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Abstract

In this paper,we examine semilinear Neumann problems which at ±∞

are resonant with respect to two successive eigenvalues (double resonance
situation). Using variational methods based on the critical point theory to-
gether with Morse theory, we prove two multiplicity results. In the first we
obtain two nontrivial solutions and in the second three, two of which have
constant sign (one positive, the other negative).

1 Introduction

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. In this paper, we

consider the following Neumann elliptic problem:

{
−△x(z) = f (z, x(z)) a.e. in Z,

∂x
∂n = 0 on ∂Z.

}
(1.1)

Suppose f (z, x) = λkx + g(z, x) with lim
|x|→∞

g(z,x)
x = 0 uniformly for a.e. z ∈ Z

and λk is an eigenvalue of the negative Neumann Laplacian. Then problem (1.1)
is said to be resonant at infinity with respect to λk. If this happens for two suc-
cessive distinct eigenvalues λk < λk+1, then we say that the problem is ”doubly
resonant”.
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The goal of this paper is to prove multiplicity results under conditions of
double resonance between two successive eigenvalues of the negative Neumann
Laplacian. The doubly resonant situation was investigated in the past only in
the context of the Dirichlet problem. In this direction, we mention the works of
Berestycki-de Figueiredo [4] (who coined the term double resonance), Cac [6],
Robinson [24], Su [25] and Zou [30]. To the best of our knowledge, there is no
analogous study for the Neumann problem. Certain resonant Neumann prob-
lems, were studied by Iannacci-Nkashama [13], [14], Kuo [15], Mawhin-Ward-
Willem [19], Rabinowitz [23]. Iannacci-Nkashama [14] and Kuo [15] used vari-
ants of the well-known Landesman-Lazer conditions (LL-conditions for short),
which were first introduced in the pioneering ”resonant” work of Landesman-
Lazer [16]. Iannacci-Nkashama [13] used a sign condition. Mawhin-Ward-Willem
[19] used a monotonicity condition and finally Rabinowitz [23] employed a pe-
riodicity condition. With the exception of Iannacci-Nkashama [14], all the afore-
mentioned Neuamnn works, treat problems resonant with respect to the principal
eigenvalues λ0 = 0 and none of them deals with the doubly resonant case. More-
over, all of them prove existence theorems, but do not address the question of
existence of multiple nontrivial solutions. Multiplicity results for resonant Neu-
mann problems, were obtained by Filippakis-Papageorgiou [9], Tang [27] and
Tang-Wu [28]. However, their hypotheses do not allow for double resonance
(neither at zero nor at infinity).

In this paper, we consider the case of double resonance at infinity, with respect
to two successive eigenvalues of the negative Neumann Laplacian. Our approach
combines variational techniques based on the critical point theory, together with
Morse theory. We prove two multiplicity theorems.

The two multiplicity results are the following (for hypotheses H1 (resp.H2),
we infer to the beginning of Section 3 (resp. Section 4)).

Theorem 1.1. If hypotheses H1 hold, then problem (1.1) has at least two nontrivial so-
lutions x0, v0 ∈ C1

n(Z).

Theorem 1.2. If hypotheses H2 hold, then problem (1.1) has at least three nontrivial
solutions x0, v0, u0 ∈ C1

n(Z) with x0(z) > 0 > v0(z) for all z ∈ Z.

2 Mathematical background

We start by recalling some basic elements of critical point theory and of Morse
theory, which we shall need in the sequel.

So, let X be a Banach space and X∗ its dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say the ϕ satisfies the Cerami
condition (the C-condition for short), if every sequence {xn}n≥1 ⊆ X such that

{ϕ(xn)}n≥1 is bounded in R and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗ as n → ∞,

has a strongly convergent subsequence.
The next theorem is the well-known ”mountain pass theorem” and gives a

minimax characterization of certain critical values of a C1-functional.
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Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X), x0, x1 ∈ X, ‖x1 − x0‖ > r > 0

max{ϕ(x0), ϕ(x1)} < inf
‖x−x0‖=r

ϕ(x) = ηr,

ϕ satisfies the C-condition and c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) where Γ = {γ ∈ C([0, 1], X) :

γ(0) = x0, γ(1) = x1}, then c ≥ ηr and c is a critical value of ϕ.

Given ϕ ∈ C1(X) and c ∈ R, we use the following notation:

ϕc = {x ∈ X : ϕ(x) ≤ c} (the sublevel set of ϕ at c),

K = {x ∈ X : ϕ′(x) = 0} (the critical set of ϕ)

and Kc = {x ∈ K : ϕ(x) = c} (the critical set of ϕ at the level c).

Suppose (Y1, Y2) is a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer
k ≥ 0, by Hk(Y1, Y2) we denote the kth-relative singular homology group of the
pair (Y1, Y2) with integer coefficients. The critical groups of ϕ at an isolated criti-
cal point x ∈ X with ϕ(x) = c are defined by

Ck(ϕ, x) = Hk(ϕc ∩ U, ϕc ∩ U\{x}) for all k ≥ 0,

where U is a neighborhood of x such that K ∩ ϕc ∩U = {x} (see Chang [8] and
Mawhin-Willem [20]). The excision property of singular homology theory, im-
plies that this definition of critical groups, is independent of the particular choice
of the neighborhood U.

Now, suppose that ϕ satisfies the C-condition and −∞ < inf ϕ(K). Let c <

inf ϕ(K). Then the critical groups of ϕ at infinity, are defined by

Ck(ϕ, ∞) = Hk(X, ϕc) for all k ≥ 0

(see Bartsch-Li [3]). The deformation theorem, which is valid since by hypothe-
sis ϕ satisfies the C -condition (see Bartolo-Benci-Fortunato [2]), implies that the
above definition of critical groups at infinity, is independent of the particular level
c < inf ϕ(K) used.

If K is finite, then the Morse-type numbers of ϕ are defined by

Mk = ∑
x∈K

rankCk(ϕ, x) for all k ≥ 0.

The Betti-type numbers of ϕ, are defined by

βk = rankCk(ϕ, ∞) for all k ≥ 0.

By Morse theory (see Bartsch-Li [3], Chang [8] and Mawhin-Willem [20]), the
”Poincare-Hopf formula” holds

∑
k≥0

(−1)k Mk = ∑
k≥0

(−1)kβk, (2.1)

if all Mk, βk are finite and the two series converge.
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Recall that if A and B are homotopy equivalent (in particular, if A and B are
homeomorphic), then Hk(X, A) = Hk(X, B) for all k ≥ 0.

In the study of (1.1), we shall use the following two spaces:

C1
n(Z) = {x ∈ C1(Z) :

∂x

∂n
= 0 on ∂Z}

and H1
n(Z) = C1

n(Z)
‖·‖

(‖ · ‖ denotes the usual norm of H1(Z)).

The space C1
n(Z) is an ordered Banach space, with order cone

C+ = {x ∈ C1
n(Z) : x(z) ≥ 0 for all z ∈ Z}.

We know that this cone has a nonempty interior given by

intC+ = {x ∈ C+ : x(z) > 0 for all z ∈ Z}.

This space seems to be more natural for Neumann problems with homoge-
neous boundary conditions. However, the main reason for working with this
new Sobolev space is Proposition 2.2 below. In general H1

n(Z) 6= H1(Z).
Let f0 : Z × R → R be Caratheodory function (i.e., measurable in z ∈ Z and

continuous in x ∈ R), with subcritical growth, i.e.,

| f0(z, x)| ≤ a0(z) + c0|x|
r−1 for a.a. z ∈ Z, all x ∈ R,

with a0 ∈ L∞(Z)+ , c0 > 0 and 1 < r < 2∗ =

{
2N

N−2 if N ≥ 3
+∞ if N = 1, 2

. We set

F0(z, x) =
∫ x

0 f0(z, s)ds and consider the C1-functional ϕ0 : H1
n(Z) → R defined

by

ϕ0(x) =
1

2
‖Dx‖2

2 −
∫

Z
F0(z, x(z))dz for all x ∈ H1

n(Z).

Proposition 2.2. If x0 ∈ H1
n(Z) is a local C1

n(Z)-minimizer of ϕ0, i.e., there exists
r0 > 0 such that

ϕ0(x0) ≤ ϕ0(x0 + h) for all h ∈ C1
n(Z), ‖h‖C1

n(Z)
≤ r0,

then x0 ∈ C1
n(Z) and it is also a local H1

n(Z)-minimizer of ϕ0, i.e., there exists r1 > 0
such that

ϕ0(x0) ≤ ϕ0(x0 + h) for all h ∈ H1
n(Z), ‖h‖ ≤ r1.

Remark 2.3. This result for Dirichlet spaces was first proved by Brezis-Nirenberg [5]

for p = 2 and later generalized to all 1 < p < ∞ (i.e., to the spaces W
1,p
0 (Z)) by Gar-

cia Azorero-Manfredi-Peral Alonso [10]. The corresponding result for Neumann spaces

(i.e., for W
1,p
n (Z)), was proved by Barletta-Papageorgiou [1] (for 2 ≤ p < ∞) and by

Motreanu-Motreanu-Papageorgiou [21] (for 1 < p < ∞).

Let X = H be a Hilbert space, x ∈ H, U a neighborhood of x and ϕ ∈ C2(U).
If x ∈ H is a critical point of ϕ, its ”Morse index” is defined as the supremum of
the dimensions of the vector subspaces of H on which ϕ′′(x) is negative definite.
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Finally, let us recall some basic facts about the spectrum of (−△, H1
n(Z)). We

shall do this in the more general context of weighted eigenvalue problems. So, let
m ∈ L∞(Z)+ m 6= 0 (the weight function) and consider the following weighted
linear eigenvalue problem:

{
−△u(z) = λ̂m(z)u(z) a.e. in Z,

∂u
∂n = 0 on ∂Z, λ̂ ∈ R.

}
(2.2)

It is easy to see that λ̂ ≥ 0 is a necessary condition for problem (2.2) to have

a nontrivial solution. In fact λ̂0 = λ̂0(m) = 0 is an eigenvalue of (2.2) with
corresponding eigenspace R (the space of constant functions). Moreover, (2.2)

has a sequence {λ̂k(m)}k≥0 of distinct eigenvalues such that λ̂k(m) → +∞ as

k → +∞. If m ≡ 1, then we write λk = λ̂k(1).

For every integer k ≥ 0, let E(λ̂k(m)) be the eigenspace corresponding to the

eigenvalue λ̂k(m) of (2.2). We know that E(λ̂k(m)) ⊆ C1
n(Z) (regularity theory)

and it has the unique continuation property, namely, if u ∈ E(λ̂k(m)) vanishes on
a set of positive measure, then u(z) = 0 for all z ∈ Z. We set

Hk =
k
⊕

i=0
E(λ̂i(m)) and Ĥk = H

⊥
k = ⊕

i≥k+1
E(λ̂i(m)).

Then we have the following variational characterizations of the eigenvalues:

0 = λ̂0(m) = min[
‖Du‖2

2∫
Z mu2dz

: u ∈ H1
n(Z), u 6= 0] (2.3)

and for k ≥ 1

λ̂k(m) = max[
‖Du‖2

2∫
Z mu2dz

: u ∈ Hk, u 6= 0]

= min[
‖Dû‖2

2∫
Z mû2dz

: û ∈ Ĥk−1, û 6= 0]. (2.4)

The minimum in (2.3) is attained on E(λ̂0(m)) = R. The maximum and the

minimum in (2.4) are realized on E(λ̂k(m)), k ≥ 1. Then (2.3), (2.4) and the unique
continuation property imply the following monotonicity property of the eigen-
values with respect to the weight function:

”If m1, m2 ∈ L∞(Z)+ , m1(z) ≤ m2(z) a.e. on Z and m1 6= m2, then λ̂k(m2) <

λ̂k(m1) for all k ≥ 1.

Note that λ̂0(m) = 0 is the only eigenvalue with eigenfunctions of constant
sign. All other eigenvalues have nodal (i.e., sign changing) eigenfunctions.

Finally in what follows, for every x ∈ R, we use the notation

x+ = max{x, 0} and x− = max{−x, 0}.
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3 Existence of two solutions

In this section we establish the existence of two nontrivial smooth solutions for
problem (1.1) under double resonance conditions:

The hypotheses on the nonlinearity f (z, x), are the following:

H1: f : Z × R → R is a function such that f (z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → f (z, x) is measurable;

(ii) for almost all z ∈ Z, x → f (z, x) is C1;

(iii) for almost all z ∈ Z and all x ∈ R, we have

| f ′x(z, x)| ≤ a(z) + c|x|p

with a ∈ L∞(Z)+ , c > 0 and 0 < p <
4

N−2 = 2∗ − 2 if N ≥ 3 and
0 < p < ∞ if N = 1, 2;

(iv) there exists an integer k ≥ 0 such that

λk ≤ lim inf
|x|→∞

f (z, x)

x
≤ lim sup

|x|→∞

f (z, x)

x
≤ λk+1 uniformly for a.a. z ∈ Z;

(v) suppose that ‖xn‖ → ∞

[i ] if xn = x0
n + x̂n with x0

n ∈ E(λk), x̂n ∈ Vk = E(λk)
⊥ and ‖x0

n‖
‖xn‖

→ 1,

then there exist γ0 > 0 and n0 ≥ 1 such that
∫

Z
( f (z, xn(z))− λkxn(z))x

0
n(z)dz ≥ γ0 > 0 for all n ≥ n0;

[ii ] if xn = x0
n + x̂n with x0

n ∈ E(λk+1), x̂n ∈ Vk+1 = E(λk+1)
⊥ and

‖x0
n‖

‖xn‖
→ 1, then there exist γ1 > 0 and n1 ≥ 1 such that

∫

Z
(λk+1xn(z)− f (z, xn(z)))x

0
n(z)dz ≥ γ1 > 0 for all n ≥ n1;

(vi) there exist δ0 > 0 and ξ0 ∈ R\{0}, such that

F(z, x) ≤ 0 for a.a. z ∈ Z, all |x| ≤ δ0

and
∫

Z
F(z, ξ0)dz ≥ 0, where F(z, x) =

∫ x

0
f (z, s)ds.

Remark 3.1. Hypothesis H1(iv) implies that at ±∞, we have double resonance with re-
spect to the successive eigenvalues λk < λk+1. Hypothesis H1(v), is a generalization of
the well-known LL-sufficiency conditions for the solvability of resonant problems, first in-
troduced in the work of Landesman-Lazer [16]. Analogous conditions can be found in the
study of resonant Dirichlet problems, see Landesman-Robinson-Rumbos [17], Robinson
[24] and Su [25]. Also we note that in this case the growth hypothesis H1(iii) is stated

in terms of f ′x(z, ·) = ∂
∂x f (z, x), because we want to corresponding eu;er functional of

the problem to be C2. Indeed, hypotheses H1(ii), (iii) imply that the integral functional
u →

∫
Ω

F(z, u(z))dz is C2. Finally, we should point out that our hypotheses near the
origin (see H1(vi)) are minimal and particular they do not necessarily dictate a linear
growth there for f (z, ·) as in [24], [25].
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Example 3.2. Consider the following nonlinearity f (x) (for the sake of simplicity, we
drop the z-dependence)

f (x) = λkx + g(x), with g ∈ C1(R).

Then we have

F(x) =
1

2
λkx2 + G(x), with G(x) =

∫ x

0
g(s)ds for all x ∈ R.

Suppose that near the origin, we have

G(x) = x4 − sinx

and for |x| large, we have

G(x) = c|x|
3
2 , c > 0.

Then such a nonlinearity f (·) satisfies hypotheses H1. The generalized LL-condition
(hypothesis H1(v)), can be verified using Lemma 2.1 of Su-Tang [26].

We consider the Euler functional ϕ : H1
n(Z) → R for problem (1.1), defined by

ϕ(x) =
1

2
‖Dx||22 −

∫

Z
F(z, x(z))dz for all x ∈ H1

n(Z).

Hypotheses H1 imply that ϕ ∈ C2(H1
n(Z)). In the sequel, by 〈·, ·〉 we denote

the duality brackets for the pair (H1
n(Z)

∗ , H1
n(Z)). Then

〈ϕ′(x), y〉 =
∫

Z
(Dx, Dy)

RN dz −
∫

Z
f (z, x)ydz

and 〈ϕ′′(x)u, v〉 =
∫

Z
(Du, Dv)

RN dz −
∫

Z
f ′x(z, x)uvdz for all x, y, u, v ∈ H1

n(Z).

Since we are dealing with the Neumann problem, Poincare’s inequality is not
valid (hence ‖Du‖p is not equivalent to the Sobolev norm) and this makes the
verification of the C-condition more difficult. In fact the possibility of resonance
at λk and λk+1 adds to the above difficulties.

Proposition 3.3. If hypotheses H1 hold, then ϕ satisfies the C-condition.

Proof. Let {xn}n≥1 ⊆ H1
n(Z) be a sequence such that

|ϕ(xn)| ≤ M1 for some M1 > 0, all n ≥ 1 and (1+ ‖xn‖)ϕ′(xn) → 0 in H1
n(Z)

∗ .
(3.1)

We shall show that the sequence {xn}n≥1 ⊆ H1
n(Z) is bounded. We argue

indirectly. So, suppose that the sequence {xn}n≥1 ⊆ H1
n(Z) is unbounded. We

may assume that ‖xn‖ → ∞. Let yn = xn
‖xn‖

, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1

and so we may assume that

yn
w
→ y in H1

n(Z), yn → y in L2(Z), yn(z) → y(z) a.e. on Z

and |yn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ L2(Z)+
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(recall that H1
n(Z) is embedded compactly in L2(Z)). By virtue of hypothesis

H1(iii), (iv), we have

| f (z, x)| ≤ a1(z) + c1|x| for a.a. z ∈ Z, all x ∈ R, (3.2)

with a1 ∈ L∞(Z)+ , c1 > 0. From (3.2) it follows that

| f (z, xn(z))|

‖xn‖
≤

a1(z)

‖xn‖
+ c1|yn(z)| for a.a. z ∈ Z, all n ≥ 1, (3.3)

⇒{hn(·) =
f (·, xn(·))

‖xn‖
}n≥1 ⊆ L2(Z) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

hn
w
→ h in L2(Z) as n → ∞.

For every ε > 0 and n ≥ 1, we introduce the sets

D+
ε,n = {z ∈ Z : xn(z) > 0, λk − ε ≤

f (z, xn(z))

xn(z)
≤ λk+1 + ε}

and D−
ε,n = {z ∈ Z : xn(z) < 0, λk − ε ≤

f (z, xn(z))

xn(z)
≤ λk+1 + ε}

Note that

xn(z) → +∞ a.e. on {y > 0} and xn(z) → −∞ a.e. on {y < 0}.

So, by virtue of hypothesis H1(iv), we have

χD+
ε,n
(z) → 1 a.e. on {y > 0} and χD−

ε,n
(z) → 1 a.e. on {y < 0}.

Then the dominated convergence theorem implies that

‖(1 − χD+
ε,n
)hn‖L2(y>0) → 0 and ‖(1 − χD−

ε,n
)hn‖L2(y<0) → 0

hence

χD+
ε,n

hn
w
→ h in L2(y > 0) and χD−

ε,n
hn

w
→ h in L2(y < 0). (3.4)

From the definition of the sets D+
ε,n and D−

ε,n, we have

(λk − ε)yn(z) ≤
f (z, xn(z))

xn(z)
yn(z) = hn(z) ≤ (λk+1 + ε)yn(z) a.e. on D+

ε,n

and (λk − ε)yn(z) ≥
f (z, xn(z))

xn(z)
yn(z) = hn(z) ≥ (λk+1 + ε)yn(z) a.e. on D−

ε,n.

We pass to the limit as n → ∞, use (3.4) together with Mazur’s lemma and let
ε ↓ 0. We obtain

λky(z) ≤ h(z) ≤ λk+1y(z) a.e. on {y > 0} (3.5)

and λky(z) ≥ h(z) ≥ λk+1y(z) a.e. on {y < 0}. (3.6)
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Moreover, it is clear from (3.2) that

h(z) = 0 a.e. on {y = 0}. (3.7)

Combining (3.5), (3.6), (3.7), we infer that

h(z) = g(z)y(z) a.e. on Z, (3.8)

with g ∈ L∞(Z)+ such that λk ≤ g(z) ≤ λk+1 a.e. on Z.
Let A ∈ L(H1

n(Z), H1
n(Z)

∗) be defined by

〈A(x), y〉 =
∫

Z
(Dx, Dy)

RN dz for all x, y ∈ H1
n(Z).

Clearly A is monotone, hence maximal monotone. Also let N : H1
n(Z) →

L2(Z) be defined by

N(x)(·) = f (·, x(·)) for all x ∈ H1
n(Z).

We know that

ϕ′(xn) = A(xn)− N(xn) for all n ≥ 1. (3.9)

From (3.1), we have

|〈ϕ′(xn), v〉| ≤
εn

1 + ‖xn‖
‖v‖ for all v ∈ H1

n(Z) with εn ↓ 0,

⇒|〈A(yn), v〉 −
∫

Z

N(xn)

‖xn‖
vdz| ≤

εn

1 + ‖xn‖

‖v‖

‖xn‖
(3.10)

for all n ≥ 1 (see (3.9)).

In (3.10), we choose v = yn − y ∈ H1
n(Z). Then

∫

Z

N(xn)

‖xn‖
(yn − y)dz → 0 as n → ∞.

So, from (3.10) it follows that

lim
n→∞

〈A(yn), yn − y〉 = 0. (3.11)

Note that A(yn)
w
→ A(y) in H1

n(Z)
∗ as n → ∞. So, from (3.11), we have

〈A(yn), yn〉 → 〈A(y), y〉,

⇒‖Dyn‖2 → ‖Dy‖2.

On the other hand, we also have Dyn
w
→ Dy in L2(Z, R

N). Hence, from the
Kadec-Klee property of Hilbert spaces, we have

Dyn → Dy in L2(Z, R
N),

⇒yn → y in H1
n(Z).
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Therefore, ‖y‖ = 1. Passing to the limit as n → ∞ in (3.10), we obtain

〈A(y), v〉 =
∫

Z
gyvdz for all v ∈ H1

n(Z) (see (3.8)),

⇒A(y) = gy.

From this equation, using Green’s identity, we obtain

{
−△y(z) = g(z)y(z) a.e. in Z

∂y
∂n = 0 on ∂Z.

}
(3.12)

Standard regularity theory, implies that y ∈ C1
n(Z)\{0}. We consider three

distinct cases, depending on the position of g in the spectral interval [λk, λk+1].
Case 1: g(z) = λk a.e. on Z.

Then, from (3.12) we infer that y ∈ E(λk)\{0}. Hence

‖x0
n‖

‖xn‖
→ 1 as n → ∞, (3.13)

where xn = x0
n + x̂n, with x0

n ∈ E(λk) and x̂n ∈ Vk = E(λk)
⊥, n ≥ 1. From (3.1),

we have

|〈A(xn), x0
n〉 −

∫

Z
N(x)x0

n(z)dz| ≤
εn

1 + ‖xn‖
‖x0

n‖ ≤ εn,

⇒|‖Dx0
n‖

2
2 −

∫

Z
N(xn)x

0
ndz| ≤ εn,

⇒|
∫

Z
(λkxn(z)− f (z, xn(z)))x

0
n(z)dz| ≤ εn for all n ≥ 1. (3.14)

Note that in the last two implications we have used the orthogonality of the
spaces E(λk) and Vk. But then, because of (3.13), we see that (3.14) contradicts
hypothesis H1(v)[i].

Case 2: g(z) = λk+1 a.e. on Z.
This case is treated similarly as Case 1, using this time hypothesis H1(v)[ii].
Case 3: λk ≤ g(z) ≤ λk+1 a.e. on Z and the two inequalities are strict on sets

(not necessarily the same) of positive measure.

From the monotone dependence of the eigenvalues {λ̂n(g)}n≥0 on the weight
function g ∈ L∞(Z)+ , we have

λ̂k(g) < λ̂k(λk) = 1 and 1 = λ̂k+1(λk+1) < λ̂k+1(g). (3.15)

From (3.15), it follows that 1 is not an eigenvalue of (−△, H1
n(Z), g) and so in

(3.12) we must have y = 0, a contradiction to the fact that ‖y‖ = 1.

So, in all three cases we have reached a contradiction. This means that
{xn}n≥1 ⊆ H1

n(Z) is bounded. Therefore, we may assume that

xn
w
→ x in H1

n(Z) and xn → x in L2(Z). (3.16)
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Then

|〈A(xn), xn − x〉 −
∫

Z
N(xn)(xn − x)dz| ≤ εn‖xn − x‖,

⇒ lim
n→∞

〈A(xn), xn − x〉 = 0 (see (3.16)).

From this as before, using the Kadec-Klee property of Hilbert spaces, we con-
clude that xn → x in H1

n(Z). This proves that ϕ satisfies the C-condition.

Proposition 3.4. If hypotheses H1 hold, then the origin is a local minimizer of ϕ.

Proof. Let δ0 > 0 be as in hypothesis H1(vi) and consider u ∈ C1
n(Z) with ‖u‖C1

n(Z)

≤ δ0. Then by virtue of hypothesis H1(vi), we have

F(z, u(z)) ≤ 0 for a.a. z ∈ Z. (3.17)

So, for any u ∈ C1
n(Z) with ‖u‖C1

n(Z)
≤ δ0, we have

ϕ(u) =
1

2
‖Du‖2

2 −
∫

Z
F(z, u(z))dz ≥ 0 = ϕ(0) (see (3.17)).

Therefore the origin is a local C1
n(Z)-minimizer of ϕ. Invoking Proposition 2.2,

we conclude that the origin is a local H1
n(Z)-minimizer of ϕ.

We may assume that x = 0 is an isolated critical point and local minimizer of
ϕ, or otherwise we have a whole sequence of distinct nontrivial solutions of (1.1)
and we are done. Then because of Proposition 3.4, we have (see Chang [8], p.33
and Mawhin-Willem [20], p.175).

Proposition 3.5. If hypotheses H1 hold, then Cm(ϕ, 0) = δm,0Z for all m ≥ 0
(δm,· denotes the Kronecker function).

Since we have assumed without any loss of generality that x = 0 is an isolated
critical point and local minimizer of ϕ, we can find ρ > 0 small, ρ < ‖ξ0‖, such
that

0 = ϕ(0) < ϕ(y) and ϕ′(y) 6= 0 for all y ∈ Bρ\{0}, (3.18)

with Bρ(0) = {y ∈ H1
n(Z) : ‖y‖ ≤ ρ}.

Proposition 3.6. If hypotheses H1 hold, then ϕ(0) < inf[ϕ(y) : ‖y‖ = ρ] = cρ, with
ρ > 0 as in (3.18).

Proof. We proceed by contradiction. So, suppose we can find {yn}n≥1 ⊆ H1
n(Z)

such that

‖yn‖ = ρ and ϕ(yn) ↓ ϕ(0) = 0. (3.19)

We may assume that

yn
w
→ y in H1

n(Z) and yn → y in L2(Z) as n → ∞. (3.20)
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Exploiting the compact embedding of H1
n(Z) into L2(Z) and the sequential

weak lower semicontinuity of the norm functional in a Banach space, we have

ϕ(y) ≤ lim inf
n→∞

ϕ(yn) = 0 (see (3.19))

and ‖y‖ ≤ ρ.

Because of (3.18), we must have y = 0. From the mean value theorem, we
have

ϕ(yn)− ϕ(
1

2
yn) = 〈v∗n,

1

2
yn〉 for all n ≥ 1, (3.21)

with

v∗n = A(
1 + tn

2
yn)− N(

1 + tn

2
yn), tn ∈ (0, 1), n ≥ 1. (3.22)

We may assume that tn → t ∈ [0, 1]. Since ϕ(yn) → 0 (see (3.19)) and 0 =
ϕ(0) ≤ lim inf

n→∞
ϕ(1

2 yn), from (3.21) and (3.22), we have

lim sup
n→∞

〈A(
1 + tn

2
yn), yn〉 ≤ 0 (recall y = 0),

⇒ lim sup
n→∞

〈A(
1 + tn

2
yn),

1 + tn

2
yn〉 ≤ 0,

⇒(
1 + tn

2
)2‖Dyn‖

2
2 → 0 as n → ∞,

⇒yn → 0 in H1
n(Z) as n → ∞,

a contradiction to the fact that ‖yn‖ = ρ for all n ≥ 1.

Now we are ready to produce the first nontrivial solution for problem (1.1).

Proposition 3.7. If hypotheses H1 hold, then problem (1.1) has a nontrivial solution
x0 ∈ C1

n(Z).

Proof. From Proposition 3.6, for ρ < ‖ξ0‖, we have

0 = ϕ(0) < inf[ϕ(y) : ‖y‖ = ρ]. (3.23)

Also, by hypothesis H1(vi), we have

ϕ(ξ0) = −
∫

Z
F(z, ξ0)dz ≤ 0 = ϕ(0). (3.24)

From (3.23),(3.24) and Proposition 3.3, we see that we can apply Theorem 2.1
(the mountain pass theorem) and obtain x0 ∈ H1

n(Z) such that

0 = ϕ(0) < cρ ≤ ϕ(x0) and ϕ′(x0) = 0,

⇒x0 6= 0 and A(x0) = N(x0),

⇒−△x0(z) = f (z, x0(z)) a.e. in Z,
∂x0

∂n
= 0 on ∂Z.

So, x0 ∈ H1
n(Z) is a nontrivial solution of problem (1.1) and the regularity

theory implies x0 ∈ C1
n(Z).
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Proposition 3.8. If hypotheses H1 hold and x0 ∈ C1
n(Z) is the nontrivial solution of

problem (1.1) obtained in Proposition 3.7, then Cm(ϕ, x0) = δm,1Z for all m ≥ 0.

Proof. We shall show that we can apply Corollary 8.5, p.195 of Mawhin-Willem
[20]. To this end, it suffices to check that, if the Morse index of x0 is equal to 0,
then its nullity is less than 2. So, we may assume that

〈ϕ′′(x0)u, u〉 ≥ 0 for all u ∈ H1
n(Z) (3.25)

(i.e., the Morse index of x0 is equal to 0). Note that u ∈ kerϕ′′(x0) if and only if

−△u(z) = m̂(z)u(z) a.e. in Z,
∂u

∂n
= 0 on ∂Z, (3.26)

where m̂(z) = f ′x(z, x0(z)).
If m̂+ = 0, then clearly the only solution of (3.26) is u = 0 and so we are done.
If m̂+ 6= 0, then we define

λ∗(m) = inf[‖Du‖2
2 : u ∈ H1

n(Z),
∫

Z
m̂u2dz = 1]. (3.27)

From (3.25), we have

‖Du‖2
2 ≥

∫

Z
m̂u2dz for all u ∈ H1

n(Z),

⇒λ∗(m̂) ≥ 1 (see (3.27)). (3.28)

If
∫

Z m̂ ≥ 0, the from Proposition 2.2 of Godoy-Gossez-Paczka [12], we have
λ∗(m) = 0, which contradicts (3.28).

So, we must have
∫

Z m̂dz < 0. Then according in Proposition 2.7 of Goday-
Gossez-Paczka [12], we have dimkerϕ′′(x0) ≤ 1. Therefore, we can apply Corol-
lary 8.5, p.195 of Mawhin-Willem [20] and infer that Cm(ϕ, x0) = δm,1Z for all
m ≥ 0.

To compute the critical groups at ϕ at infinity, we shall need the following
slight modification of Lemma 2.4 of Perera-Schechter [22]. The new formulation
is suitable for problems in which the Euler functional satisfies the C-condition.

Lemma 3.9. If H is a Hilbert space, (t, x) → ϕt(x) is a function belonging in C([0, 1]×
X) such that x → ∂t ϕt(x) and x → ϕ′

t(x) are both locally Lipschitz on H and there
exists R > 0 such that

inf[(1 + ‖u‖)‖ϕ′
t(u)‖∗ : t ∈ [0, 1], ‖u‖ > R] > 0 (3.29)

and inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R] > −∞, (3.30)

then Cm(ϕ0, ∞) = Cm(ϕ1, ∞) for all m ≥ 0.

Proof. We choose η < inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R] such that

ϕ
η
0 6= ∅ or ϕ

η
1 6= ∅.
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If no such η ∈ R can be found, then Cm(ϕ0, ∞) = Cm(ϕ1, ∞) = δm,0Z for all
m ≥ 0.

For definiteness, we assume that ϕ
η
0 6= ∅ (the argument is similar if we assume

that ϕ
η
1 6= ∅). Take u ∈ ϕ

η
0 and consider the following Cauchy problem:

{ ·

h(t) = −(1 + ‖h(t)‖)
∂t ϕt(h(t))
‖ϕ′

t(h(t))‖∗
ϕ′

t(h(t)) a.e. on R+,

h(0) = u.

}
(3.31)

Since by hypothesis both x → ∂t ϕt(x) and x → ϕ′
t(x) are locally Lipschitz,

then from the local existence theorem (see, for example, Gasinski-Papageorgiou
[11], p.618), we know that (3.31) admits a local flow denoted b h(t) (or h(t, u) to
emphasize the initial point u). If by 〈·, ·〉H we denote the inner product of H, then

d

dt
ϕt(h(t)) = 〈ϕ′

t(h(t)),
·
h(t)〉H + ∂t ϕt(h(t))

≤ −(1 + ‖h(t)‖)∂t ϕt(h(t)) + ∂t ϕt(h(t)) (see (3.31))

≤ 0 a.e. on th maximal interval of existence T = [0, b] (3.32)

⇒ ϕt(h(t)) ≤ ϕ0(u) ≤ η for all t ∈ T,

⇒ ‖h(t)‖ > R for all t ∈ T (recal the choice of η ∈ R),

⇒ ‖ϕ′
t(h(t))‖ ≥ β > 0 for all t ∈ T.

Therefore, the flow h(·) is global (i.e., on the whole R+) and we have that ϕ
η
0

is homeomorphic to a subset of ϕ
η
1 (see (3.32)).

Similarly, if we consider the family {ψt = ϕt−1}t∈[0,1], then an analogous ar-

gument gives us that ψ
η
0 = ϕ

η
1 is homeomorphic to a subset of ψ

η
1 = ϕ

η
0 . Therefore

we conclude that ϕ
η
0 is homotopic to ϕ

η
1 . Hence

Hm(H, ϕ
η
0) = Hm(H, ϕ

η
1) for all m ≥ 0,

⇒Cm(ϕ0, ∞) = Cm(ϕ1, ∞) for all m ≥ 0.

Using this lemma we can compute the critical groups of ϕ at infinity.

Proposition 3.10. If hypotheses H1 hold, then Cm(ϕ, ∞) = δm,dk
Z for all m ≥ 0, with

dk = dimHk (Hk =
k
⊕

i=0
E(λi)).

Proof. We consider the following one-parameter family of functions

ϕt(x) =
1

2
‖Dx‖2

2 − t
∫

Z
F(z, x(z))dz −

(1 − t)θ

2
‖x‖2

2 for all x ∈ H1
n(Z),

with t ∈ [0, 1],θ ∈ (λk, λk+1).
Claim: We can find R > 0 such that

inf[(1 + ‖u‖)‖ϕ′
t(u)‖∗ : t ∈ [0, 1], ‖u‖ > R] > 0.

We proceed by contradiction. So, suppose that the Claim is not true. Then we
can find {tn}n≥1 ⊆ [0, 1] and {xn}n≥1 ⊆ H1

n(Z) such that

tn → t ∈ [0, 1], ‖xn‖ → ∞ and (1 + ‖xn‖)‖ϕ′
tn
(xn)‖∗ → 0.
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So, we have

|〈A(xn), v〉 − tn

∫

Z
f (z, xn)vdz − (1 − tn)θ

∫

Z
xnvdz| ≤

εn

1 + ‖xn‖
‖v‖ (3.33)

for all v ∈ H1
n(Z) with εn ↓ 0.

We set yn = xn
‖xn‖

, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so, we may assume

that
yn

w
→ y in H1

n(Z) and yn → y in L2(Z).

We multiply (3.33) with 1
‖xn‖

and obtain

|〈A(yn), v〉 − tn

∫

Z

f (z, xn)

‖xn‖
vdz − (1 − tn)θ

∫

Z
ynvdz| ≤

εn

1 + ‖xn‖

‖v‖

‖xn‖
(3.34)

for all v ∈ H1
n(Z).

We choose v = yn − y ∈ H1
n(Z) and then pass to the limit as n → ∞ in (3.34).

Since {
f (·,xn(·))
‖xn‖

}n≥1 ⊆ L2(Z) is bounded (see the proof of Proposition 3.3), we

obtain

lim〈A(yn), yn − y〉 = 0,

⇒yn → y in H1
n(Z), ‖y‖ = 1, y 6= 0.

Also, arguing as in the proof of Proposition 3.3, we can show that

hn =
N(xn)

‖xn‖
=

f (·, xn(·))

‖xn‖
w
→ h in L2(Z)

and h = gy, λk ≤ g(z) ≤ λk+1 a.e. on Z.

So, if we pass to the limit as n → ∞ in (3.34), we obtain

〈A(y), v〉 =
∫

Z
(tg + (1 − t)θ)yvdz for all v ∈ H1

n(Z),

⇒A(y) = (tg + (1 − t)θ)y,

⇒−△y(z) = (tg(z) + (1 − t)θ)y(z) a.e. in Z,
∂y

∂n
= 0 on ∂Z. (3.35)

As in the proof of Proposition 3.3, we consider three distinct cases depending
on the position of the weight function gt = tg + (1− t)θ ∈ L∞(T)+ in the spectral
interval [λk, λk+1].

Case 1: t = 1 and g = λk.
In this case (3.35) becomes

−△y(z) = λky(z) a.e. in Z,
∂y

∂n
= 0 on ∂Z,

⇒y ∈ E(λk)\{0},

⇒
‖x0

n‖

‖xn‖
→ 1 as n → ∞.
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Then arguing as in Case 1 in the proof of Proposition 3.3, we reach a contra-
diction to the generalized LL-condition (see hypothesis H1(v)[i]).

Case 2: t = 1 and g = λk+1

This is treated as Case 1 using this time hypothesis H1(v)[ii].
Case 3: 0 ≤ t < 1 or (g 6= λk and g 6= λk+1)
In this case

λk < gt(z) < λk+1 a.e. on Z,

⇒λ̂k(gt) < λ̂k(λk) = 1 and 1 = λ̂k+1(λk+1) < λ̂k(gt). (3.36)

Combining (3.35) and (3.36), we infer that y = 0, a contradiction to the fact
that ‖y‖ = 1. This proves the Claim.

Clearly, we also have

inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R] > −∞.

Therefore, we can apply Lemma 3.9 and obtain

Cm(ϕ0, ∞) = Cm(ϕ1, ∞) for all m ≥ 0. (3.37)

Note that ϕ0(x) = 1
2‖Dx‖2

2 −
θ
2‖x‖2

2 and ϕ1(x) = ϕ(x). Since θ ∈ (λk, λk+1),
x = 0 is the only critical point of ϕ0. It is a nondegenerate critical point with

Morse index µ = dk, where dk = dimHk, Hk =
k
⊕

i=0
E(λi). So, it follows that

Cm(ϕ0, ∞) = Cm(ϕ0, 0) = δm,dk
Z for all m ≥ 0,

⇒Cm(ϕ1, ∞) = Cm(ϕ,∞) = δm,dk
Z for all m ≥ 0 (see (3.37)).

Now we are ready for the first multiplicity theorem for doubly resonant semi-
linear Neumann problems.

Theorem 3.11. If hypotheses H1 hold, then problem (1.1) has at least two nontrivial
solutions x0, u0 ∈ C1

n(Z).

Proof. From Proposition 3.7, we already have one nontrivial solution x0 ∈ C1
n(Z).

Suppose that {0, x0} are the only critical points of ϕ. Then from Propositions
3.5, 3.8, 3.10 and the Poincare-Hopf formula (see (2.1)), we have

(−1)0 + (−1)1 = (−1)dk ,

a contradiction. This means that there is one more critical point y0 ∈ H1
n(Z) of

ϕ, distinct from 0 and x0. Then y0 is a solution of (1.1) and y0 ∈ C1
n(Z) by the

regularity theory.

4 Existence of three solutions

In this section we strengthen hypotheses H1 and we produce three nontrivial
solutions for problem (1.1).

The new hypotheses on the nonlinearity f (z, x) are the following:



Multiplicity of Solutions for Doubly Resonant Neumann Problems 151

H2: f : Z × R → R is a function such that f (z, 0) = 0 a.e. on Z and hypothe-
ses H2(i), (ii), (iii), (v), (vi) are the same as the corresponding hypotheses
H1(i), (ii), (iii), (v), (vi)

(iv) there exists an integer k ≥ 1 such that dk = dimHk (Hk =
k
⊕

i=0
E(λi)) is

even and

λk ≤ lim inf
|x|→∞

f (z, x)

x
≤ lim sup

|x|→∞

f (z, x)

x
≤ λk+1 uniformly for a,a. z ∈ Z;

(vii) there exists ĉ > 0 such that

f (z, x)

x
≥ −ĉ for a.a. z ∈ Z, all x 6= 0.

Remark 4.1. In hypothesis H2(iv) since dk is assumed to be even, k can not be zero.
That is why we assume k ≥ 1.

We introduce the positive and negative truncations of f (z, ·) defined by

f+(z, x) =

{
0 if x ≤ 0
f (z, x) if x ≥ 0

and f−(z, x) =

{
f (z, x) if x ≤ 0
0 if x ≥ 0

.

We set F±(z, x) =
∫ x

0 f±(z, s)ds and then for ε ∈ (0, 1) we introduce the func-

tionals ϕε
± : H1

n(Z) → R defined by

ϕε
±(x) =

1

2
‖Dx‖2

2 +
ε

2
‖x‖2

2 −
∫

Z
F±(z, x(z))dz −

ε

2
‖x±|22.

Note that ϕε
± ∈ C2−0(H1

n(Z)).

Proposition 4.2. If hypotheses H2 hold, then the functionals ϕ and ϕε
± satisfy the C-

condition.

Proof. That ϕ satisfies the C-condition follows from Proposition 3.3.
Next we prove that ϕε

+ satisfies the C-condition. The proof for ϕε
− is similar.

So, we consider a sequence {xn}n≥1 ⊆ H1
n(Z) such that

|ϕε
+(xn)| ≤ M2 for some M2 > 0, all n ≥ 1

and (1 + ‖xn‖)(ϕε
+)

′(xn) → 0 as n → ∞.
(4.1)

From (4.1), we easily see that

‖x−n ‖ → 0 as n → ∞.

Suppose ‖x+n ‖ → ∞ as n → ∞. We set yn = x+n
‖x+n ‖

, n ≥ 1. Then ‖yn‖ = 1 for all

n ≥ 1 and so we may assume that

yn
w
→ y in H1

n(Z) and yn → y in L2(Z) as n → ∞.
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Reasoning as in the proof of Proposition 3.3, we show that:

”If N+(xn)(·) = f+(·, xn(·)) and gn = N+(xn)
‖x+n ‖

, then gn
w
→ g in L2(Z) and

g(z) = ξ(z)y+(z), λk ≤ ξ(z) ≤ λk+1 a.e. on Z and yn → y in H1
n(Z) as n → ∞”.

Hence ‖y‖ = 1 (i.e., y 6= 0) and y ≥ 0. Moreover, in the limit as n → ∞, we
have

−△y(z) = ξ(z)y(z) a.e. on Z,
∂y

∂n
= 0 on ∂Z. (4.2)

Since dk is even, k ≥ 1 and so from (4.2), we have that y is nodal, a contradic-
tion to the fact that y ≥ 0, y 6= 0. This proves that {x+n }n≥1 ⊆ H1

n(Z) is bounded,
hence {xn}n≥1 ⊆ H1

n(Z) is bounded. From this, as before, it follows that ϕε
+

satisfies the C-condition.
Similarly for ϕε

−.

Proposition 4.3. If hypotheses H2 hold, then u = 0 is a local minimizer for the func-
tionals ϕε

±.

Proof. Let δ0 > 0 be as in hypothesis H(vi). Then for every u ∈ C1
n(Z) with

‖u‖C1
n(Z)

≤ δ0, we have

F+(z, u(z)) ≤ 0 a.e. on Z

(recall that F+(z, x) = 0 for a.a. z ∈ Z, all x ≤ 0). Hence for u ∈ C1
n(Z) with

‖u‖C1
n(Z)

≤ δ0, we have

ϕε
+(u) =

1

2
‖Du‖2

2 +
ε

2
(‖u‖2

2 − ‖u+‖2
2)−

∫

Z
F+(z, u(z))dz ≥ 0,

⇒u = 0 is a local C1
n(Z)-minimizer of ϕε

+,

⇒u = 0 is a local H1
n(Z)-minimizer of ϕε

+ (see Proposition 2.2).

The proof for ϕε
−, is similar.

As before we may assume that u = 0 is an isolated critical point and local
minimizer of ϕε

± (otherwise we have a whole sequence of distinct constant sign
solutions). Then as in the proof of Proposition 3.6, we obtain:

Proposition 4.4. If hypotheses H2 hold, then there exists ρ > 0 small such that

0 = ϕε
±(0) < inf[ϕε

±(y) : ‖y‖ = ρ] = c±ρ .

Now we are ready for the second multiplicity result for problem (1.1).

Theorem 4.5. If hypotheses H2 hold, then problem (1.1) has at least three nontrivial
solutions

x0 ∈ intC+, v0 ∈ −intC+ and u0 ∈ C1
n(Z).

Proof. By virtue of hypothesis H2(iv), we have

lim inf
|x|→∞

2F(z, x)

x2
≥ λk uniformly for a.a z ∈ Z.
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Since k ≥ 1 (recall dk is even, see Remark), λk > 0 and so for large x > 0,
F(z, x) > 0. Hence, if θ > 0 is large (such that ‖θ‖ > ρ, then

ϕε
+(θ) = −

∫

Z
F(z, θ)dz < 0 = ϕε

+(0).

Hence Propositions 4.2 and 4.4 permit the application of Theorem 2.1. So, we
obtain x0 ∈ H1

n(Z) a critical point of ϕε
+ such that

0 = ϕε
+(0) < c+ρ ≤ ϕε

+(x0),

⇒x0 6= 0.

Also, we have

(ϕε
+)

′(x0) = 0

⇒A(x0) + εx0 − N+(x0)− ε(x+0 ) = 0

with N+(u)(·) = f+(·, u(·)) for all u ∈ H1
n(Z),

⇒A(x0) + εx0 = N+(x0) + ε(x+0 ). (4.3)

We act with the test function −x−0 ∈ H1
n(Z) and obtain

‖Dx−0 ‖
2
2 + ε‖x−0 ‖2

2 = 0

(recall f+(z, x) = 0 for a.a. z ∈ Z, all x ≤ 0),

⇒‖x−0 ‖
2 = 0, i.e. x0 ≥ 0, x0 6= 0.

So, (4.3) becomes

A(x0) = N(x0)

(recall N(u)(·) = f (·, u(·)) for all u ∈ H1
n(Z))

⇒−△x0(z) = f (z, x0(z)) a.e. in Z,
∂x0

∂n
= 0 on ∂Z, (4.4)

using Green’s identity. Therefore, x0 ∈ H1
n(Z) is a solution of problem (1.1).

Moreover, regularity theory implies that x0 ∈ C+. Then, by virtue of hypothesis
H2(vii), we have

−△x0(z) ≥ −ĉx0(z) for a.a. z ∈ Z (see (4.4))

⇒△x0(z) ≤ ĉx0(z) a.e. in Z,

⇒x0 ∈ intC+ ,

using the strong maximum principle (see Vazquez [29]).
As in the proof of Proposition 3.8, we have

Cm(ϕε
+, x0) = δm,1Z for all m ≥ 0. (4.5)

Since ϕε
+|C+ = ϕ|C+ and using a result of Liu-Wu [18] (see also Chang [7]), we

have

Cm(ϕε
+, x0) = Cm(ϕε

+|C1
n(Z)

, x0) = Cm(ϕ|C1
n(Z)

, x0) = Cm(ϕ, x0) for all m ≥ 1,

⇒Cm(ϕ, x0) = δm,1Z for all m ≥ 0 (see (4.5)). (4.6)
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Similarly, working this time with ϕε
−, we obtain v0 ∈ −intC+ a solution of

(1.1) such that

Cm(ϕ, v0) = δm,1Z for all m ≥ 0. (4.7)

Finally, from Propositions 3.5 and 3.10, we have

Cm(ϕ, 0) = δm,0Z for all m ≥ 0 (4.8)

Cm(ϕ, ∞) = δm,dk
Z for all m ≥ 0. (4.9)

Suppose {0, x0, v0} are the only critical points of ϕ. Then from (4.6), (4.7), (4.8),
(4.9) and the Poincare-Hopf formula (see (2.1)), we have

(−1)0 + (−1)1 + (−1)1 = (−1)dk , (4.10)

⇒(−1)1 = (−1)dk , (4.11)

a contradiction, since by hypothesis dk is even. Therefore, there must be a
third nontrivial critical point u0 of ϕ, distinct from {x0, v0}. This is a solution of
(1.1) and regularity theory implies that u0 ∈ C1

n(Z).

Remark 4.6. If N = 1 (i.e., ordinary differential equation problem), then dk =even
means that k ≥ 0 is odd. Recall that in this case dimE(λk) = 1 for all k ≥ 0 and so
dimHk = k + 1.
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