditarily paracompact, but not monotonically D; (2) the
minimal closed linearly ordered extension of M is monotonically D; (3) if the
space X is a D-space (resp., a monotone D-space), then so is its Alexandroff
duplicate space <7 (X) and thus .« (M) is monotonically D.

1 Introduction

The D-property was introduced by E. K. van Douwen in [5] and was studied
widely (for instance, [1], [3], [4], [6] or [7]). A neighborhood assignment for a
space X is a function ¢ from X to the topology of X such that x € ¢(x) for all
x € X. A space X is a D-space if for every neighborhood assignment ¢ for X,
there is a closed discrete subset F of X such that X = ¢(F) = U{¢(x) : x € F}.
It is well-known that a space with a point-countable base is a D-space ([1]) and
semi-stratifiable spaces are D-spaces ([3], [4]). Hence o-spaces, stratifiable spaces,
Moore spaces and metrizable spaces are all D-spaces.

In [14], the monotone D-property is introduced and studied. A space X is
a monotone D-space if for each neighborhood assignment ¢ for X, we can pick
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a closed discrete subset F(¢) of X with X = U{¢(x) : x € F(¢)} such that if
P is also a neighborhood assignment for X and ¢(x) C (x) for each x € X,
then F(¢) C F(¢). Monotone D-spaces are D-spaces, but the converse is not
true. The closed unit interval [0,1] is a D-space, but it is not a monotone D-
space ([14]). It is well-known that in generalized ordered spaces the D-property
is equivalent to paracompactness ([6]). The Michael line M (the real line with the
irrationals isolated and the rationals having their usual neighborhoods), one of
the most important elementary examples in general topology, is a paracompact
generalized ordered space, and so it is a D-space. In [14], it is shown that the
Michael line M is also a monotone D-space.

A linearly ordered topological space is a triple (X, A, <), where < is a linear
order on the set X and A is the open interval topology defined by < (thatis, A has
asubbase {(a,—) :a € X} U{(+,a) :a € X}, where (4,—) = {x € X:a < x}
and («—,a) = {x e X:x <a}). Fora,be X, (a,b) = {x € X:a<x <b}is
called an open interval. The Euclidean space R is a linearly ordered topological
space. A generalized ordered space is precisely a subspace of a linearly ordered
topological space. It happens that for &2 = paracompactness (resp., metrizability,
Lindel6fness and quasi-developability) a generalized ordered space has &7 if and
only if its (minimal) closed linearly ordered extension has &?. The main results of
the note are as follows.

1. The minimal dense linearly ordered extension of the Michael line is hereditarily
paracompact (hence a hereditary D-space), but not a monotone D-space.

2. The minimal closed linearly ordered extension of the Michael line is a monotone
D-space.

3. If X is a D-space (resp., a monotone D-space), so is its Alexandroff duplicate space
o/ (X). Thus </ (M) is monotonically D for the Michael line M.

Throughout the note, spaces are topological spaces. We reserve the symbols
R, Q, P, Z and Z the set of all real numbers, all rational numbers, all irrational
numbers, all integers and all positive integers respectively. Let ¢ and ¢ be two
neighborhood assignments for a space X, then by ¢ refining ¢ (denoted by ¢ < )
we mean ¢(x) C P(x) for each x € X. Undefined terminology and symbols will
be found in [10].

2 Main results

For the Michael line M, put
(M) = (R x{0})U (P x {-1,1}).

Obviously the lexicographic order < on /(M) is a linear order on ¢(M). Equip
¢(M) with the open interval topology generated by the linear order < on ¢(M).
Then the Michael line M is homeomorphic to the dense subspace R x {0} of
the linearly ordered topological space ¢(M). The space ¢(M) is called a dense
linearly ordered extension of M. /(M) is also the minimal dense linearly ordered
extension of M (see Theorem 2.1 of [13]). Note that the set R x {0} C /(M) with
the linearly ordered topology generated by the hereditary order from the order
on {(M) is homeomorphic to the Euclidean space R.
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It is well-known that the minimal dense linearly ordered extension ¢(X) of a
paracompact space X may not be paracompact, however for the minimal dense
linearly ordered extension ¢(M) of the Michael line M, we have the following
Theorem.

Theorem 1. The space ¢(M) is hereditarily paracompact, and hence a hereditary
D-space.

Proof. Let Y be a subspace of ¢/(M). Now we will show that Y is paracompact.
Suppose not. Then Y has a closed subspace F homeomorphic to a stationary
subset T of some uncountable regular cardinal. Let f : F — T be a homeomor-
phic mapping. Since IP x {0} is a discrete open subset of ¢/(M), F \ (P x {0})
is a closed subspace of Y and f(F \ (P x {0})) is still a stationary subset. So
we suppose FN (P x {0}) = @. Let M; = {(M) \ (P x {—1,0}) and M, =
(M) \ (P x {0,1}). PutY; = YNM; and Y, = YN M,. Let (R, 77) be gen-
erated by the base 1 = AU{[a,b) : a € P,b € R,a < b} and (R, 1») be
generated by the base %, = AU {(a,b] : b € P,a € R,a < b}, where A is the
usual topology on R. Then for i € {1,2}, M; as a subspace of /(M) is home-
omorphic to (R, 7;) and thus its subspace Y; can be considered as the subspace
of (R, T;). Since (RR,A) is second countable it is hereditarily separable. Let C!
be the countable dense subset of Y; considered as a separable subspace of (R, A)
and C; = C/U{y € Y; : y has a predecessor or a successor}. Then for i € {1,2},
the countable C; is dense in Y; and thus Y; as the subspace of (R, 7;) is separable.
Noticing that F=FNY = (FNY;)U(FNY;), wesee that f(FNY7)or f(FNY?)
is stationary. That is, a closed subset of Y] or Y, is homeomorphic to a stationary
subset. Hence Y] or Y; is not paracompact. This contradicts the separability of Y;
and Y> (separable generalized ordered spaces are paracompact). In [6] it is shown
that in generalized ordered spaces the D-property is equivalent to paracompact-
ness, and thus ¢(M) is a hereditary D-space. ]

For the Michael line M, put
M* = (R x {0}) U (P x Z).

Let < be the lexicographic order on M*. Equip M* with the open interval
topology generated by the linear order < on M*. Then the Michael line M is
homeomorphic to the closed subspace R x {0} of the linearly ordered topolog-
ical space M*. The space M* is called a closed linearly ordered extension of M
([12]). By Theorem 9 of [16], the space M* is the minimal closed linearly ordered
extension of M.

Theorem 2. The space M* is a monotone D-space.

Proof. For a neighborhood assignment ¢’ for M*, define a neighborhood assign-
ment ¢* for M* such that ¢* < ¢’ as follows. Let x* = (x, k) € M*, if x € P,
define ¢*(x*) = {x*}; if x € Q, then k = 0. Let I, be the maximal open convex
subset of M* such that (x,0) € I, C ¢'(x*) = ¢'({x,0)). If I, = M*, define
¢*(x*) = M*. Now suppose that I, is one of the following, where g, < x < ry,
Sy < x < ty and {qx, 7} C R while {sy, ty} C IP:
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1) (+= (re,m)); ) {(y, 1) € M" 1y < tc}; Q) {{y,i) € M* 1y <t}
@) ((7x,7), =) O {{y, 1) € M* 1y 2 s2}; (6) {(y, 1) € M" 1y > 52}
(7) ((qx, k), (rx, 1)); (8) {{y,i) € M* 15y <y < tx}

9) {{y,i) e M* 15, <y < ty};

(10) {(y,i) € M* : sy <y <ty } U{(sy, i) : i > k};

(A1) {(y, i) € M* 15y <y <ty }U{(ty, i) :i < 1};

(12) {{y, i) € M* sy <y <ty }U{(ty, i) :i < 1};

(13) {(y,i) € M* sy <y < tx} U{(sy, i) : i > k}.

Then define

¢*(x*) = {({y,i) € M* : y < ry} if (1) holds;

¢ (x*) ={{y,i) € M* : y < t,} if one of (2) and (3) holds;

o (x*) = {{y,i) € M* : g, < y} if (4) holds;

¢*(x*) = {(y,i) € M* : sy < y} if one of (5) and (6) holds;

¢ (x*) ={{y,i) € M* : qx <y < ry}if (7) holds;

¢ (x*) = {{y,i) € M* : sy <y < ty} if one of (8) to (13) holds.

For x € R, put ¢({x,0)) = ¢*({x,0)) N (R x {0}). Then ¢ is a neighborhood
assignment for the subspace R x {0} of M*. Since M is monotonically D and is
homeomorphic to the subspace R x {0} of M*, there is a closed discrete subset
F, of M such that R x {0} = ¢(F, x {0}) and if ¢ is a neighborhood assignment
for R x {0} with ¢ < ¢ then F, D Fy.

Put Fj. = {(x,k) € M" : x € Fy}. Forx* = (x,k) € M*\ F., ifx € P,
then {x*} N F;* = @; if x € Q, then there are ay, b, € Q such that x € (ay,by)
and (ay,by) NF, = @ since F, is closed in M. So x* € W = ((ax,0), (by,0)) and
WNF,. = @. Thus F. is closed in M*. Let x* = (x,k) € Fj.. If x € Q, then
k = 0 and there are cy,dx € Q such that x € (cx,dy) and (cy,dx) N Fy, = {x}. Put
Ve = ({cx,0), (dy, 0)); if x € IP, put Vi« = {x*}. Then Vi- N Fj. = {x*}. So Fy. is
discrete in M*.

Lety” = (y,k) € M*\ Fj.. Since ¢(Fy x {0}) = R x {0}, there s (x,0) € Fp x
{0} C Fj. such that (y,0) € ¢((x,0)) = ¢*({x,0)) N (R x {0}). Assume x € P.
By the definition of ¢*, ¢*((x,0)) = {(x,0)} and hence x = y, contradicting
y* & Fj.. Sox € Q. By the definition of ¢*({x,0)), ¢({x,0)) is one of the sets
(<=, 7x) X {0}, (gx, —) x {0}, (sx, tx) X {0} and R x {0}, where x < ry, gx < x
and sy < x < ty. Hence y* = (y,k) € ¢*({x,0)). So M* = U{p*(x*) : x* €
Fg.}. Put ), = Fj., then U{¢'(y") : y* € F;} = M" since 9" < ¢'. If ¢’ is a
neighborhood assignment for M* with ¢ < 1, then obviously F D F . Thus M*
is monotonically D. m

Theorem 3. The space ¢(M) is not a monotone D-space.

~

Proof. Assume that £(M) is monotonically D. Define a mapping f : {(M) —
where R is the Euclidean space, as follows: for each (x,i) € (M), f({x,i)) =
x. Then f is continuous. In fact, for an open interval (a,b) of R and (x,i) €
f~1((a,b)), since x € (a,b), there are gy, 7y € Q such that x € (gy,7¢) C (a,b).
Thus (x,i) € ({(gx,0),(ry,0)) C f~'((a,b)). So f~1((a,b)) is open in £(M )
To show that f is closed, let F’ be a closed subset of ¢/(M) and x ¢ f(F').

x € Q, then f~1(x) = {(x,0)} and (x,0) ¢ F'. So there is an open interval
G = ({cx,0), (dy,0)) of /(M) with (x,0) € Gand GNF' = @, where ¢y, dy, € Q.



A note on monotone D-spaces 219

Thus x € (cy,dy) and (cy,dy) N f(F') = @. If x € P, then f~!(x) = {(x, 1), (x,0),
(x,1)} and f~!(x) N F' = @. Since F’ is closed in /(M), we can take a,,by € Q
such that (x, —1) € ({(ay,0),(x,0)) with ({(ay,0),(x,0)) N F' = @ and (x,1) €
((x,0), (by,0)) with ({x,0), (by,0)) NF' = @. Thus x € (ay,by) and (ax,bx) N
f(F') = @. Hence f(F’) is closed. Since ¢(M) is monotonically D, its closed con-
tinuous image R is monotonically D (see Theorem 1.7 of [14]). Because that the
monotone D-property is closed hereditary, the subspace [0, 1] of R is monotoni-
cally D. However Theorem 2.3 of [14] shows that [0, 1] is not monotonically D. A
contradiction. m

Recall that a space X is meta-Lindelof if every open cover of X has a point-
countable open refinement.

Example 4. There is a monotone D-space which is not a meta-Lindel6f space.

Proof. Let N =Z" and #/ = {N; C N : [N;| = w, s € S}, where SN N = @, be
infinite such that N5y N Ny is finite if s # s’ and that .4 is maximal with respect
to the last property, that is, .4 is the maximal almost disjoint family of N. Define
a topology T on X = N U S by the neighborhood system {#(x) : x € X}, where
B(x) = {{x}}if x € Nand #(x) = {{s} U(N;\F) : F C N,|F| < w} if
x =s¢€S. Put¥(N) = (X, ). Since the set of all isolated points of ¥(N) is N
and the subspace S of ¥(N) is discrete, ¥(N) is a monotone D-space ([14]) (so a
D-space). However ¥(N) is not meta-Lindelof ([2]). n

Let X be a space, A C X and % be a family of subsets of X, put st(A, %) =
stl(A, %) = U{U € % : UN A # @}. Inductively st"™ (A, %) = U{U € % :
UNst"(A, %) # D}. A space X is w-star Lindelof ([8]) if for every open cover %
of X, there isn € Z" and a countable B C X such thatst"(B, %) = X.

Theorem 5. The Michael line M is not an w-star Lindeldf space.

Proof. Let Q = {41,492, ..., 4i, .} and for each g; € Q, the open interval I; contain-
ing g; be with the length less than % Then % = {;:i € ZT} U{{p} : p € P}
is an open cover of M. For any countable subset B of R, T = R\ (U{; : i €
Z7"} UB) is uncountable. Take ty € T, then forany n € Z*, ty ¢ st"(B, % ). So M
is not an w-star Lindelof space. n

A space X is wi-compact if every closed discrete subset has cardinality < wj.

Remark 6. (1) An wy-compact D-space X is Lindelof: for the D-space X, [(X) = e(X)
([9]). By wy-compactness of X, e(X) = w and thus [(X) = w.

(2) A space is Lindelof if and only if it is wy-compact and meta-Lindelof: note that
every point-countable open cover of the wj-compact space has a countable sub-
cover (Lemma 7.5 of [11]).

(3) The Michael line M cannot be the following: strongly n-star-Lindelof, n-star-
Lindelof, wi-compact or Lindelof: by Theorem 5 and Fig. 4 of [8].

Since M is a meta-Lindel6f D-space without Lindedfness, the w;-compactness
condition in (1) and (2) cannot be removed.
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The Alexandroff duplicate space <7 (X) for the space X is the set X x {0,1}
equipped with the topology as follows: points in X x {1} are isolated and each
point (x,0) in X x {0} has the basic neighborhoods as the form: (U x {0,1}) \
{(x,1)}, where U is an open neighborhood of x in X. The following Lemma is
obvious.

Lemma 7. Let X be a space. Then if F is a closed set in X, F x {0,1} is closed in <7 (X);
if D is a discrete set in X, D x {0,1} is discrete in </ (X).

Theorem 8. Let X be a space. Then X is a D-space if and only if <7 (X) is a D-space; X
is monotonically D if and only if o7 (X) is monotonically D.

Proof. Sufficiency: let i be a neighborhood assignment for .7 (X). If X is a D-
space, for each (x,0) € «/(X), take an open Uy in X containing x with (U, X
{0,1}\ {{x,1)}) C ¥({x,0)). Then for the neighborhood assignment {U, : x €
X} for X there is a closed discrete subset F of X such that X = U{U, : x € F}.
By Lemma 7 F' = F x {0,1} is a closed discrete subset of </ (X) and &7 (X) =
U{y(z) : z € F'}. So o (X) is a D-space. If X is monotonically D, for each x € X,
put
Ve = {x}Udy € Xy # xand {{y,0), {5, 1)} < p((x,0))}.

Take an open U, C X containing x with (U, x {0,1}\ {(x,1)}) C ¢((x,0)), then
U, C Vy and thus x € V2. Put px(x) = V7. Then the neighborhood assignment
Px for X satisfying that (px(x) x {0,1}) \ {(x,1)} C ¢({x,0)). So there is a
closed discrete subset Fyy, of X such that X = U{¢x(x) : x € Fy, }. For the closed
discrete subset Fy = Fy, x {0,1} of </ (X), it holds that «/(X) = U{y(z) : z €
Fy}. The rest proof of the sufficiency is obvious.

Necessity: note that the D-property and the monotone D-property are closed
hereditary and the closed subspace X x {0} is homeomorphic to X. ]

In the following corollary, M, R, S, P, C and [0, w;] are the Michael line, the
Euclidean space, the Sorgenfrey line (the real line with the half-open intervals of
the form [a,b) as a basis for the topology), the Niemytzki plane, the Cantor set
and the usual ordinal space respectively.

Corollary 9. .7 (M) is a monotone D-space; </ (R), </ (S), </ (P), o/ (C) and <7 ([0, w1])
are D-spaces, but not monotone D-spaces.

Proof. M is monotonically D ([14]). Clearly R, S, P, C and [0, w;] are D-spaces.
By [14], S, C, [0,w;] and [0,1] are not monotonically D. Since R has a closed
subspace [0,1] and P has a closed subspace [0,1] x {1} homeomorphic to [0, 1],
R and P are not monotonically D. Hence by Theorem 8, the conclusion of the
corollary is true. n

Remark 10. (1) For the Michael line M, o/ (M) has a point-countable base: put %, =
{((a,b) x{0,1})\{(g. 1)} :a,b € Qa < q<b},q€ Q. Then B =U{H, : q €
QtU{{(x, 1)} :x e R}U{{(p,0)} : p € P} is a point-countable base for </ (M).

In general, a Moore space may not be monotonically D. For a first countable
Tp-space X, let x € X and {B,(x) : n < w} be fixed basis of x with B, 1(x) C
B,(x), n < w. Define a topology v on .Z(X) = X U (X x w): points of X x w
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are isolated; a basic neighborhood of x € X is the form Cy,(x) = {x} U {(y,n) :
(n>m)A(y € By(x))}, m < w. Then (#(X),v) is a Moore space ([15]).

(2) The Moore space (.# (X),v) is monotonically D: since the subspace X of all
non-isolated points of (.#Z(X),v) is discrete, by Theorem 1.7 of [14] (.#Z (X),v) is
monotonically D.

Acknowledgment. The authors are very grateful to the referee for many helpful
comments and suggestions, especially for outlining the proof of Theorem 1 which
improves the result in the previous version of the paper.
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