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Abstract

We introduce the so-called Clifford-Gegenbauer polynomials in the frame-
work of Dunkl operators, as well on the unit ball B(1), as on the Euclidean
space Rm. In both cases we obtain several properties of these polynomials,
such as a Rodrigues formula, a differential equation and an explicit relation
connecting them with the Jacobi polynomials on the real line. As in the classi-
cal Clifford case, the orthogonality of the polynomials on Rm must be treated
in a completely different way than the orthogonality of their counterparts on
B(1). In case of Rm, it must be expressed in terms of a bilinear form instead
of an integral. Furthermore, in this paper the theory of Dunkl monogenics is
further developed.

1 Introduction

Dunkl operators (see [9, 10]) are combinations of differential and difference op-
erators, associated to a finite reflection group G. One of the interesting aspects
of these operators is that they allow for the construction of a Dunkl Laplacian,
which is a combination of the classical Laplacian in Rm with some difference
terms, such that the resulting operator is only invariant under G and not under
the whole orthogonal group. Moreover, they are directly related to quantum in-
tegrable models of Calogero type (see e.g. [13]) and have as such received a lot of
attention in the physics literature.
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Clifford analysis (see [1, 7]), in its most basic form, is a refinement of the the-
ory of harmonic analysis in m-dimensional Euclidean space. By introducing the
so-called Dirac operator, the square of which equals the Laplace operator, one
introduces the notion of monogenic functions. These are, at the same time, a re-
finement of harmonic functions and a generalization of holomorphic functions in
one complex variable.
Generalizations of the classical Gegenbauer polynomials to the Clifford analysis
framework are called Clifford-Gegenbauer polynomials and were introduced as
well on the closed unit ball B(1) (see [4]), as on the Euclidean space Rm (see [2, 8]).
For the superspace case, which can be seen as the study of differential operators
invariant under the action of the group O(m)× Sp(2n), we refer to [5].
In this paper, we adapt the definition of the Clifford-Gegenbauer polynomials,
both on B(1), as on Rm, to the case of Dunkl operators.

The paper is organized as follows. In Section 2 we first give some background
on Dunkl operators. Then we prove some fundamental results concerning the
Dunkl Dirac operator and its nullsolutions, called Dunkl monogenics. In Section
3 we introduce Clifford-Gegenbauer polynomials on B(1) related to the Dunkl
Dirac operator. Basic properties, such as a Rodrigues formula, a differential equa-
tion, recurrence relations and an orthogonality relation are derived. Moreover,
we obtain an expression of these newly introduced polynomials in terms of the
Jacobi polynomials on the real line. Next, the Clifford-Gegenbauer polynomials
on R

m are adapted to the case of Dunkl operators (Section 4). They satisfy simi-
lar properties as their counterparts on the unit ball. However, the orthogonality
must be treated completely different; it is expressed in terms of a bilinear form
instead of an integral.

2 Clifford Dunkl setting

2.1 Dunkl operators

Denote by 〈., .〉 the standard Euclidean scalar product in Rm and by |x| = 〈x, x〉1/2

the associated norm. For α ∈ Rm −{0}, the reflection rα in the hyperplane orthog-
onal to α is given by

rα(x) = x − 2
〈α, x〉

|α|2
α, x ∈ R

m.

A root system is a finite subset R ⊂ Rm of non-zero vectors such that, for every
α ∈ R, the associated reflection rα preserves R. We will assume that R is reduced,
i.e. R ∩ Rα = {±α} for all α ∈ R. Each root system can be written as a disjoint
union R = R+ ∪ (−R+), where R+ and −R+ are separated by a hyperplane
through the origin. The subgroup G ⊂ O(m) generated by the reflections {rα|α ∈
R} is called the finite reflection group associated with R. We will also assume that
R is normalized such that 〈α, α〉 = 2 for all α ∈ R. For more information on finite
reflection groups we refer the reader to [12].

A multiplicity function k on the root system R is a G-invariant function
k : R → C, i.e. k(α) = k(hα) for all h ∈ G. We will denote k(α) by kα.
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Fixing a positive subsystem R+ of the root system R and a multiplicity func-
tion k, we introduce the Dunkl operators Ti associated to R+ and k by (see [9, 10])

Ti f (x) = ∂xi
f (x) + ∑

α∈R+

kααi
f (x)− f (rα(x))

〈α, x〉
, f ∈ C1(Rm).

An important property of the Dunkl operators is that they commute, i.e. TiTj =
TjTi.

The Dunkl Laplacian is given by ∆k = ∑
m
i=1 T2

i , or more explicitly by

∆k f (x) = ∆ f (x) + 2 ∑
α∈R+

kα

(
〈∇ f (x), α〉

〈α, x〉
−

f (x)− f (rα(x))

〈α, x〉2

)

with ∆ the classical Laplacian and ∇ the gradient operator.
If we let ∆k act on |x|2 we find ∆k[|x|

2] = 2m + 4γ = 2µ, where γ = ∑α∈R+
kα.

We call µ the Dunkl dimension, because most special functions related to ∆k be-
have as if one would be working with the classical Laplace operator in a space
with dimension µ.

The operators

E :=
1

2
|x|2, F := −

1

2
∆k and H := E + µ/2

where E := ∑
m
i=1 xi∂xi

is the Euler operator, satisfy the defining relations of the
Lie algebra sl2 (see e.g. [11]). They are given by

[
H, E

]
= 2E,

[
H, F

]
= −2F,

[
E, F

]
= H. (1)

We also have the following important property of the Dunkl operators

Ti[ f g] = Ti[ f ] g + f Ti[g] , i = 1, 2, . . . , m (2)

if f or g are G-invariant.

2.2 Dunkl Dirac operators

For the sequel of this paper we restrict ourselves to multiplicity functions satisfy-
ing kα ≥ 0, ∀α ∈ R+; hence γ = ∑α∈R+

kα ≥ 0 and for the Dunkl dimension µ we
have that µ = m + 2γ > 1.

From now on we consider functions f : Rm → R0,m. Hereby, R0,m denotes
the Clifford algebra over Rm generated by ei, i = 1, . . . , m, subject to the relations
eiej + ejei = −2δij.

In what follows, the bar denotes the Clifford conjugation; an anti-involution
for which ei = −ei (i = 1, . . . , m).

Dk stands for the Dunkl Dirac operator Dk = ∑
m
j=1 ejTj with Tj the Dunkl

operators. x = ∑
m
j=1 ejxj is the so-called vector variable. It is clear that D2

k = −∆k

and that x2 = −|x|2 = −r2.
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By definition we have that for f (x) = ∑A eA fA(x) with fA : R
m → R :

Dk[ f (x)] =
m

∑
j=1

∑
A

ejeATj[ fA] and [ f (x)]Dk =
m

∑
j=1

∑
A

Tj[ fA]eAej.

A function f which satisfies Dk[ f ] = 0 is called left Dunkl monogenic, while a
function f which satisfies [ f ]Dk = 0 is called right Dunkl monogenic.
A left Dunkl monogenic homogeneous polynomial Mk of degree k (k ≥ 0) in Rm

is called a left solid inner Dunkl monogenic of order k. A left Dunkl monogenic
homogeneous function Qk of degree −(k+ µ− 1) in Rm \ {0} is called a left solid
outer Dunkl monogenic of order k. The restriction to Sm−1 of a left solid inner
Dunkl monogenic is called a left inner Dunkl monogenic, while the restriction to
Sm−1 of a left solid outer Dunkl monogenic is called a left outer Dunkl monogenic.
The set of all left solid inner Dunkl monogenics of order k will be denoted by
M+

ℓ
(k), while the set of all left solid outer Dunkl monogenics of order k will be

denoted by M−
ℓ
(k). Moreover, the space of left inner Dunkl monogenics of order k

is denoted by M+
ℓ
(k), while the space of left outer Dunkl monogenics is denoted

by M−
ℓ
(k). Similar definitions hold in case of right Dunkl monogenics.

The angular Dunkl Dirac operator (or Gamma operator) is defined as
Γk := Dkx + µ + E.
Taking into account the relation (see for e.g. [6, 15])

{Dk, x} = Dkx + xDk = −(2E + µ), (3)

we easily obtain the following proposition.

Proposition 2.1.
One has that

xDk = −E − Γk or Γk = −xDk − E.

Proof. We have consecutively

xDk = −Dkx − 2E − µ = −Γk + µ + E − 2E − µ = −Γk − E.

Now we immediately obtain that E measures the degree of homogeneity,
while Γk measures the degree of Dunkl monogenicity.

Proposition 2.2.
(i) Rk ∈ Pk : E[Rk] = kRk

(ii) Mk ∈ M+
ℓ
(k) : Γk[Mk] = −kMk

(iii) Mk ∈ M+
ℓ
(k) : Γk[x Mk] = (k + µ − 1) xMk.

Proof.
(i) Straightforward.
(ii) Γk[Mk] = (−E − xDk)[Mk] = −kMk .
(iii) By means of (i) and (ii) we obtain

xDk[xMk] = x (Γk − µ − E) [Mk] = x (−k − µ − k) Mk = (−2k − µ) xMk.
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Using Proposition 2.1 and the fact that xMk ∈ Pk+1, gives

(−2k − µ) xMk = (−E − Γk)[xMk] = −(k + 1) xMk − Γk[xMk],

which yields the desired result.
The following lemma is proved by induction using (3).

Lemma 2.1.
For Mk ∈ M+

ℓ
(k) we have that

Dk[x
sMk] =

{
−sxs−1Mk if s is even,

−(s − 1 + 2k + µ)xs−1Mk if s is odd.

Now the following connection between left solid inner and outer Dunkl mono-
genics can be proved.

Proposition 2.3.
(i) For Mk ∈ M+

ℓ
(k) we have that

Qk(x) =
x

|x|µ
Mk

(
x

|x|2

)
=

x

|x|µ+2k
Mk(x) ∈ M−

ℓ
(k).

(ii) For Q̃k ∈ M−
ℓ
(k) we have that

M̃k(x) =
x

|x|µ
Q̃k

(
x

|x|2

)
= x |x|2k+µ−2 Q̃k(x) ∈ M+

ℓ
(k).

Hence on the unit sphere Sm−1 we have the following connection

Mk ∈ M+
ℓ
(k) ⇐⇒ ω Mk(ω) ∈ M−

ℓ
(k) , ω ∈ Sm−1.

Proof.
(i) Clearly Qk is homogeneous of degree −(k + µ − 1). Moreover taking into
account the product rule (2), we obtain that in Rm \ {0} :

Dk[Qk(x)] = Dk

[
1

|x|µ+2k

]
xMk +

1

|x|µ+2k
Dk[xMk]

=
m

∑
i=1

ei∂xi

[
1

|x|µ+2k

]
xMk −

(µ + 2k)

|x|µ+2k
Mk

= −
m

∑
i=1

ei (µ + 2k)
1

|x|µ+2k+1

xi

|x|
xMk −

(µ + 2k)

|x|µ+2k
Mk = 0.

(ii) The converse result is proved in a similar way.

A straightforward calculation yields the following lemma.
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Lemma 2.2.
One has Dk[x] = −µ.

Proof. From (3) we obtain that {Dk, x}[1] = −(2E + µ)[1] and hence
Dk[x] = −µ.

The angular Dunkl Dirac operator only acts on the angular co-ordinates, whence
its name.

Proposition 2.4.
One has that [Γk, f (r)] = 0.

Proof. Let G(x) denote a Clifford algebra-valued function. Taking into account
Proposition 2.1 and the product rule (2), we arrive at

−Γk[ f (r) G(x)]

= (E + xDk)[ f (r) G(x)] = E[ f (r)] G(x) + f (r) E[G(x)] + x Dk[ f (r) G(x)]

= r∂r[ f (r)] G(x) + f (r) E[G(x)] + x ∂x[ f (r)] G(x) + f (r) x Dk[G(x)]

= − f (r) Γk[G(x)] + r∂r[ f (r)] G(x) + x
x

r
∂r[ f (r)] G(x) = − f (r) Γk[G(x)],

which proves the statement.
We also have the following important decomposition (see [15]).

Theorem 2.1 (Fischer decomposition). The space Pk of homogeneous polynomials of
degree k taking values in R0,m decomposes as

Pk =
k⊕

i=0

xi M+
ℓ
(k − i),

where M+
ℓ
(k − i) is the space of left solid inner Dunkl monogenics of order k − i.

Using the Gamma operator, it is now possible to construct projection opera-
tors on each piece in the Fischer decomposition in a much easier way than was
obtained in [15]. Indeed, it is easy to see that each summand in this decomposi-
tion corresponds to a different eigenvalue of Γk. Hence, we can use the Gamma
operator to construct projection operators on each summand of the decomposi-
tion. So, the operator Pk

i (acting on Pk) defined by

P
k
i =

⌊ k
2 ⌋

∏
r=0,r 6=i/2

Γk + k − 2r

i − 2r

⌊ k−1
2 ⌋

∏
s=0

Γk − k + 2s + 2 − µ

−2k + i + 2s + 2 − µ
, i even

=
⌊ k

2 ⌋

∏
r=0

Γk + k − 2r

2k − i + µ − 1 − 2r

⌊ k−1
2 ⌋

∏
s=0,s 6= i−1

2

Γk − k + 2s + 2 − µ

2s + 1 − i
, i odd

clearly satisfies

P
k
i

(
xjM+

ℓ
(k − j)

)
= δijx

jM+
ℓ
(k − j).
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Proposition 2.5.
In terms of spherical co-ordinates the Dunkl Dirac operator takes the form

Dk = ω

(
∂r +

1

r
Γk

)
.

Proof. Again by means of Proposition 2.1, we obtain

rω Dk = −(E + Γk) = −(r∂r + Γk) or Dk = ω

(
∂r +

1

r
Γk

)
.

Lemma 2.3.
One has that Γk[ω] = (µ − 1)ω, ω ∈ Sm−1.

Proof. Taking into account Proposition 2.4 and Proposition 2.2 (iii), we find
consecutively

Γk[ω] = Γk

[x

r

]
=

1

r
Γk[x] =

1

r
(µ − 1) x = (µ − 1) ω.

In the sequel the following positive weight function will play a crucial role:

wk(x) = ∏
α∈R+

|〈x, α〉|2kα .

It is homogeneous of degree 2γ = 2 ∑α∈R+
kα and invariant under reflections

from the root system R+.

A basic integral formula is the Stokes formula (see [3]), the proof of which
heavily relies on the G-invariance of the weight function wk(x).
Let Ω be a sufficiently smooth domain with boundary Γ = ∂Ω and define the
oriented surface element dσ(x) on Γ by the Clifford differential form:

dσ(x) =
m

∑
j=1

(−1)j ej dxM\{j},

where
dxM\{j} = dx1 ∧ . . . ∧ [dxj] ∧ . . . ∧ dxm , j = 1, 2, . . . , m.

If n(x) stands for the outward pointing unit normal at x ∈ Γ, then dσ(x) =
n(x) dΣ(x), dΣ(x) being the elementary Lebesgue surface measure.

Theorem 2.2 (Stokes and Cauchy theorem).
Let Ω be a sufficiently smooth domain invariant under the action of G, Γ = ∂Ω and
f , g ∈ C∞(Ω). Then

∫

Ω
[( f Dk) g + f (Dkg)] wk(x) dV(x) =

∫

Γ
f wk(x) dσ(x) g.

Moreover, if f is right monogenic in Ω and g is left monogenic in Ω, one has
∫

Γ
f wk(x) dσ(x) g = 0.
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We now have all the necessary results at our disposal in order to prove the
orthogonality of the inner and outer Dunkl monogenics.

Theorem 2.3 (Orthogonality of Dunkl monogenics).
(i) Left inner Dunkl monogenics of different degree are orthogonal, i.e. for Mt ∈ M+

ℓ
(t)

and Mk ∈ M+
ℓ
(k) with t 6= k one has

∫

Sm−1
Mt(ω) Mk(ω) wk(ω) dS(ω) = 0.

(ii) Left outer Dunkl monogenics of different degree are orthogonal, i.e. for Qt ∈ M−
ℓ
(t)

and Qk ∈ M−
ℓ
(k) with t 6= k one has

∫

Sm−1
Qt(ω) Qk(ω) wk(ω) dS(ω) = 0.

(iii) Any left inner and left outer Dunkl monogenic are orthogonal, i.e. for all Qt ∈
M−

ℓ
(t) and Mk ∈ M+

ℓ
(k) one has

∫

Sm−1
Qt(ω) Mk(ω) wk(ω) dS(ω) = 0.

Proof.
(i)-(ii) This follows immediately from the fact that Dunkl harmonics of different
degree are orthogonal, i.e.

∫

Sm−1
Hk(ω) Hℓ(ω) wk(ω) dS(ω) = 0

if k 6= ℓ (see [10], p. 177).
(iii) The proof is based on the Cauchy theorem with Ω the closed unit ball B(1)
and hence ∂Ω the unit sphere Sm−1.
Take Qt ∈ M−

ℓ
(t) and Mk ∈ M+

ℓ
(k). As at each point ω ∈ Sm−1, n(ω) = ω, we

have that dσ(ω) = ω dS(ω) or dS(ω) = −ω dσ(ω). Hence we obtain

∫

Sm−1
Qt(ω) Mk(ω) wk(ω) dS(ω) =

∫

Sm−1
ω Qt(ω) dσ(ω) Mk(ω) wk(ω). (4)

As Qt ∈ M−
ℓ
(t), there exists Mt ∈ M+

ℓ
(t) such that (see Proposition 2.3): Mt(ω) =

ω Qt(ω). Hence equation (4) becomes

∫

Sm−1
Qt(ω) Mk(ω) wk(ω) dS(ω) =

∫

Sm−1
Mt(ω) dσ(ω) Mk(ω) wk(ω).

Moreover, as Mt is right monogenic in B(1), while Mk is left monogenic in B(1),
the Cauchy theorem yields

∫

Sm−1
Qt(ω) Mk(ω) wk(ω) dS(ω) = 0.
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3 Clifford-Gegenbauer polynomials on B(1) related to the Dunkl

Dirac operator

3.1 The Clifford-Gegenbauer polynomials on B(1)

The Clifford-Gegenbauer polynomials on the unit ball B(1) were introduced by
Cnops (see [4]). They are orthogonal on B(1) w.r.t. the weight function (1−|x|2)α,
α > −1.

Definition 3.1.
Let Pk be a spherical monogenic of degree k, α ∈ R, α > −1 and t a positive integer.
Then

Cm,α
t (Pk) = DαDα+1 . . . Dα+t−1[Pk]

with

Dα = (1 − |x|2)∂x − 2(α + 1)x

is a Clifford-Gegenbauer polynomial. Here ∂x = ∑
m
j=1 ej∂xj

is the so-called Dirac opera-
tor.

3.2 Definition Clifford-Gegenbauer polynomials on B(1) related to the Dunkl

Dirac

By analogy with the previous subsection, we first introduce for α ∈ R and α > −1
the operator

Dα = (1 − |x|2)Dk − 2(α + 1)x.

The operator Dα can be rewritten as

Dα = (1 − |x|2)−α Dk(1 − |x|2)α+1. (5)

Indeed, by means of the product rule (2), we obtain consecutively

(1 − |x|2)−α Dk[(1 − |x|2)α+1 f (x)]

=
m

∑
i=1

∑
A

ei(1 − |x|2)−α Ti[(1 − |x|2)α+1 fA(x)] eA

=
m

∑
i=1

∑
A

ei(1 − |x|2)−α { Ti[(1 − |x|2)α+1] fA(x) + (1 − |x|2)α+1 Ti[ fA(x)] } eA

=
m

∑
i=1

∑
A

ei(1 − |x|2)−α { (α + 1)(1 − |x|2)α (−2xi) fA(x)

+(1 − |x|2)α+1 Ti[ fA(x)] } eA

= −2(α + 1) x f (x) + (1 − |x|2) Dk[ f (x)].

We now define the Clifford-Gegenbauer polynomials on B(1) related to the
Dunkl Dirac operator as follows:
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Definition 3.2.
Let Mk ∈ M+

ℓ
(k) and t a positive integer. Then

Cα
t,µ(Mk)(x) = DαDα+1Dα+2 . . . Dα+t−1[Mk]

is a Clifford-Gegenbauer polynomial on B(1) of degree t associated with Mk.

Using Lemma 2.1 we see that the precise form of the polynomials Cα
t,µ(Mk) de-

pends only on the degree of the Dunkl-monogenic Mk, so we can write
Cα

t,µ(Mk)(x) = Cα
t,µ,k(x) Mk.

The lower-degree polynomials take the following form:

Cα
0,µ(Mk) = Mk

Cα
1,µ(Mk) = −2(α + 1)xMk

Cα
2,µ(Mk) = 2(α + 2)(2α + 2 + 2k + µ)x2Mk + 2(α + 2)(2k + µ)Mk .

It is clear that Cα
2s,µ,k(x) will only contain even powers of x, while Cα

2s+1,µ,k(x) will

only contain odd powers of x.

3.3 Properties

Using the definition, we immediately obtain that the Clifford-Gegenbauer poly-
nomials on B(1) satisfy the following recursion relation

Cα
t+1,µ(Mk) = Dα[C

α+1
t,µ (Mk)]

= −2(α + 1)x Cα+1
t,µ (Mk) + (1 − |x|2) Dk[C

α+1
t,µ (Mk)]. (6)

The above result can be refined.

Proposition 3.1.
The Clifford-Gegenbauer polynomials satisfy the following recursion relations:

Cα
2ℓ+1,µ,k(x) = −2(α + 1) x Cα+1

2ℓ,µ,k(x) + (1 − |x|2) Dk[C
α+1
2ℓ,µ,k(x)] (7)

and

Cα
2ℓ+2,µ,k(x) = −2(α + 1) x Cα+1

2ℓ+1,µ,k(x)+

(1 − |x|2)

(
2k

x

|x|2
Cα+1

2ℓ+1,µ,k(x) + Dk[C
α+1
2ℓ+1,µ,k(x)]

)
. (8)

Proof. From (6) we immediately obtain (7), whereas

Cα
2ℓ+2,µ,k(x) Mk = −2(α + 1) x Cα+1

2ℓ+1,µ,k(x) Mk + (1 − |x|2) Dk[C
α+1
2ℓ+1,µ,k(x) Mk].

Next by means of the product rule (2) and Proposition 2.3, we have that

Dk[C
α+1
2ℓ+1,µ,k(x) Mk] = −Dk

[
r2k+µ−1ω Cα+1

2ℓ+1,µ,k(x) ω
Mk

r2k+µ−1

]

= −Dk[r
2k+µ−1 ω Cα+1

2ℓ+1,µ,k(x)] ω
Mk

r2k+µ−1
.
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Moreover, taking into account Proposition 2.5 and the fact that the angular Dunkl
Dirac operator only acts on the angular co-ordinates, yields

Dk[r
2k+µ−1 ω Cα+1

2ℓ+1,µ,k(x)] = −(2k + µ − 1) r2k+µ−2 Cα+1
2ℓ+1,µ,k(x)+

ω r2k+µ−1ω ∂r[C
α+1
2ℓ+1,µ,k(x)].

Furthermore, as

ω ∂r[C
α+1
2ℓ+1,µ,k(x)] =

(
Dk −

ω

r
Γk

)
[Cα+1

2ℓ+1,µ,k(x)] =

Dk

[
Cα+1

2ℓ+1,µ,k(x)
]
−

(µ − 1)ω

r
Cα+1

2ℓ+1,µ,k(x),

we finally obtain

Cα
2ℓ+2,µ,k(x)

= −2(α + 1)x Cα+1
2ℓ+1,µ,k(x)− (1 − |x|2)

{
−(2k + µ − 1)

Cα+1
2ℓ+1,µ,k(x)

r
ω

+ω Dk[C
α+1
2ℓ+1,µ,k(x)] ω +

(µ − 1)

r
ω Cα+1

2ℓ+1,µ,k(x)

}

= −2(α + 1)x Cα+1
2ℓ+1,µ,k(x) +

(1 − |x|2)

(
2k

x

|x|2
Cα+1

2ℓ+1,µ,k(x) + Dk[C
α+1
2ℓ+1,µ,k(x)]

)
.

Taking into account (5), it is easily seen that there also exists a Rodrigues for-
mula.

Theorem 3.1 (Rodrigues formula).
The Clifford-Gegenbauer polynomials on B(1) take the form

Cα
t,µ(Mk) = (1 − |x|2)−α Dt

k

[
(1 − |x|2)α+t Mk

]
.

Moreover, the Clifford-Gegenbauer polynomials on B(1) satisfy an annihila-
tion equation.

Theorem 3.2 (Annihilation equation).
Cα

t,µ(Mk) satisfies

Dk[C
α
t,µ(Mk)] = C(α, t, µ, k) Cα+1

t−1,µ(Mk)

with

C(α, t, µ, k) =

{
t(2α + t + µ + 2k) if t is even,

(2α + t + 1)(t + µ + 2k − 1) if t is odd.

Proof. Let us write down the expansion of the Clifford-Gegenbauer polynomi-
als:

Cα
2t,µ(Mk)(x) =

t

∑
i=0

a2t,α
2i x2i Mk and Cα

2t+1,µ(Mk)(x) =
t

∑
i=0

a2t+1,α
2i+1 x2i+1 Mk.
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From the recursion formula (6) and Lemma 2.1, we know that the following rela-
tions between the coefficients hold:

a2t,α
2i = −(2i + 2k + µ) a2t−1,α+1

2i+1 − (2i + 2k + 2α + µ) a2t−1,α+1
2i−1 (9)

and

a2t+1,α
2i+1 = −2(α + 1 + i) a2t,α+1

2i − (2i + 2) a2t,α+1
2i+2 . (10)

We need to prove

−2i a2t,α
2i = 2t (2α + 2t + µ + 2k) a2t−1,α+1

2i−1 (11)

and

−(2i + 2k + µ) a2t+1,α
2i+1 = (2α + 2t + 2)(2t + µ + 2k) a2t,α+1

2i . (12)

It is easy to check that the theorem holds for t = 0, 1. Using (9) and (10) the
theorem can then be proved by induction on t.

By acting on the above annihilation equation with Dα we immediately obtain
the differential equation satisfied by the Clifford-Gegenbauer polynomials.

Theorem 3.3 (Differential equation).
Cα

t,µ(Mk) is a solution of the following differential equation:

(1 − |x|2)∆k[C
α
t,µ(Mk)] + 2(α + 1)xDk[C

α
t,µ(Mk)] + C(α, t, µ, k)Cα

t,µ(Mk) = 0.

The above equation should be compared with the classical differential equa-
tion of the Gegenbauer polynomials on the real line

(1 − x2)
d2

dx2
Cλ

n (x)− (2λ + 1) x
d

dx
Cλ

n (x) + n(n + 2λ) Cλ
n (x) = 0

where it should be noticed that λ = α + 1
2 .

Moreover, combining the annihilation equation and the recursion formula (6) we
obtain the following recurrence relation.

Theorem 3.4 (Recurrence relation).
Cα

t,µ(Mk) satisfies the recurrence relation:

Cα
t+1,µ(Mk)(x) + 2(α + 1) x Cα+1

t,µ (Mk)− C(α + 1, t, µ, k) (1− |x|2) Cα+2
t−1,µ(Mk) = 0.

Note that this recursion formula is the Dunkl analogon of the classical one-
dimensional Gegenbauer recurrence relation:

(n + 1) Cλ
n+1(x)− (n + 2λ) x Cλ

n (x) + 2λ(1 − x2) Cλ+1
n−1(x) = 0.

It is now possible to express the Clifford-Gegenbauer polynomials on B(1) in
terms of the Jacobi polynomials on the real line.
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Theorem 3.5 (Closed form).
The Clifford-Gegenbauer polynomials on B(1) can be written in terms of the Jacobi poly-
nomials on the real line as

Cα
2t,µ,k(x) = 22t (α + t + 1)t t! P

(µ/2+k−1,α)
t (1 + 2x2) (13)

= (−1)t 22t (α + t + 1)t t! P
(α,µ/2+k−1)
t (2|x|2 − 1)

and

Cα
2t+1,µ,k(x) = −22t+1 (α + t + 1)t+1 t! x P

(µ/2+k,α)
t (1 + 2x2) (14)

= (−1)t+1 22t+1 (α + t + 1)t+1 t! x P
(α,µ/2+k)
t (2|x|2 − 1)

with (a)p = a(a + 1) . . . (a + p − 1) =
Γ(a + p)

Γ(a)
the Pochhammer symbol and

P
(α,β)
t (x) =

Γ(α + t + 1)

t! Γ(α + β + t + 1)

t

∑
i=0

(
t

i

)
Γ(α + β + t + i + 1)

Γ(α + i + 1)

(
x − 1

2

)i

.

Proof. Recall that

Cα
2t,µ(Mk)(x) =

t

∑
i=0

a2t,α
2i x2i Mk .

By means of the annihilation equations (11) and (12) in terms of the coefficients

as,α
i , we can write a2t,α

2i in terms of a2t−2i,α+2i
0 :

a2t,α
2i = −

t

i
(2α + 2t + µ + 2k) a2t−1,α+1

2i−1

= (−1)222 t

i

(
α + t +

µ

2
+ k

)
(α + t + 1)

(
t +

µ
2 + k − 1

)
(
i + k + µ

2 − 1
) a2t−2,α+2

2i−2

= ...

= 22i

(
t

i

) (
α + t +

µ

2
+ k

)
i
(α + t + 1)i

Γ
(
t +

µ
2 + k

)

Γ
(
t + µ

2 + k − i
)

×
Γ
(
k +

µ
2

)

Γ
(
k + µ

2 + i
) a2t−2i,α+2i

0 . (15)

Now we look for an expression of a2t,α
0 . By means of successively (9) and (12) we

are able to write a2t,α
0 in terms of a0,α+2t

0 = 1 :

a2t,α
0 = −(2k + µ)a2t−1,α+1

1

= 22 (α + 1 + t)(t − 1 + µ/2 + k) a2t−2,α+2
0

= 24 (α + 1 + t)(α + t + 2)(t + µ/2 + k − 1)(t + µ/2 + k − 2) a2t−4,α+4
0

= ...

= 22t (α + t + 1)t
Γ(µ/2 + k + t)

Γ(µ/2 + k)
a0,α+2t

0 . (16)
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Combining (15) and (16) yields

a2t,α
2i = 22t

(
t

i

)
Γ(t + µ/2 + k)

Γ(k + µ/2 + i)
(α + t + µ/2 + k)i (α + t + 1)t,

from which we indeed obtain (13).
The formula for a2t+1,α

2i+1 now follows from the annihilation equation (12):

a2t+1,α
2i+1 = −2(α + t + 1)

t + µ/2 + k

i + k + µ/2
a2t,α+1

2i

= −22t+1

(
t

i

)
Γ(t + µ/2 + k + 1)

Γ(k + µ/2 + i + 1)
(α + t + µ/2 + k + 1)i (α + t + 1)t+1,

which leads to (14).

Let us mention the following corollary of the previous theorem.

Corollary 3.1.
The Clifford-Gegenbauer polynomials on B(1) satisfy

Cα
2t+1,µ,k(x) = −2(α + 2t + 1) x Cα

2t,µ,k+1(x).

By means of Theorem 3.5 we are able to prove the Dunkl-analogon of the
classical one-dimensional three-term Gegenbauer recurrence relation:

n Cλ
n (x) = 2(n + λ − 1) x Cλ

n−1(x)− (n + 2λ − 2) Cλ
n−2(x) , n = 2, 3, . . .

Theorem 3.6 (Three-term recurrence relation).
Cα

t,µ,k(x) satisfies the three-term recurrence relation:

D(α, t, µ, k)

2(α + t)
Cα

t,µ,k(x) = −
(

α +
µ

2
+ k + t − 1

)
x Cα

t−1,µ,k(x)+

(α + t − 1) E(t, µ, k) Cα
t−2,µ,k(x)

with

D(α, t, µ, k) =

{
α + t

2 if t is even,

α +
µ
2 + k + t

2 −
1
2 if t is odd

and

E(t, µ, k) =

{
µ + 2k − 2 + t if t is even,

t − 1 if t is odd.

Proof. This result follows from the following contiguous relations of the clas-
sical Jacobi polynomials on the real line (see [14]):

(
α

2
+

β

2
+ ℓ+ 1

)
(1 + y) P

(α,β+1)
ℓ

(y) = (β + ℓ+ 1) P
(α,β)
ℓ

(y) + (ℓ+ 1) P
(α,β)
ℓ+1 (y)

and

(α + β + 2n) P
(α,β−1)
n (y) = (α + β + n) P

(α,β)
n (y) + (α + n) P

(α,β)
n−1 (y).
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3.4 Orthogonality

Let us consider the inner product:

〈 f , g〉α =
∫

B(1)
f (x) g(x) (1 − |x|2)α wk(x) dV(x).

Proposition 3.2.
The operators Dα and Dk are dual with respect to 〈. , .〉α, i.e. for all f , g ∈ C1

(
B(1)

)

〈Dα[ f ] , g〉α = 〈 f , Dk[g]〉α+1.

Proof. By means of Theorem 2.2, we find

〈Dα[ f ] , g〉α = −
∫

B(1)
[(1 − |x|2)α+1 f ]Dk g(x) wk(x) dV(x)

= −

(∫

∂B(1)
(1 − |x|2)α+1 f wk(x) dσ(x) g(x)

−
∫

B(1)
(1 − |x|2)α+1 f Dk[g(x)] wk(x) dV(x)

)

=
∫

B(1)
f Dk[g] (1 − |x|2)α+1 wk(x) dV(x) = 〈 f , Dk[g]〉α+1,

since the surface term clearly vanishes.

Using the above proposition, we are now able to prove an orthogonality rela-
tion for the Clifford-Gegenbauer polynomials on B(1).

Theorem 3.7 (Orthogonality relation).
If s 6= t or k 6= ℓ, then

〈Cα
t,µ(Mk), C

α
s,µ(Mℓ)〉α = 0.

Proof.
a) Suppose that s 6= t and t > s (the case where t < s is similar). We obtain

〈Cα
t,µ(Mk), C

α
s,µ(Mℓ)〉α = 〈Dα Dα+1 . . . Dα+t−1[Mk], C

α
s,µ(Mℓ)〉α

= 〈Dα+1 . . . Dα+t−1[Mk], Dk[C
α
s,µ(Mℓ)]〉α+1

= . . . .

= 〈Mk, Dt
k[C

α
s,µ(Mℓ)]〉α+t = 0.

b) If s = t and k 6= ℓ, the result follows from the fact that the left inner Dunkl
monogenics of different degree are orthogonal (see Theorem 2.3).

Using the orthonormality relation of the classical Jacobi polynomials, we are
able to calculate the normalization constants.

Lemma 3.1.
We have that

〈
Cα

2t,µ(Mk) , Cα
2t,µ(Mk)

〉
α

= 24t−1 t!
(α + t + 1)t Γ(α + 2t + 1)(µ

2 + k + t
)

α

(µ
2 + k + α + 2t

)
∫

Sm−1
Mk(ω) Mk(ω) wk(ω) dS(ω)
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〈
Cα

2t+1,µ(Mk) , Cα
2t+1,µ(Mk)

〉
α
= −24t+1 t!

(α + t + 1)t+1 Γ(α + 2t + 2)(µ
2 + k + t + 1

)
α

(µ
2 + k + α + 2t + 1

)
∫

Sm−1
Mk(ω) Mk(ω) wk(ω) dS(ω).

Remark 3.1 (Gegenbauer polynomials on B(1) related to the Dunkl Laplacian).
Note that if we calculate DαDα+1 we obtain

Dα := Dα Dα+1

= −(1 − |x|2)2 ∆k − 2(α + 2)(2α + 2 + µ) |x|2 +

4(α + 2) (1 − |x|2) E + 2(α + 2)µ,

where we have used the product rule (2) and the relation (3).
As this operator is scalar, it makes sense to let it act on a Dunkl harmonic Hk instead of a
Dunkl monogenic. Hence, we can define

C
µ,α
2t (Hk) = DαDα+2Dα+4 . . .Dα+2t−2[Hk].

For these Gegenbauer polynomials associated with Hk we can also derive a Rodrigues for-
mula, a differential equation, an annihilation equation and a recurrence relation. More-
over, in terms of the Jacobi polynomials on the real line, they take the following form

C
µ,α
2t (Hk) = 22t (α + t + 1)t t! P

( µ
2 +k−1,α)

t (1 + 2x2) Hk.

Note that special cases of these scalar polynomials and there associated weights have al-
ready been studied in [16, 17].

4 Clifford-Gegenbauer polynomials on Rm related to the Dunkl

Dirac operator

4.1 The generalized Clifford-Gegenbauer polynomials

The generalized Clifford-Gegenbauer polynomials (see e.g. [8] and [2]) are de-
fined as follows:

Definition 4.1.
Let Pk be a spherical monogenic of degree k, α ∈ R and t a positive integer. Then

Gm,α
t (Pk) = DαDα+1 . . . Dα+t−1[Pk]

with
Dα = (1 + |x|2)∂x + 2(α + 1)x

is a Clifford-Gegenbauer polynomial.

This second type of Clifford-Gegenbauer polynomials came into play while
studying wavelets in the Clifford analysis setting. The polynomials, originally
defined in a completely different way as by Cnops in [4], are the desired building
blocks for new higher dimensional wavelet kernels (see [2]). They satisfy certain
orthogonality relations on the whole of Rm w.r.t. the weight function (1 + |x|2)α,
α ∈ R.
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4.2 Definition Clifford-Gegenbauer polynomials on R
m related to the Dunkl

Dirac

By analogy with the previous subsection, we first introduce for α ∈ R the opera-
tor

Dα = (1 + |x|2)Dk + 2(α + 1)x.

Similarly as in subsection 3.2 one can verify that the operator Dα can be rewritten
as

Dα = (1 + |x|2)−α Dk(1 + |x|2)α+1. (17)

We now define the Clifford-Gegenbauer polynomials on Rm related to the
Dunkl Dirac operator as follows:

Definition 4.2.
Let Mk ∈ M+

ℓ
(k) and t a positive integer. Then

Gα
t,µ(Mk)(x) = DαDα+1Dα+2 . . . Dα+t−1[Mk]

is a Clifford-Gegenbauer polynomial on Rm of degree t associated with Mk.

Again using Lemma 2.1, it is clear that the precise form of the polynomials
Gα

t,µ(Mk) depends only on the degree of the Dunkl-monogenic Mk, so we can

write Gα
t,µ(Mk)(x) = Gα

t,µ,k(x) Mk.

The lower-degree polynomials take the following form:

Gα
0,µ(Mk) = Mk

Gα
1,µ(Mk) = 2(α + 1)xMk

Gα
2,µ(Mk) = 2(α + 2)(2α + 2 + 2k + µ)x2Mk − 2(α + 2)(2k + µ)Mk .

It is clear that Gα
2s,µ,k(x) will only contain even powers of x, while Gα

2s+1,µ,k(x) will

only contain odd powers of x.

4.3 Properties

In this subsection we collect the properties of the Clifford-Gegenbauer polynomi-
als on Rm. As the proofs are similar as those in subsection 3.3, we omit them.

Using the definition, we immediately obtain that the Clifford-Gegenbauer
polynomials on R

m satisfy the following recursion relation

Gα
t+1,µ(Mk) = Dα[G

α+1
t,µ (Mk)]

= 2(α + 1)x Gα+1
t,µ (Mk) + (1 + |x|2) Dk[G

α+1
t,µ (Mk)]. (18)

In particular, we obtain the following

Proposition 4.1.
The Clifford-Gegenbauer polynomials satisfy the following recursion relations:

Gα
2ℓ+1,µ,k(x) = 2(α + 1) x Gα+1

2ℓ,µ,k(x) + (1 + |x|2) Dk[G
α+1
2ℓ,µ,k(x)] (19)
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and

Gα
2ℓ+2,µ,k(x) = 2(α + 1) x Gα+1

2ℓ+1,µ,k(x) + (1 + |x|2)
(

2k
x

|x|2
Gα+1

2ℓ+1,µ,k(x) + Dk[G
α+1
2ℓ+1,µ,k(x)]

)
. (20)

Taking into account (17), it is easily seen that there also exists a Rodrigues
formula.

Theorem 4.1 (Rodrigues formula).
The Clifford-Gegenbauer polynomials on R

m take the form

Gα
t,µ(Mk) = (1 + |x|2)−α Dt

k

[
(1 + |x|2)α+t Mk

]
.

Moreover, the Clifford-Gegenbauer polynomials on Rm satisfy an annihilation
equation.

Theorem 4.2 (Annihilation equation).
Gα

t,µ(Mk) satisfies

Dk[G
α
t,µ(Mk)] = −C(α, t, µ, k) Gα+1

t−1,µ(Mk).

From the above annihilation equation we obtain the differential equation

Theorem 4.3 (Differential equation).
Gα

t,µ(Mk) is a solution of the following differential equation:

(1 + |x|2)∆k [G
α
t,µ(Mk)]− 2(α + 1)xDk[G

α
t,µ(Mk)]− C(α, t, µ, k)Gα

t,µ(Mk) = 0.

Moreover, combining the annihilation equation and the recursion formula (18)
we find the following recurrence relation.

Theorem 4.4 (Recurrence relation).
Gα

t,µ(Mk) satisfies the recurrence relation:

Gα
t+1,µ(Mk)(x)− 2(α+ 1) x Gα+1

t,µ (Mk)+C(α+ 1, t, µ, k) (1+ |x|2) Gα+2
t−1,µ(Mk) = 0.

We can now express the Clifford-Gegenbauer polynomials on Rm in terms of
the Jacobi polynomials on the real line.

Theorem 4.5 (Closed form).
The Clifford-Gegenbauer polynomials on Rm can be written in terms of the Jacobi poly-
nomials on the real line as

Gα
2t,µ,k(x) = (−1)t 22t (α + t + 1)t t! P

(µ/2+k−1,α)
t (1 − 2x2)

Gα
2t+1,µ,k(x) = (−1)t 22t+1 (α + t + 1)t+1 t! x P

(µ/2+k,α)
t (1 − 2x2).

Finally, the previous theorem enables us to prove the following result.

Theorem 4.6 (Three-term recurrence relation).
Gα

t,µ,k(x) satisfies the three-term recurrence relation:

D(α, t, µ, k)

2(α + t)
Gα

t,µ,k(x) =
(

α +
µ

2
+ k + t − 1

)
x Gα

t−1,µ,k(x)

− (α + t − 1) E(t, µ, k) Gα
t−2,µ,k(x).
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4.4 Orthogonality

The orthogonality of the Clifford-Gegenbauer polynomials on Rm must be treated
in a completely different way than the orthogonality of their counterparts on the
unit ball B(1). It must be expressed in terms of a bilinear form instead of an
integral (as was also done in [5, 8] for the super resp. classical case).

Let us start by computing the following integral on the Euclidean space Rm

with Mk and Mℓ left solid inner Dunkl monogenics of order k, respectively ℓ :
∫

Rm
xs Mk(x) xt Mℓ(x) (1 + |x|2)α wk(x) dV(x)

=
∫ +∞

0
rs+t+k+ℓ+µ−1 (1 + r2)α dr

∫

Sm−1
Mk(ω) ωs ωt Mℓ(ω) wk(ω) dS(ω)

=
1

2
B

(
s + t + k + ℓ+ µ

2
,−

(
s + t + k + ℓ+ µ

2

)
− α

)

∫

Sm−1
Mk(ω) ωs ωt Mℓ(ω) wk(ω) dS(ω) (21)

using the Beta function

B(x, y) =
∫ +∞

0
ux−1 (1 + u)−x−y du , Re(x) > 0 , Re(y) > 0.

Naturally, the last equality in (21) only holds if 2α < −(k + s + t + ℓ + µ). The
above integral consists of two parts: a radial part and an angular part which is an
integration over the unit sphere. If we consider e.g. the case s = 2a, t = 2b, the
angular integral simplifies to

∫

Sm−1
Mk(ω) ω2a ω2b Mℓ(ω) wk(ω) dS(ω) =

(−1)a+b
∫

Sm−1
Mk(ω) Mℓ(ω) wk(ω) dS(ω).

The case where s and t are both odd, i.e. s = 2a + 1 and t = 2b + 1, yields the
same result as above.
On the other hand, if s and t have different parity, e.g. s = 2a and t = 2b + 1, the
integral over the unit sphere vanishes, since outer and inner Dunkl monogenics
are orthogonal (see Theorem 2.3).

In what follows, we will restrict ourselves to spaces of polynomials of the type

R(Mk) =

{
pn(x) Mk(x) =

n

∑
j=0

aj xj Mk(x) | n ∈ N , aj ∈ R

}

where Mk is a left solid inner Dunkl monogenic of degree k, fixed once and for
all, which satisfies

∫

Sm−1
Mk(ω) Mk(ω) wk(ω) dS(ω) = 1.

Inspired by the previous calculations and using the analytic continuation of
the Gamma function, we are led to the following definition of a bilinear form on
R(Mk).
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Definition 4.3.
The bilinear form 〈., .〉α (parameterized by α) on R(Mk) is defined by linear extension of

〈x2sMk, x2tMk〉α =
(−1)s+t

2
B
(

s + t + k +
µ

2
,−

(
s + t + k +

µ

2

)
− α

)

〈x2s+1Mk, x2tMk〉α = 0

〈x2sMk, x2t+1Mk〉α = 0

〈x2s+1Mk, x2t+1Mk〉α =
(−1)s+t

2
B
(

s + t + k +
µ

2
+ 1,−

(
s + t + k +

µ

2
+ 1

)
− α

)
.

Note that this bilinear form is symmetric, but not always positive definite.
Moreover, this bilinear form is well-defined if and only if α /∈ N and

µ
2 + α /∈ ±N,

due to the singularities z = −n, n ∈ N of the Gamma function Γ(z).
Note that due to Lemma 2.1 we have that Dα[R(Mk)] ⊂ R(Mk).

Proposition 4.2.
The operators Dk and Dα are dual with respect to 〈. , .〉α, i.e.

〈Dα[pi Mk], pj Mk〉α = 〈pi Mk, Dk[pj Mk]〉α+1

with pi Mk, pj Mk ∈ R(Mk).

Proof. It is sufficient to prove the result for 〈Dα[x
2s+1Mk], x2t Mk〉α,

〈Dα[x2s Mk], x2t+1 Mk〉α, 〈Dα[x2s+1Mk], x2t+1 Mk〉α and 〈Dα[x2s Mk], x2t Mk〉α.
By means of the definitions of the operator Dα and the bilinear form 〈., .〉α, we
have consecutively

〈Dα[x
2s+1Mk], x2t Mk〉α

= −(2s + 2k + µ) 〈x2s Mk, x2t Mk〉α + (2s + 2k + µ + 2α + 2) 〈x2s+2Mk, x2tMk〉α

= (2s + 2k + µ)
(−1)s+t+1

2

Γ
(
s + t + k +

µ
2

)
Γ
(
−

(
s + t + k +

µ
2 + α

))

Γ(−α)

+(2s + 2k + µ + 2α + 2)

(−1)s+t+1

2

Γ
(
s + 1 + t + k + µ

2

)
Γ
(
−

(
s + t + k + µ

2 + α + 1
))

Γ(−α)
.

As Γ(z + 1) = z Γ(z), we can further simplify the above result

〈Dα[x
2s+1Mk], x2t Mk〉α

= −2(α + 1)t
(−1)s+t

2

Γ
(
s + t + k + µ

2

)
Γ
(
−

(
s + t + k + µ

2 + α + 1
))

Γ(−α)

= 2t
(−1)s+t

2

Γ
(
s + t + k + µ

2

)
Γ
(
−

(
s + t + k + µ

2 + α + 1
))

Γ(−α − 1)

= 〈x2s+1Mk, Dk[x
2t Mk]〉α+1.

The other three cases are treated similarly.
Now we come to the orthogonality relation of the Clifford-Gegenbauer poly-

nomials.
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Theorem 4.7.
If s 6= t, then

〈Gα
s,µ(Mk),G

α
t,µ(Mk)〉α = 0.

Proof. Suppose that s > t. The case where s < t is similar. By means of the
above proposition and Lemma 2.1 we obtain consecutively

〈Gα
s,µ(Mk),G

α
t,µ(Mk)〉α = 〈DαDα+1 . . . Dα+s−1[Mk] , Gα

t,µ(Mk)〉α

= 〈Dα+1 . . . Dα+s−1[Mk] , Dk[G
α
t,µ(Mk)]〉α+1

= ...

= 〈Mk , Ds
k[G

α
t,µ(Mk)]〉α+s = 0.
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