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Abstract

A topological space (X, τ) is a D-space if for every function ϕ: X → τ

with x ∈ ϕ(x) for each x ∈ X, {ϕ(x) : x ∈ F} covers X for some closed
discrete subset F of X. The Michael line M, one of the most important ele-
mentary examples in general topology, is the Euclidean space R isolating the
irrationals. In this note we show that (1) the minimal dense linearly ordered
extension of M is hereditarily paracompact, but not monotonically D; (2) the
minimal closed linearly ordered extension of M is monotonically D; (3) if the
space X is a D-space (resp., a monotone D-space), then so is its Alexandroff
duplicate space A (X) and thus A (M) is monotonically D.

1 Introduction

The D-property was introduced by E. K. van Douwen in [5] and was studied
widely (for instance, [1], [3], [4], [6] or [7]). A neighborhood assignment for a
space X is a function ϕ from X to the topology of X such that x ∈ ϕ(x) for all
x ∈ X. A space X is a D-space if for every neighborhood assignment ϕ for X,
there is a closed discrete subset F of X such that X = ϕ(F) = ∪{ϕ(x) : x ∈ F}.
It is well-known that a space with a point-countable base is a D-space ([1]) and
semi-stratifiable spaces are D-spaces ([3], [4]). Hence σ-spaces, stratifiable spaces,
Moore spaces and metrizable spaces are all D-spaces.

In [14], the monotone D-property is introduced and studied. A space X is
a monotone D-space if for each neighborhood assignment ϕ for X, we can pick
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a closed discrete subset F(ϕ) of X with X = ∪{ϕ(x) : x ∈ F(ϕ)} such that if
ψ is also a neighborhood assignment for X and ϕ(x) ⊂ ψ(x) for each x ∈ X,
then F(ψ) ⊂ F(ϕ). Monotone D-spaces are D-spaces, but the converse is not
true. The closed unit interval [0, 1] is a D-space, but it is not a monotone D-
space ([14]). It is well-known that in generalized ordered spaces the D-property
is equivalent to paracompactness ([6]). The Michael line M (the real line with the
irrationals isolated and the rationals having their usual neighborhoods), one of
the most important elementary examples in general topology, is a paracompact
generalized ordered space, and so it is a D-space. In [14], it is shown that the
Michael line M is also a monotone D-space.

A linearly ordered topological space is a triple (X, λ,≤), where ≤ is a linear
order on the set X and λ is the open interval topology defined by≤ (that is, λ has
a subbase {(a,→) : a ∈ X} ∪ {(←, a) : a ∈ X}, where (a,→) = {x ∈ X : a < x}
and (←, a) = {x ∈ X : x < a}). For a, b ∈ X, (a, b) = {x ∈ X : a < x < b} is
called an open interval. The Euclidean space R is a linearly ordered topological
space. A generalized ordered space is precisely a subspace of a linearly ordered
topological space. It happens that for P = paracompactness (resp., metrizability,
Lindelöfness and quasi-developability) a generalized ordered space has P if and
only if its (minimal) closed linearly ordered extension has P . The main results of
the note are as follows.

1. The minimal dense linearly ordered extension of the Michael line is hereditarily
paracompact (hence a hereditary D-space), but not a monotone D-space.

2. The minimal closed linearly ordered extension of the Michael line is a monotone
D-space.

3. If X is a D-space (resp., a monotone D-space), so is its Alexandroff duplicate space
A (X). Thus A (M) is monotonically D for the Michael line M.

Throughout the note, spaces are topological spaces. We reserve the symbols
R, Q, P, Z and Z+ the set of all real numbers, all rational numbers, all irrational
numbers, all integers and all positive integers respectively. Let ϕ and ψ be two
neighborhood assignments for a space X, then by ϕ refining ψ (denoted by ϕ ≺ ψ)
we mean ϕ(x) ⊂ ψ(x) for each x ∈ X. Undefined terminology and symbols will
be found in [10].

2 Main results

For the Michael line M, put

ℓ(M) = (R× {0}) ∪ (P× {−1, 1}).

Obviously the lexicographic order� on ℓ(M) is a linear order on ℓ(M). Equip
ℓ(M) with the open interval topology generated by the linear order � on ℓ(M).
Then the Michael line M is homeomorphic to the dense subspace R × {0} of
the linearly ordered topological space ℓ(M). The space ℓ(M) is called a dense
linearly ordered extension of M. ℓ(M) is also the minimal dense linearly ordered
extension of M (see Theorem 2.1 of [13]). Note that the set R× {0} ⊂ ℓ(M) with
the linearly ordered topology generated by the hereditary order from the order
on ℓ(M) is homeomorphic to the Euclidean space R.
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It is well-known that the minimal dense linearly ordered extension ℓ(X) of a
paracompact space X may not be paracompact, however for the minimal dense
linearly ordered extension ℓ(M) of the Michael line M, we have the following
Theorem.

Theorem 1. The space ℓ(M) is hereditarily paracompact, and hence a hereditary
D-space.

Proof. Let Y be a subspace of ℓ(M). Now we will show that Y is paracompact.
Suppose not. Then Y has a closed subspace F homeomorphic to a stationary
subset T of some uncountable regular cardinal. Let f : F → T be a homeomor-
phic mapping. Since P × {0} is a discrete open subset of ℓ(M), F \ (P × {0})
is a closed subspace of Y and f (F \ (P × {0})) is still a stationary subset. So
we suppose F ∩ (P × {0}) = ∅. Let M1 = ℓ(M) \ (P × {−1, 0}) and M2 =
ℓ(M) \ (P × {0, 1}). Put Y1 = Y ∩ M1 and Y2 = Y ∩ M2. Let (R, τ1) be gen-
erated by the base B1 = λ ∪ {[a, b) : a ∈ P, b ∈ R, a < b} and (R, τ2) be
generated by the base B2 = λ ∪ {(a, b] : b ∈ P, a ∈ R, a < b}, where λ is the
usual topology on R. Then for i ∈ {1, 2}, Mi as a subspace of ℓ(M) is home-
omorphic to (R, τi) and thus its subspace Yi can be considered as the subspace
of (R, τi). Since (R, λ) is second countable it is hereditarily separable. Let C′i
be the countable dense subset of Yi considered as a separable subspace of (R, λ)
and Ci = C′i ∪ {y ∈ Yi : y has a predecessor or a successor}. Then for i ∈ {1, 2},
the countable Ci is dense in Yi and thus Yi as the subspace of (R, τi) is separable.
Noticing that F = F ∩Y = (F ∩Y1)∪ (F ∩Y2), we see that f (F ∩Y1) or f (F ∩Y2)
is stationary. That is, a closed subset of Y1 or Y2 is homeomorphic to a stationary
subset. Hence Y1 or Y2 is not paracompact. This contradicts the separability of Y1

and Y2 (separable generalized ordered spaces are paracompact). In [6] it is shown
that in generalized ordered spaces the D-property is equivalent to paracompact-
ness, and thus ℓ(M) is a hereditary D-space.

For the Michael line M, put

M∗ = (R× {0}) ∪ (P×Z).

Let � be the lexicographic order on M∗. Equip M∗ with the open interval
topology generated by the linear order � on M∗. Then the Michael line M is
homeomorphic to the closed subspace R × {0} of the linearly ordered topolog-
ical space M∗. The space M∗ is called a closed linearly ordered extension of M
([12]). By Theorem 9 of [16], the space M∗ is the minimal closed linearly ordered
extension of M.

Theorem 2. The space M∗ is a monotone D-space.

Proof. For a neighborhood assignment ϕ′ for M∗, define a neighborhood assign-
ment ϕ∗ for M∗ such that ϕ∗ ≺ ϕ′ as follows. Let x∗ = 〈x, k〉 ∈ M∗, if x ∈ P,
define ϕ∗(x∗) = {x∗}; if x ∈ Q, then k = 0. Let Ix be the maximal open convex
subset of M∗ such that 〈x, 0〉 ∈ Ix ⊂ ϕ′(x∗) = ϕ′(〈x, 0〉). If Ix = M∗, define
ϕ∗(x∗) = M∗. Now suppose that Ix is one of the following, where qx < x < rx,
sx < x < tx and {qx, rx} ⊂ R while {sx, tx} ⊂ P:
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(1) (←, 〈rx , m〉); (2) {〈y, i〉 ∈ M∗ : y ≤ tx}; (3) {〈y, i〉 ∈ M∗ : y < tx};
(4) (〈qx , j〉,→); (5) {〈y, i〉 ∈ M∗ : y ≥ sx}; (6) {〈y, i〉 ∈ M∗ : y > sx};
(7) (〈qx , k〉, 〈rx , l〉); (8) {〈y, i〉 ∈ M∗ : sx ≤ y ≤ tx};
(9) {〈y, i〉 ∈ M∗ : sx < y < tx};
(10) {〈y, i〉 ∈ M∗ : sx < y ≤ tx} ∪ {〈sx , i〉 : i ≥ k};
(11) {〈y, i〉 ∈ M∗ : sx ≤ y < tx} ∪ {〈tx , i〉 : i ≤ l};
(12) {〈y, i〉 ∈ M∗ : sx < y < tx} ∪ {〈tx , i〉 : i ≤ l};
(13) {〈y, i〉 ∈ M∗ : sx < y < tx} ∪ {〈sx , i〉 : i ≥ k}.
Then define
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : y < rx} if (1) holds;
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : y < tx} if one of (2) and (3) holds;
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : qx < y} if (4) holds;
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : sx < y} if one of (5) and (6) holds;
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : qx < y < rx} if (7) holds;
ϕ∗(x∗) = {〈y, i〉 ∈ M∗ : sx < y < tx} if one of (8) to (13) holds.
For x ∈ R, put ϕ(〈x, 0〉) = ϕ∗(〈x, 0〉) ∩ (R × {0}). Then ϕ is a neighborhood

assignment for the subspace R× {0} of M∗. Since M is monotonically D and is
homeomorphic to the subspace R × {0} of M∗, there is a closed discrete subset
Fϕ of M such that R× {0} = ϕ(Fϕ × {0}) and if ψ is a neighborhood assignment
for R× {0} with ϕ ≺ ψ then Fϕ ⊃ Fψ.

Put F∗ϕ∗ = {〈x, k〉 ∈ M∗ : x ∈ Fϕ}. For x∗ = 〈x, k〉 ∈ M∗ \ F∗ϕ∗ , if x ∈ P,

then {x∗} ∩ F∗ϕ∗ = ∅; if x ∈ Q, then there are ax, bx ∈ Q such that x ∈ (ax , bx)

and (ax , bx) ∩ Fϕ = ∅ since Fϕ is closed in M. So x∗ ∈ W = (〈ax , 0〉, 〈bx, 0〉) and
W ∩ F∗ϕ∗ = ∅. Thus F∗ϕ∗ is closed in M∗. Let x∗ = 〈x, k〉 ∈ F∗ϕ∗ . If x ∈ Q, then

k = 0 and there are cx, dx ∈ Q such that x ∈ (cx , dx) and (cx, dx) ∩ Fϕ = {x}. Put
Vx∗ = (〈cx , 0〉, 〈dx, 0〉); if x ∈ P, put Vx∗ = {x∗}. Then Vx∗ ∩ F∗ϕ∗ = {x

∗}. So F∗ϕ∗ is

discrete in M∗.
Let y∗ = 〈y, k〉 ∈ M∗ \ F∗ϕ∗ . Since ϕ(Fϕ×{0}) = R×{0}, there is 〈x, 0〉 ∈ Fϕ×

{0} ⊂ F∗ϕ∗ such that 〈y, 0〉 ∈ ϕ(〈x, 0〉) = ϕ∗(〈x, 0〉) ∩ (R × {0}). Assume x ∈ P.

By the definition of ϕ∗, ϕ∗(〈x, 0〉) = {〈x, 0〉} and hence x = y, contradicting
y∗ /∈ F∗ϕ∗ . So x ∈ Q. By the definition of ϕ∗(〈x, 0〉), ϕ(〈x, 0〉) is one of the sets

(←, rx)× {0}, (qx ,→)× {0}, (sx , tx) × {0} and R × {0}, where x < rx, qx < x
and sx < x < tx. Hence y∗ = 〈y, k〉 ∈ ϕ∗(〈x, 0〉). So M∗ = ∪{ϕ∗(x∗) : x∗ ∈
F∗ϕ∗}. Put F∗ϕ′ = F∗ϕ∗ , then ∪{ϕ′(y∗) : y∗ ∈ F∗ϕ′} = M∗ since ϕ∗ ≺ ϕ′. If ψ′ is a

neighborhood assignment for M∗ with ϕ ≺ ψ, then obviously F∗ϕ′ ⊃ F∗ψ′ . Thus M∗

is monotonically D.

Theorem 3. The space ℓ(M) is not a monotone D-space.

Proof. Assume that ℓ(M) is monotonically D. Define a mapping f : ℓ(M) → R,
where R is the Euclidean space, as follows: for each 〈x, i〉 ∈ ℓ(M), f (〈x, i〉) =
x. Then f is continuous. In fact, for an open interval (a, b) of R and 〈x, i〉 ∈
f−1((a, b)), since x ∈ (a, b), there are qx, rx ∈ Q such that x ∈ (qx , rx) ⊂ (a, b).
Thus 〈x, i〉 ∈ (〈qx , 0〉, 〈rx, 0〉) ⊂ f−1((a, b)). So f−1((a, b)) is open in ℓ(M).
To show that f is closed, let F′ be a closed subset of ℓ(M) and x /∈ f (F′). If
x ∈ Q, then f−1(x) = {〈x, 0〉} and 〈x, 0〉 /∈ F′. So there is an open interval
G = (〈cx , 0〉, 〈dx, 0〉) of ℓ(M) with 〈x, 0〉 ∈ G and G ∩ F′ = ∅, where cx, dx ∈ Q.
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Thus x ∈ (cx, dx) and (cx, dx)∩ f (F′) = ∅. If x ∈ P, then f−1(x) = {〈x,−1〉, 〈x, 0〉,
〈x, 1〉} and f−1(x) ∩ F′ = ∅. Since F′ is closed in ℓ(M), we can take ax , bx ∈ Q

such that 〈x,−1〉 ∈ (〈ax , 0〉, 〈x, 0〉) with (〈ax , 0〉, 〈x, 0〉) ∩ F′ = ∅ and 〈x, 1〉 ∈
(〈x, 0〉, 〈bx , 0〉) with (〈x, 0〉, 〈bx , 0〉) ∩ F′ = ∅. Thus x ∈ (ax , bx) and (ax , bx) ∩
f (F′) = ∅. Hence f (F′) is closed. Since ℓ(M) is monotonically D, its closed con-
tinuous image R is monotonically D (see Theorem 1.7 of [14]). Because that the
monotone D-property is closed hereditary, the subspace [0, 1] of R is monotoni-
cally D. However Theorem 2.3 of [14] shows that [0, 1] is not monotonically D. A
contradiction.

Recall that a space X is meta-Lindelöf if every open cover of X has a point-
countable open refinement.

Example 4. There is a monotone D-space which is not a meta-Lindelöf space.

Proof. Let N = Z+ and N = {Ns ⊂ N : |Ns| = ω, s ∈ S}, where S ∩ N = ∅, be
infinite such that Ns ∩ Ns′ is finite if s 6= s′ and that N is maximal with respect
to the last property, that is, N is the maximal almost disjoint family of N. Define
a topology τ on X = N ∪ S by the neighborhood system {B(x) : x ∈ X}, where
B(x) = {{x}} if x ∈ N and B(x) = {{s} ∪ (Ns \ F) : F ⊂ N, |F| < ω} if
x = s ∈ S. Put Ψ(N) = (X, τ). Since the set of all isolated points of Ψ(N) is N
and the subspace S of Ψ(N) is discrete, Ψ(N) is a monotone D-space ([14]) (so a
D-space). However Ψ(N) is not meta-Lindelöf ([2]).

Let X be a space, A ⊂ X and U be a family of subsets of X, put st(A, U ) =
st1(A, U ) = ∪{U ∈ U : U ∩ A 6= ∅}. Inductively stn+1(A, U ) = ∪{U ∈ U :
U ∩ stn(A, U ) 6= ∅}. A space X is ω-star Lindelöf ([8]) if for every open cover U

of X, there is n ∈ Z+ and a countable B ⊂ X such that stn(B, U ) = X.

Theorem 5. The Michael line M is not an ω-star Lindelöf space.

Proof. Let Q = {q1, q2, ..., qi, ...} and for each qi ∈ Q, the open interval Ii contain-
ing qi be with the length less than 1

2i . Then U = {Ii : i ∈ Z+} ∪ {{p} : p ∈ P}

is an open cover of M. For any countable subset B of R, T = R \ (∪{Ii : i ∈
Z+} ∪ B) is uncountable. Take t0 ∈ T, then for any n ∈ Z+, t0 /∈ stn(B, U ). So M
is not an ω-star Lindelöf space.

A space X is ω1-compact if every closed discrete subset has cardinality < ω1.

Remark 6. (1) An ω1-compact D-space X is Lindelöf: for the D-space X, l(X) = e(X)
([9]). By ω1-compactness of X, e(X) = ω and thus l(X) = ω.

(2) A space is Lindelöf if and only if it is ω1-compact and meta-Lindelöf: note that
every point-countable open cover of the ω1-compact space has a countable sub-
cover (Lemma 7.5 of [11]).

(3) The Michael line M cannot be the following: strongly n-star-Lindelöf, n-star-
Lindelöf, ω1-compact or Lindelöf: by Theorem 5 and Fig. 4 of [8].

Since M is a meta-Lindelöf D-space without Lindeöfness, the ω1-compactness
condition in (1) and (2) cannot be removed.
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The Alexandroff duplicate space A (X) for the space X is the set X × {0, 1}
equipped with the topology as follows: points in X × {1} are isolated and each
point 〈x, 0〉 in X × {0} has the basic neighborhoods as the form: (U × {0, 1}) \
{〈x, 1〉}, where U is an open neighborhood of x in X. The following Lemma is
obvious.

Lemma 7. Let X be a space. Then if F is a closed set in X, F× {0, 1} is closed in A (X);
if D is a discrete set in X, D× {0, 1} is discrete in A (X).

Theorem 8. Let X be a space. Then X is a D-space if and only if A (X) is a D-space; X
is monotonically D if and only if A (X) is monotonically D.

Proof. Sufficiency: let ψ be a neighborhood assignment for A (X). If X is a D-
space, for each 〈x, 0〉 ∈ A (X), take an open Ux in X containing x with (Ux ×
{0, 1} \ {〈x, 1〉}) ⊂ ψ(〈x, 0〉). Then for the neighborhood assignment {Ux : x ∈
X} for X there is a closed discrete subset F of X such that X = ∪{Ux : x ∈ F}.
By Lemma 7 F′ = F × {0, 1} is a closed discrete subset of A (X) and A (X) =
∪{ψ(z) : z ∈ F′}. So A (X) is a D-space. If X is monotonically D, for each x ∈ X,
put

Vx = {x} ∪ {y ∈ X : y 6= x and {〈y, 0〉, 〈y, 1〉} ⊂ ψ(〈x, 0〉)}.

Take an open Ux ⊂ X containing x with (Ux × {0, 1} \ {〈x, 1〉}) ⊂ ψ(〈x, 0〉), then
Ux ⊂ Vx and thus x ∈ V◦x . Put ψX(x) = V◦x . Then the neighborhood assignment
ψX for X satisfying that (ψX(x) × {0, 1}) \ {〈x, 1〉} ⊂ ψ(〈x, 0〉). So there is a
closed discrete subset FψX of X such that X = ∪{ψX(x) : x ∈ FψX}. For the closed
discrete subset Fψ = FψX × {0, 1} of A (X), it holds that A (X) = ∪{ψ(z) : z ∈
Fψ}. The rest proof of the sufficiency is obvious.

Necessity: note that the D-property and the monotone D-property are closed
hereditary and the closed subspace X × {0} is homeomorphic to X.

In the following corollary, M, R, S, P, C and [0, ω1] are the Michael line, the
Euclidean space, the Sorgenfrey line (the real line with the half-open intervals of
the form [a, b) as a basis for the topology), the Niemytzki plane, the Cantor set
and the usual ordinal space respectively.

Corollary 9. A (M) is a monotone D-space; A (R), A (S), A (P), A (C) and A ([0, ω1])
are D-spaces, but not monotone D-spaces.

Proof. M is monotonically D ([14]). Clearly R, S, P, C and [0, ω1] are D-spaces.
By [14], S, C, [0, ω1] and [0, 1] are not monotonically D. Since R has a closed
subspace [0, 1] and P has a closed subspace [0, 1]× {1} homeomorphic to [0, 1],
R and P are not monotonically D. Hence by Theorem 8, the conclusion of the
corollary is true.

Remark 10. (1) For the Michael line M, A (M) has a point-countable base: put Bq =
{((a, b) × {0, 1}) \ {〈q, 1〉} : a, b ∈ Q, a < q < b}, q ∈ Q. Then B = ∪{Bq : q ∈
Q} ∪ {{〈x, 1〉} : x ∈ R} ∪ {{〈p, 0〉} : p ∈ P} is a point-countable base for A (M).

In general, a Moore space may not be monotonically D. For a first countable
T2-space X, let x ∈ X and {Bn(x) : n < ω} be fixed basis of x with Bn+1(x) ⊂
Bn(x), n < ω. Define a topology ν on M (X) = X ∪ (X × ω): points of X × ω
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are isolated; a basic neighborhood of x ∈ X is the form Cm(x) = {x} ∪ {〈y, n〉 :
(n ≥ m) ∧ (y ∈ Bn(x))}, m < ω. Then (M (X), ν) is a Moore space ([15]).

(2) The Moore space (M (X), ν) is monotonically D: since the subspace X of all
non-isolated points of (M (X), ν) is discrete, by Theorem 1.7 of [14] (M (X), ν) is
monotonically D.

Acknowledgment. The authors are very grateful to the referee for many helpful
comments and suggestions, especially for outlining the proof of Theorem 1 which
improves the result in the previous version of the paper.
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