Multiplicity of solutions for anisotropic
quasilinear elliptic equations with variable
exponents

Denisa Stancu-Dumitru

Abstract

We study an anisotropic partial differential equation on a bounded do-
main QO C RN. We prove the existence of at least two nontrivial weak solu-
tions using as main tools the mountain pass lemma and Ekeland’s variational
principle.

1 Introduction

Equations involving variable exponent growth conditions have been extensively
studied in the last decade. We just remember the recent advances in [10, 12, 13,1,
2,25,16, 26, 27,20, 18, 30, 28, 29]. The large number of papers studying problems
involving variable exponent growth conditions is motivated by the fact that this
type of equations can serve as models in the theory of electrorhological fluids
[17, 35, 36, 5, 1], image processing [4] or the theory of elasticity [40].

Typical models of elliptic equations with variable exponent growth conditions
appeal to the so called p(x)-Laplace operator, i.e.

Apyth = div(|Vu|P®)=2Vu),

p

where p(x) is a function satisfying p(x) > 1 for each x. Recently, Mihdilescu-
Pucci-Radulescu extended in [24] the study involving the p(x)-Laplace operator
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to the case of anisotropic equations with variable exponent growth conditions,
where the differential operator considered has the form

N
Z axi(|axiu|pi(X)_2axiu) ’ (1)
i=1

with p;(x) functions satisfying inf, p;(x) > 1 for eachi € {1,..., N}. Undoubt-
edly, in the particular case when p;(x) = p(x) for each i € {1,..., N} the above
differential operator becomes YN | 9. (|0x,u|P¥)~29,.u) and has similar proper-
ties with the p(x)-Laplace operator. On the other hand, the anisotropic equations
with variable exponent growth conditions enable the study of equations with
more complicated nonlinearities since the differential operator (1) allows a dis-
tinct behavior for partial derivatives in various directions.

Motivated by the above discussion, the goal of this paper is to investigate a

problem of the type

— YN 0y, (|0, ulPi )20, u) = f(x,u), forx € Q, @)
u=20, for x € dQ),

where O C RN(N > 3) is a bounded domain with smooth boundary, p; are
continuous functions on Q such that 2 < p;(x) forany x € Qand i € {1,..., N}.
Our main result on problem (2) will supplement the results in [23, 24, 22, 21]
obtained for similar anisotropic equations.

2 Preliminary results on variable exponent spaces

Assume Q C RY is an open domain.
Set
C+(Q) ={h; he C(Q), h(x) > 1forall x € Q}.

For any p € C4(Q)) we define

T =supp(x) and p~ = inf p(x).

xeQ xeQ)

p

For each p € C4(Q), we recall the definition of the variable exponent Lebesgue space

LPO)(Q)) = {u; u is a measurable real-valued function such that
/ () |P®) dx < oo} .
0

This space becomes a Banach space [19, Theorem 2.5] with respect to the Luxem-

burg norm, that is
p(x)
.y = inf >0;/ dx <15, .
ul,) =1inf { A x <

Moreover, LP()(Q) is a reflexive space [19, Corollary 2.7] provided that 1 < p~ <
pT < co. Furthermore, on such kind of spaces a Holder type inequality is valid

ulx)
7
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[19, Theorem 2.1]. More exactly, denoting by L) (Q)) the conjugate space of

LP)(Q), where ﬁ + ﬁ — 1 for any x € Q, for each u € LP()(Q) and each

v € L10)(Q) the Holder type inequality reads as follows

1 1
/qu dx| < (P__ + q—_) |u|p(.)|v|q(,). (3)
An immediate consequence of Holder’s inequality is connected with some in-
clusions between various Lebesgue spaces involving variable exponent growth
[19, Theorem 2.8]: if 0 < |Q)] < oo and p;, p, are variable exponents, so that
p1(x) < pa(x) almost everywhere in (), then there exists the continuous embed-
ding LP2()(Q) < LP1()(Q), whose norm does not exceed |Q)| 4 1.

An important role in manipulating the generalized Lebesgue-Sobolev spaces
is played by the modular of the LP()(Q) space, which is the mapping Op()

LPU)(Q)) — R defined by

— p(x) 4
ooy (0) = [ 1ul) ax,

provided that p™ < oco. Spaces with p™ = oo have been studied by Edmunds,
Lang and Nekvinda [6].

We point out some relations which can be established between the Luxemburg
norm and the modular. If (1), u € LP()(Q) and p* < oo then the following
relations hold true

- +
|u|p(-) >1 = |u|Z(_) < Pp(~)(u) < |”|5(.) 4)
4 _
|u|p(-) <1l = |u|Z(_) < Pp(~)(u) < |”|5(.) )
jup —ul,y =0 < py)(up —u) = 0. (6)

Next, we define the variable exponent Sobolev space W&’p ) (Q)) as the closure of
Cy’ (Q2) under the norm
) = [Vl

The space (Wg’P(') (Q), ]| - ||) is a separable and reflexive Banach space, provided
that1 < p~ < p* < oo. We recall that if Q) is a bounded, open domain in RY,
g € C4(Q)and g(x) < p*(x) for all x € () then the embedding

w,"(Q) = 110(Q)

is compact and continuous, where p*(x) = NN_pr()J(CJ)C) if p(x) < N or p*(x) = 400
if p(x) > N. We refer to [31, 6, 7, 8, 11, 14, 19] for further properties of variable

exponent Lebesgue-Sobolev spaces.

Finally, we recall the definition and properties of the anisotropic variable ex-
ponent Sobolev spaces as they were introduced in [24]. With that end in view,
we assume in the sequel that () is a bounded open domain in RN and we denote
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by E}() : O — RY the vectorial function ?() = (p1(), ., pn(+)). We define

W& 7l (Q)), the anisotropic variable exponent Sobolev space, as the closure of C§*(2)
with respect to the norm

N
||u\|7(.) = Z |94 () -
i=1
In the case when p;(-) € C;(Q) are constant functions ior any i € {1,..,N}

the resulting anisotropic Sobolev space is denoted by WS’ P(Q), where ? is the
constant vector (py, ..., pn). The theory of this type of spaces was developed in

[15, 32, 33, 34, 37, 38]. It was argued in [24] that W7 )(Q0) is a reflexive Banach
space.
On the other hand, in order to facilitate the manipulation of the space

W&’?(')(Q), we introduced ?4_, P_inRNas

— — _ _
Bo=(pfrrpl) Po= (07, epi),

and P}, P*, P~ € RT as

Pf =max{p],...pY}, PF=max{py,...,pN}, P- =min{p],...pN}-

Throughout this paper we assume that

N1
— >1 @)
i=1Pi
and define P* € R" and P_ . € R by
P* = # P_ o = max{P*,P*}.
Li=1,- —1

Finally, we recall a result regarding the compact embedding between

£ and variable exponent Lebesgue spaces (see, [24, Theorem 1]):
WY 7(Q) and variable exponent Lebesgue spaces (see, [24, Th 1)

Theorem 1. Assume that Q C RN (N > 3) is a bounded domain with smooth bound-

ary. Assume relation (7) is fulfilled. For any q € C(Q) verifying
1<q(x) <P_o forall xeQ, (8)

the embedding
w7 O(Q) < 1100

is continuous and compact.
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3 The main result
In this paper we study problem (2) in the particular case
Fx,t) = AJt|*0)=2¢ 4 B|#|P() =2,
wherea : Q — R, b: Q — R are continuous functions such that
l1<a <a®” <P-<Pf{<b <b"<min{N,P_} )
and A, B > 0. More precisely, we consider the following problem

{ — YN B, (|9, u P20 u) = Alul*™) 20+ Blu[P0) 2y, forx € Q,

u=20, for x € 9Q). (10)

_)
We seek solutions for problem (10) belonging to the space Wg’ pe) (Q)) in the
sense given below.

Definition 1. We say thatu € W&’?(') (Q)) is a weak solution for problem (10) if
N
/ ) (]axiuwx)—zaxiu axiv) — Alu*™ =20 — Blu|P™2yp § dx =0,
a (i=1
_)
forallv € Wg’P (')(Q).
The main result of this paper is given by the following theorem.

Theorem 2. There exists u > 0 such that, for any A € (0,u) and any B € (0,u),
problem (10) has at least two distinct nontrivial weak solutions.

We point out that the result of Theorem 2 can be regarded as a generaliza-
tion of Theorem 1 in [20], where a similar problem involving the p(x)-Laplace
operator was studied.

4 Proof of Theorem 2

We start ?, introducing the energy functional corresponding to problem (10), that
is]: WP Y) 5 R,

B N |8xiu|”f(") |u|?(0) |u| )
””)‘/Q{E 0 e P [ an

Standard arguments assure that | € C! (WS 70 (), R) and its Fréchet deriva-
tive is given by

N
(J (u),v) = /Q {Z |axl,u|r’f<x>—2ax,.u 0x,0 — Alu|"™ =2y — Blu|P™ =2y b dx,
i=1
(12)
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N
forallu, v € Wg’ e (Q)). Thus, the weak solutions of problem (10) are exactly
the critical points of J. We shall prove that the functional ] possesses two distinct
critical points using as main tools the Mountain Pass Theorem (see, e.g. [3] or
[39]) and Ekeland’s Variational Principle (see, e.g. [9]).

The following lemma will be essential in proving our main result.

Lemma 1. The following assertions hold.
(i) There exists y > 0 such that for any A, B € (0, u) we can find pg > 0and a > 0
such that
L7 () ;
J(u) 2a>0, YueWy" ' (Q) with [lul|; .y = po.

(ii) There exists ¢ € Wg’?(') (Q)) such that

lim J(tp) = —co.

(iii) There exists ® € Wg’?(’)(ﬂ) such that ® > 0, ® # 0and
J(t®) <0,
for t > 0 small enough.

Proof. (i) By condition (9) we have 1 < a(x) < b(x) < P_ «, forall x € Q) and,
—
)

consequently, Theorem 1 assures that WS 7 (Q) is continuously and compactly
embedded in L) (Q) and LY™) (Q).

_)
The fact that Wg 70 (Q) is continuously and compactly embedded in L**) (())
assures that there exists a positive constant C; such that

o) < G- lull 0y ¥ ue WE7O (). (13)

_)
Similarly, WS’ P (')(Q) is continuously and compactly embedded in L!®¥) ((2)
and this guarantees that there exists a positive constant C;, such that

ulyy < Co- llull 30y ¥ ue WET O (). (14)

We fix pg € (0,1) such that pg < min {C%' Ciz} Then relations (13) and (14)

imply
gy <1, forall ue W7 Q) with [lul5, = po

and .
ulpy <1, forall u e Wy'P(Q) with [luf 5, = po.

Furthermore, relation (5) yields
/Q u|"™) dx < ’”’ZE.)/ for all u € WS’?(') with [[u[ .y = po (15)

and
/Q|u|b(x) dx < lull,, for all ue Wy with ull5, =po.  (16)
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Relations (13) and (15) imply
_ _ —
/Q|u|a<x> dx < Cf ||ul% ., forall ue Wy O(Q) with [|ul 5, = po. (17)
By relations (14) and (16) we get

_ _ —
/Q|u|b(x) dx < CY |lul% ), forall ue Wy O(Q) with [|ul ;) = po. (18)

Using relation (5), for all u € Wg’?(')(ﬁ) with ||u||7(_) < 1, we obtain

||u||1§() E 1-\11 |8x.u|p () P‘t N pt
— 1= Pt E : +
o =N ( N ) = = |axiu|Pi(') =

NP1
N P* N
Y sl < 2/ Oy uPi* dx. (19)
i=1 ’ i=17/0

_)
Relations (19), (18) and (17) show that for any u € WS’ P (’)(Q) with ||u||?(.) =
po we have

1
J(u) = WH H7 ——C1 %) — Cz lell%
_ 1 P+ A a- a- B b‘ b~
_WPO =1 P T E G Po
- 1 Pf—a= A _,-
— a + - a
= Po <2P1Npi_1 Po — G >+
Pt 1 B b P
Po (W 7~ G2 Po :
Defining
B 1 Ploa= 0" 4 1 pr—b- b™
H1 4PiNPi_1PO Cif H2 4PINPI_1PO Clzr ’

simple computations show that

- 1 Pf—a A 1
00 <WP0+ ——C1> WPO , VA€E(0m),

and

Pt 1 B - b P 1 Pt
— — —C > —— 0,7, VBe(O, .

Consequently, defining

p=min{uy, po}, (20)
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and
1 Pt

we conclude that for any A € (0, 1) and any B € (0, ) we have

J(u) >a>0,
_)
for all u € Wg’P (')(Q) with ||u||?(,) = po, where py was fixed such that py €

(0,min{1,1/Cy,1/Cy}) at the beginning of the proof of (i).
(i) Let 9 € C°(Q2), ¢ >0, ¢ # 0and f > 1. We have
i (x) #a(x) #b(x)

Ite) = | { o 2ol Aa(x)wm—Bb(x)|¢|b<x>} dx

e : : Y e
< Z/|axl<o|z I Ny Ly

— i=1
< _+Z/ 105,71 dx—Bi/ ] t)
- P =)o b* Ja

Since b~ > P, by (9) we deduce that tlim J(tp) = —oo and, thus, (ii) is proved.
—00
(iii) Let ® € C°(Q2), ® >0, ® # 0and t € (0,1). We conclude that

N pi(x) a(x) tb(x)
td) = 0, DPi) — A o1 _ oP@ L gy
J(t9) /{ﬁmx)' @ o 1) Byl

$P- $7" $o"
< Z/ 9, |Pilx dx—A—/ e dx—B—/ [V0)
— i=1

|Mz

tP* . pr .
< _Z/|aq>|1 dx—Aa—+/|<I>| dx < 0

for t < 61/ (P==a") with

, AP~ [, |®|") dx
0<d<ming 1, N .
0t TN [y [05,@]P () dx

It follows that (iii) is proved.
Thus, the proof of Lemma 1 is complete. n
Proof of Theorem 2. Let u > 0 be defined as in (20) and A € (0, 1), B € (0, u).
Using Lemma 1 (i) and (ii) and the Mountain Pass Theorem (see, e.g. [3]) we

_)
deduce that there exists a sequence {u,} in Wg’ 7o) (Q) such that
*
J(un) — € and J'(ity) — 0 in (w(}'?(')(n)) , (21)

where (WS?(') (Q)) " is the dual space of W&?(') (Q).
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%
First, we show that {u,} is bounded in W& 70 (Q)). Assume by contradiction
the contrary. Then, passing if necessary to a subsequence, still denoted by {u,},
we may assume that ||un||7(,) — o0 as n — oo. Thus, we may consider that

I 7 () > 1for any integer 7. Relations (21) and the above considerations imply
that for n large enough it holds that

1
1+c+ HunH?(.) > J(un) — b__<] (tn), tn)

11 /%”a 11, [P dx 4
b ) Jam

1 1
A (b p )/ |t | ") dx.

Vv

For eachnandi € {1, ..., N} we define

[P P <1,
Cnji = P~ if |axiu”|Pi(') > 1.

Some elementary computations show that for all u € W& 70 (Q)) we have

||u||137:(,) N Ezlil |axiu|pi(,) - < N e 9
NP1 N - ;' xi”'m(-) (22)
i=1
On the other hand, we point out that
/Q ) dx < [ult]) + |ulf, for all ue Wy? Q). (23)

Since, by Theorem 1, Wg 7 (Q) is compactly embedded in L*®) (Q)) and relation
(23) holds true it follows that there exists a positive constant C3 such that

/Q|u|”(x) dx < Cs([[u]| %, + [lull%,.)), for all ue Wy Q). (4

Since a~ < b~ (see relation (9)), using relation (24) we find that there exists a
positive constant C, such that

1 1 - )
A <_ _ a__) [l x> ey (Il + lulty ) for alt w € Wy ),

b_
(25)
Using relations (4), (5), (22) and (25) we infer that for n large enough we have
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i=1

14+c+ ||1/l||?()
> % - bi_ /ﬂz—i O, 10 [P dx + A (bi_ - ai_) /Q 1,7 dx
> (pp = 5 ) Lty = Co (1l + i)

P- Pt a a~
L (ualyy = sandp, ) = o (Il + i)

{i; gn,i:Pj——}

1 1 1 p- 1 1
S (E _b_—> el =N (E - b_—>
~Ca (% )+ lul% )

where C;4 is a positive constant.
Taking into account that condition (9) holds true, dividing the above inequal-

. P” . .. . c .
ity by ||un|| Z0) and passing to the limit as n — oo we obtain a contradiction.

It follows that {u,} is bounded in Wg’ﬁ(') (Q)). This information and the fact
that WS’?(') (Q) is a reflexive space implies that there exist a subsequence, still
denoted by {u,}, and 1y € W&’?(')(Q) such that {u,} converges weakly to u;
in Wg’?(')(ﬂ). Since, by Theorem 1, the space Wg’?(') (Q)) is compactly embed-

ded in L*¥)(Q) and L*™)(Q), we conclude that {u,} converges strongly to u; in
L*®)(Q)) and L™ (Q). Then, by inequality (3), we deduce

lim / 141" 72 0 (w0 — uq) dx = 0,
Q

n—oo

and
lim / 14" 72 0 (w0 — wq) dx = 0.
Q

n—o00

On the other hand, by relation (21) we have

nli_r)r;g(]'(un),un —up) =0.

Thus, by using the above equations, we get

N
lim ) /Q 10,102 Q. 1y (B 1ty — By1t1) dx = 0. (26)
i=1

—
Relation (26) and the fact that {u, } converges weakly to u; in WS s (Q)) imply

N

y}i_l;r(}o Z /(_) (|axiun|Pi(x)_2 axiun - |axlu1|pl(x)_2 axlul) (axl-un - axlul) dx - 0 .
i=1
| @)
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Next, we recall that the following elementary inequality

(=21 —lel'"%) (1—0) = 27'ly —ql, for all po€R,  (28)

is valid for all t > 2.
Applying the above inequality in relation (27) we get

nlglc}oz/ |0y, 1y — Oy u1|p1 dx =0,

—
and, consequently, {u, } converges strongly to u; in W&’ 7o) (Q).
Then, by relation (21), we get

J(u1) =¢>0 and ['(u) =0,

that is, 13 is a nontrivial weak solution of problem (10).

—
Next, we prove that there exists a second weak solution uy € WS 70 (Q)) such
that uy # uq.
By Lemma 1 (1) on the boundary of the ball centered at the origin and of

radius pg in W s )( (1), denoted by B, (0), we have

inf | >0.
3By (0)

On the other hand, by Lemma 1 (iii), there exists ® & Wg 70 (Q) such that® > 0,
® £ 0and J(tP) < 0, for t > 0 small enough. Moreover, by relations (17), (18),
(19) and (5) we obtain that for any u € By, (0), the inequality

1
) 2 1% =l — e Gl @)

holds true and it follows that

—oo < ¢c:= inf | <O. (30)
Bpy (0)

Particularly, we have found that J is bounded from below.
Let e such that

0<e< inf J— inf J. (31)
3By (0" By (0)

The same arguments as in the proof of Lemma 3.4 in [25] can be used in order
to show that J is weakly lower semi-continuous on W Z )(Q)

Now, we concentrate our attention on functional | : By, (0) — IR. Since
] € C! (BPO(O) ) ] is bounded from below in B,,(0) and ] is weakly lower

semi-continuous on By, (0), we can apply Ekeland’s Variational Principle for |
(see [9]) in order to obtain that there exists u. € Bp,(0) such that:
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1) J(ue) < inf J+e
Bpy (0)
and

2) J(ue) < J(u) +e- [[u—uel5y, V u€ By (0) with u 7 ue.

Actually, we have J(u,) < inf J+¢e < inf J+e < inf ], since the last
Bpq (0) By, (0) 9By, (0)
inequality holds true, then we get 1 € B, (0).

Now, we let I : B, (0) — R defined by

I(u) =J(u) +e-|ju— ugH?(,), V u € By, (0).
It is clear that u, is a minimum point of functional I and thus

Hug +t-v) — I(ue) >0
t i 4

(32)

for asmall t > 0 and v € B1(0). By relation (32), we deduce that

J(ue +t-v) — J(ue)
t

+eloll 5 =0,

for a small + > 0 and v € B1(0).
Passing, in the above inequality, to the limitas t — 0, it follows that (J' (), v) +
é[[v]|5 () > 0 and we infer that ||]'(ue)|| < e. This implies the existence of a se-

quence {z, } in By, (0) such that
J(zn) = ¢ and J'(z4) — 0. (33)

It is obvious that {z,} is bounded in Wg’?(’)(ﬂ). Since WS’?(')(Q) is a re-
flexive space and {z, } is a bounded sequence, then there exists u, € WS’?(') (Q)

%
such that, up to a subsequence, {z, } converges weakly to u; in W&’ 7o) (Q)). Us-
ing similar arguments as in the case of the weak solution 11, we can show that

{zu} converges strongly to u in Wg’?(') (Q).
Then, since | € C! (WS’7(') (), R) and relation (33) holds true, we obtain

J(u) =c <0 and J'(uz) =0, (34)

that is, 1, is a nontrivial weak solution for problem (10).
Finally, we conclude that 17 # u; since

J(u) =¢>0>c¢=J(uz).
Thus, Theorem 2 is completely proved. n
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