A note on blow-up of a nonlinear integral
equation

A. Pérez J. Villa*

Abstract

Let us deal with the positive solutions of

ou(t)
ot

= k(D) Aatt(f) + H(HuB(H), u(0,x) = ¢(x) >0, x € R,

where A, is the fractional Laplacian, 0 < « < 2, and $ > 0 is a constant. We
prove that under certain regularity condition on ¢, h and k any non-trivial
positive solution blows up in finite time. In this way we answer, in particular,
the question raised in [4] for the critical case.

1 Introduction
In this paper we study positive solutions for the semilinear equation

ou(t, x)

S = k() Aau(t,x) +h()u TP (1, ), (1.1)
u(0,x) = ¢(x), x € RY,

where we denote by A, = —(—A)*/? the fractional power of the Laplacian A,
0 <a <2 and B > 0is a constant. Also we suppose that the initial value
¢ : R%"— R is a bounded continuous function, positive and not identically zero,
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and «,h : [0,00) — [0,00) are continuous functions, such that for all ¢ large
enough,
a1t < x(0,1) < aptf, byt" ' < h(t) < bpt" !, (12)

where (s, ) = fStK(I’)di’, 0 < s < t. Here ay,a;,b1,by,0 and o are positive
constants.

In applied mathematics it is well known the importance of the study of equa-
tions like (1.1). In fact, for example, they arise in fields like molecular biology,
hydrodynamics and statistical physics [7]. Also, notice that generators of the
form x(t)A, arise in models of anomalous growth of certain fractal interfaces [6].

When o« = 2, x = 1 and h = 1, Fujita [2] showed that d = % is the critical

dimension for blow-up of (1.1); this means that if d > %, then (1.1) admits a

global solution for all sufficiently small initial condition, but if d < %, then for
any non-vanishing initial condition the solution is infinite for all ¢ large enough.
In the critical case, d = %, Sugitani [8] showed that (1.1) also blows up in finite
time.

Kolkovska et al. [4] proved (when i = 1) that any combination of positive
parameters d, «, B, p obeying 0 < ’{# < 1 yields finite time blow-up of any non-
trivial positive solution of equation (1.1). In that paper they raised the question if
such result remains true if ({% = 1. They call it the critical dimension, it is because

it was proved in Corollary 3.2.2 of [5] that @ > 1 implies existence of non-trivial
global solutions of (1.1) for all sufficiently small initial values.

Here we prove that when o > d“ﬁ, then the solution of (1.1) blows up in finite
time (see Theorem 2). In this way, our result is a generalization of the works
done by Lépez-Mimbela and Pérez [5], Kolkovska et al. [4], Guedda and Kirane
[3], Birkner et al. [1] and Sugitani [8]. Our method, like in [3], is based on the
construction of a convenient subsolution of the solution of (1.1), this subsolution
has the property that blows up in finite time. Such procedure was initiated by
Sugitani [8]. It is worth while to notice that the solutions are understood in the
mild sense.

2 Preliminary facts and local existence

Let us denote by (-, --) the usual scalar product on R and || - || := (-,-)1/? the
Euclidean norm.

We know [5] that p(x(0, t), x) is the fundamental solution of (1.1), where p(t, x)
is given by

i(zx) — otz

/]Rd e\ p(t,x)dx =e : (2.1)
Moreover p(t, x) has the following properties.

Proposition 1. Let p(t, x) be defined by (2.1), then

(@) p(ts,x) =t=4/*p(s,t71/%x),

d/w

(b) if t > s, then p(t,x) > (3)"" p(s, x),
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(c) if p(t,0) <land T > 2, thenp (t, x—;y) >p(t,x)p(ty).

Proof. For the proof see, for example, Section 2 in [8]. [ ]

Note that the above property (a) implies that p(t,0) = t=9/*p(1,0) is decreas-
ing in t and lim;_, p(¢,0) = 0.

Let us see below that there exists a number T, € (0, o] and an unique contin-
uous function u : [0, Ty,) X R? — R such that

utx) = [ p(c(0,0),y =)o)y 2
[ plcts, ), = xn(s)t B s, y)dyds.

Forany 0 < T < T, the solution u is bounded on [0, T] x R%. If T,, < oo, then
u(t,x) = oo for any (t,x) € [Ty, o0) x R%. When T, = co we say that u is a global
solution, and when T, < oo then we say that u blows up in finite time.

Denote by C,(IR?) the space of all bounded continuous functions on R?. Let
R,r > 0 be a real numbers that we will fix later. Define

E-={u:[0,1] = GRY | [ull, < oo},
where ||u||, is the supremum norm. Then E, is a Banach space and the sets
Po:={u€cE :u>0} and B ={u € E, : |Ju|| < R},
are closed subspaces of E,.

Theorem 1. There exists r = r (¢) > 0 such that the integral equation (2.2) has a local
solution in P, N Bg.

Proof. Define the operator ¥ : P, N Bg — C,(IR%), by
¥ = [ pxO,y—x)9b)dy
t
+/ /d p(x(s,t),y—x)h(s)ul™ (s,y) dyds.
0 JR

Let us see that ¥ has a fixed point, which will be the solution of (2.2). For this
purpose it is enough to show that ¥ is a contraction. Let u,u € P, N By, then

HT( — ¥ (@)l

[e0]

—2)h(s) WP (s,y) — P (s,y) | dyds

(ee]

Using the elementary inequality

a7 — b1 < q(aVvb) T a—b|, ab>04>1,
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we get, by (1.2),

¥ ) =¥ @l < A+HRE [ h() [ p (50,5 ) |l dyds

br(1+B)
o

<

RﬁrUHu—ﬁHw.

Letting » > 0 small enough and R > O sufficiently large, we see that ¥ : P, N Bg —
P, N By is a contraction. [ ]

3 Blow-up condition
Our goal in this section is to prove:

Theorem 2. If ¢ > # then all non trivial positive solutions of (2.2) blow-up in finite
time.

Let us start by introducing some preliminary results.

Lemma 1. Let u be a nonnegative solution to (2.2), then there exist some positive con-
stants t(, co, and 7y such that

u(tg, x) > cop(y,x), Vx € RY.

Proof. We can choose tg > 0 such that p(x(0, f),0) < 1. Therefore by Proposition
1

pxO 1)y =) = p (xO,10), (20~ 20))
> p(x(0, t0),2x) p (x(0, to), 2y)

= p (% x 2% Zx) p (x(0,t0),2y)
_ o dp( (gato),x) p (x(0,t),2y).

And (2.2) rendering
ulto ) = [ p((0,t0),y = x)p()dy

> | 2 P (x(0,t0),2y) @(y)dyp (K(g';())rx) ~

Obtaining the required inequality. m

Leto(t+1tp,x),t>0,x € le, be a solution of
t+t0, = Cop( (to,t—|—t0)+'y,x) (3.1)
/ / k(s 4 to, t 4+ to), y — X)h(s + to)o' TP (s + to, y)dyds,
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where cp, ¥ and t( are given in Lemma 1. Define
a(t+to) = /d p(x(0, t + to), )0t + to, x)dx, t> 0.
R

We say that o blows up in finite time if there exists some t; > 0 such that
0(t+tg) = oo forall t > ;.

Lemma 2. Let v(- + to, x) be a nonnegative solution of (3.1). If 5(- + to) blows up in
finite time, then v(- + to, x) does.

Proof. Let ¢ := (6ay/a1)'/f. We can choose t; > 0 such that p(x(0,t),0) < 1. If
t <tandt <s+ty <I(t), where

1) =t [ =2 1/p+ aill/pt
T \2v 1 (2 1 1) 0

(kG + o, cat + 1)\
B K(0/S+t0)

then
> 2

and
p(x(0,s +t9),0) < p(x(0,t),0) < p(x(0,t1),0) < 1.

Therefore, by Proposition 1,

K(S+t0,C1t—|—t0) B )

p(x(s+ty,cit+1ty),x—y) = p(K(O,S—l—to)X xOsth)

= r—dp <K(O,S + to), %(x — y))
> v (x(0,5 + t), x) p (k(0,5 + to), y) -

From (3.1) and Jensen’s inequality we have

v(crt + to, x)
1) 148
> /t h(s + to) (/]de(x (s+to,c1t+t0),x—y)v(s+to,y)dy> ds

I(t) 1+
> /t h(s + to) (T_dp (K(O,s+t0),x)z7(s+t0)> ﬁds = oo,

So v (t+ ty,x) = oo forany t > c1t and x € R%. [

Proposition 2. If o > ’{# then all non-trivial positive solutions of (3.1) blow-up in
finite time.

Proof. Let v(- + ty, x) be a nonnegative solution of (3.1). Multiplying both sides
of (3.1) by p (x(0, t + tg), x), and integrating with respect to x, we have

O(t+tg) = cop(x(0,t + to) + x(to, t +to) + 7, 0)

t
+/O h(s+t0)/]de(K(0,t+to)+K(s+to,t+to),y) 01 TP (s + to, y)dyds.
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By Proposition 1, (1.2) and Jensen’s inequality we obtain
a(t+1tg) > cop(1,0)(x(0,t + to) + x(to, t + to) + ) ~4/%

h(s+t
+/0 (54 to) <K(O,t+to)+x(s+t0,t+t0)

X/de(K(O,S—Fto),y) 01+ﬁ(5+to,y)dyds
cop(1,0)(2x(0, t + tg) 4 ) "4/«
t K(O/S+t0) )d/“
h(s+t
+/0 (s +to) <K(O,t—|—t0) +x(s + to, t + to)

1+8
X (/]Rd p(x(0,s+to),y) v(s + to,y)dy) ds

cop(1,0)(2k(0, t + tg) 4 ) 4/«
t 0, d/a

+/0 h(s + to) <%) (5(s + 1)) P ds

cop(1,0)(2ax(t + to)° + )~ /* (32)
t d/a

+/0 bl(S—i-to)U_l <%) (’5(S+t0))1+ﬁds.

Put 31 (t + tg) = (t + to)%/*5(t + to), then by (3.2) we get

t
O1(t+10) 2 Co+ Ca [ (s+10) 0/ (15 + 10)) P,
0

v

v

v

_ /
where C; := cop(1,0) (2612 + P) “and Gy = by (a1/ (2a2))"". Let oa(- + to)

be the solution of
t

Tp(t+1ty) = C1+ Cz/ (s + to)a—l—dﬁp/zx (T(s + to))1+/3 ds, t>0.
0
Notice that 7, (- + to) is given by 7(ty) = C; and

(C1)P
1 - BCo(C1)PH(t +to)’

(22)F(t+to) = t>0,

where
Hit 1) = | (0 doB/a) ™ (14 to)=tere — 7 0%) o —dp/a > 0,
log(t + t9) — log(to), oc—dBp/a =0.

Since lim;_,o H(t 4 tg) = oo there exist t, such that 7,(t + ty)) = oo for t > t,.
Hence, by the comparison theorem, we have the result. n

Proof of Theorem 2. Let u(t, x) be a nonnegative solution of (2.2) and let fy given
in Lemma 1. Then u(t + t, x) satisfies

u(t+to,x) = /]Rp(K(to,t-l-io),]/—x)”(tozy)dl/

d
t
- /O /]Rd p(K(s + to, t+to),y — x)h(s + to)ul TP (s + to, y)dyds.
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By Lemma 1 we have

u(t+to,x) > cop(x(to, t+to) + 7y, x)
—i—/ / k(s + to, t +to), y — X)h(s + to)u TP (s + to, y)dyds.

By the comparison theorem it is enough that the solution v(t + fo, x) of the inte-
gral equation (3.1) blows up in finite time. By Proposition 2 we are done. [ ]
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