
Multiplicity of solutions for anisotropic

quasilinear elliptic equations with variable

exponents

Denisa Stancu-Dumitru

Abstract

We study an anisotropic partial differential equation on a bounded do-
main Ω ⊂ R

N. We prove the existence of at least two nontrivial weak solu-
tions using as main tools the mountain pass lemma and Ekeland’s variational
principle.

1 Introduction

Equations involving variable exponent growth conditions have been extensively
studied in the last decade. We just remember the recent advances in [10, 12, 13, 1,
2, 25, 16, 26, 27, 20, 18, 30, 28, 29]. The large number of papers studying problems
involving variable exponent growth conditions is motivated by the fact that this
type of equations can serve as models in the theory of electrorhological fluids
[17, 35, 36, 5, 1], image processing [4] or the theory of elasticity [40].

Typical models of elliptic equations with variable exponent growth conditions
appeal to the so called p(x)-Laplace operator, i.e.

∆p(x)u := div(|∇u|p(x)−2∇u) ,

where p(x) is a function satisfying p(x) > 1 for each x. Recently, Mihăilescu-
Pucci-Rădulescu extended in [24] the study involving the p(x)-Laplace operator
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to the case of anisotropic equations with variable exponent growth conditions,
where the differential operator considered has the form

N

∑
i=1

∂xi
(|∂xi

u|pi(x)−2∂xi
u) , (1)

with pi(x) functions satisfying infx pi(x) > 1 for each i ∈ {1, ..., N}. Undoubt-
edly, in the particular case when pi(x) = p(x) for each i ∈ {1, ..., N} the above

differential operator becomes ∑
N
i=1 ∂xi

(|∂xi
u|p(x)−2∂xi

u) and has similar proper-
ties with the p(x)-Laplace operator. On the other hand, the anisotropic equations
with variable exponent growth conditions enable the study of equations with
more complicated nonlinearities since the differential operator (1) allows a dis-
tinct behavior for partial derivatives in various directions.

Motivated by the above discussion, the goal of this paper is to investigate a
problem of the type

{

− ∑
N
i=1 ∂xi

(|∂xi
u|pi(x)−2∂xi

u) = f (x, u), for x ∈ Ω,
u = 0, for x ∈ ∂Ω,

(2)

where Ω ⊂ R
N(N ≥ 3) is a bounded domain with smooth boundary, pi are

continuous functions on Ω such that 2 ≤ pi(x) for any x ∈ Ω and i ∈ {1, ..., N}.
Our main result on problem (2) will supplement the results in [23, 24, 22, 21]
obtained for similar anisotropic equations.

2 Preliminary results on variable exponent spaces

Assume Ω ⊂ R
N is an open domain.

Set
C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x) .

For each p ∈ C+(Ω), we recall the definition of the variable exponent Lebesgue space

Lp(·)(Ω) = {u; u is a measurable real-valued function such that
∫

Ω
|u(x)|p(x) dx < ∞} .

This space becomes a Banach space [19, Theorem 2.5] with respect to the Luxem-
burg norm, that is

|u|p(·) = inf

{

µ > 0;
∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

Moreover, Lp(·)(Ω) is a reflexive space [19, Corollary 2.7] provided that 1 < p− ≤
p+ < ∞. Furthermore, on such kind of spaces a Hölder type inequality is valid
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[19, Theorem 2.1]. More exactly, denoting by Lq(·)(Ω) the conjugate space of

Lp(·)(Ω), where 1
p(x)

+ 1
q(x)

= 1 for any x ∈ Ω, for each u ∈ Lp(·)(Ω) and each

v ∈ Lq(·)(Ω) the Hölder type inequality reads as follows

∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

q−

)

|u|p(·)|v|q(·) . (3)

An immediate consequence of Hölder’s inequality is connected with some in-
clusions between various Lebesgue spaces involving variable exponent growth
[19, Theorem 2.8]: if 0 < |Ω| < ∞ and p1, p2 are variable exponents, so that
p1(x) ≤ p2(x) almost everywhere in Ω, then there exists the continuous embed-

ding Lp2(·)(Ω) →֒ Lp1(·)(Ω), whose norm does not exceed |Ω|+ 1.
An important role in manipulating the generalized Lebesgue-Sobolev spaces

is played by the modular of the Lp(·)(Ω) space, which is the mapping ρp(·) :

Lp(·)(Ω) → R defined by

ρp(·)(u) =
∫

Ω
|u|p(x) dx ,

provided that p+ < ∞. Spaces with p+ = ∞ have been studied by Edmunds,
Lang and Nekvinda [6].

We point out some relations which can be established between the Luxemburg

norm and the modular. If (un), u ∈ Lp(·)(Ω) and p+ < ∞ then the following
relations hold true

|u|p(·) > 1 ⇒ |u|
p−

p(·)
≤ ρp(·)(u) ≤ |u|

p+

p(·)
(4)

|u|p(·) < 1 ⇒ |u|
p+

p(·)
≤ ρp(·)(u) ≤ |u|

p−

p(·)
(5)

|un − u|p(·) → 0 ⇔ ρp(·)(un − u) → 0 . (6)

Next, we define the variable exponent Sobolev space W
1,p(·)
0 (Ω) as the closure of

C∞
0 (Ω) under the norm

‖u‖ = |∇u|p(·) .

The space (W
1,p(·)
0 (Ω), ‖ · ‖) is a separable and reflexive Banach space, provided

that 1 < p− ≤ p+ < ∞. We recall that if Ω is a bounded, open domain in R
N,

q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω then the embedding

W
1,p(·)
0 (Ω) →֒ Lq(·)(Ω)

is compact and continuous, where p⋆(x) = Np(x)
N−p(x)

if p(x) < N or p⋆(x) = +∞

if p(x) ≥ N. We refer to [31, 6, 7, 8, 11, 14, 19] for further properties of variable
exponent Lebesgue-Sobolev spaces.

Finally, we recall the definition and properties of the anisotropic variable ex-
ponent Sobolev spaces as they were introduced in [24]. With that end in view,
we assume in the sequel that Ω is a bounded open domain in R

N and we denote
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by −→p (·) : Ω → R
N the vectorial function −→p (·) = (p1(·), ..., pN(·)). We define

W
1,−→p (·)
0 (Ω), the anisotropic variable exponent Sobolev space, as the closure of C∞

0 (Ω)
with respect to the norm

‖u‖−→p (·) =
N

∑
i=1

|∂xi
u|pi(·)

.

In the case when pi(·) ∈ C+(Ω) are constant functions for any i ∈ {1, ..., N}

the resulting anisotropic Sobolev space is denoted by W
1,−→p
0 (Ω), where −→p is the

constant vector (p1, ..., pN). The theory of this type of spaces was developed in

[15, 32, 33, 34, 37, 38]. It was argued in [24] that W
1,−→p (·)
0 (Ω) is a reflexive Banach

space.

On the other hand, in order to facilitate the manipulation of the space

W
1,−→p (·)
0 (Ω), we introduced

−→
P +,

−→
P − in R

N as

−→
P + = (p+1 , ..., p+N),

−→
P − = (p−1 , ..., p−N),

and P+
+ , P+

− , P−
− ∈ R

+ as

P+
+ = max{p+1 , ..., p+N}, P+

− = max{p−1 , ..., p−N}, P−
− = min{p−1 , ..., p−N}.

Throughout this paper we assume that

N

∑
i=1

1

p−i
> 1 (7)

and define P⋆

− ∈ R
+ and P−,∞ ∈ R

+ by

P⋆

− =
N

∑
N
i=1

1
p−i

− 1
, P−,∞ = max{P+

− , P⋆

−}.

Finally, we recall a result regarding the compact embedding between

W
1,−→p (·)
0 (Ω) and variable exponent Lebesgue spaces (see, [24, Theorem 1]):

Theorem 1. Assume that Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth bound-

ary. Assume relation (7) is fulfilled. For any q ∈ C(Ω) verifying

1 < q(x) < P−,∞ f or all x ∈ Ω, (8)

the embedding

W
1,−→p (·)
0 (Ω) →֒ Lq(·)(Ω)

is continuous and compact.
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3 The main result

In this paper we study problem (2) in the particular case

f (x, t) = A|t|a(x)−2t + B|t|b(x)−2t,

where a : Ω → R, b : Ω → R are continuous functions such that

1 < a− < a+ < P−
− ≤ P+

+ < b− < b+ < min {N, P−,∞} (9)

and A, B > 0. More precisely, we consider the following problem

{

− ∑
N
i=1 ∂xi

(|∂xi
u|pi(x)−2∂xi

u) = A|u|a(x)−2u + B|u|b(x)−2u, for x ∈ Ω,
u = 0, for x ∈ ∂Ω.

(10)

We seek solutions for problem (10) belonging to the space W
1,−→p (·)
0 (Ω) in the

sense given below.

Definition 1. We say that u ∈ W
1,−→p (·)
0 (Ω) is a weak solution for problem (10) if

∫

Ω

{

N

∑
i=1

(

|∂xi
u|pi(x)−2∂xi

u ∂xi
v
)

− A|u|a(x)−2uv − B|u|b(x)−2uv

}

dx = 0,

for all v ∈ W
1,−→p (·)
0 (Ω).

The main result of this paper is given by the following theorem.

Theorem 2. There exists µ > 0 such that, for any A ∈ (0, µ) and any B ∈ (0, µ),
problem (10) has at least two distinct nontrivial weak solutions.

We point out that the result of Theorem 2 can be regarded as a generaliza-
tion of Theorem 1 in [20], where a similar problem involving the p(x)-Laplace
operator was studied.

4 Proof of Theorem 2

We start by introducing the energy functional corresponding to problem (10), that

is J : W
1,−→p (·)
0 (Ω) → R,

J(u) =
∫

Ω

{

N

∑
i=1

|∂xi
u|pi(x)

pi(x)
− A

|u|a(x)

a(x)
− B

|u|b(x)

b(x)

}

dx. (11)

Standard arguments assure that J ∈ C1(W
1,−→p (·)
0 (Ω), R) and its Fréchet deriva-

tive is given by

〈J′(u), v〉 =
∫

Ω

{

N

∑
i=1

|∂xi
u|pi(x)−2∂xi

u ∂xi
v − A|u|a(x)−2uv − B|u|b(x)−2uv

}

dx,

(12)
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for all u, v ∈ W
1,−→p (·)
0 (Ω). Thus, the weak solutions of problem (10) are exactly

the critical points of J. We shall prove that the functional J possesses two distinct
critical points using as main tools the Mountain Pass Theorem (see, e.g. [3] or
[39]) and Ekeland’s Variational Principle (see, e.g. [9]).

The following lemma will be essential in proving our main result.

Lemma 1. The following assertions hold.
(i) There exists µ > 0 such that for any A, B ∈ (0, µ) we can find ρ0 > 0 and a > 0

such that

J(u) ≥ a > 0, ∀ u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0.

(ii) There exists ϕ ∈ W
1,−→p (·)
0 (Ω) such that

lim
t→∞

J(tϕ) = −∞.

(iii) There exists Φ ∈ W
1,−→p (·)
0 (Ω) such that Φ ≥ 0, Φ 6= 0 and

J(tΦ) < 0,

for t > 0 small enough.

Proof. (i) By condition (9) we have 1 < a(x) < b(x) < P−,∞, for all x ∈ Ω and,

consequently, Theorem 1 assures that W
1,−→p (·)
0 (Ω) is continuously and compactly

embedded in La(x)(Ω) and Lb(x)(Ω).

The fact that W
1,−→p (·)
0 (Ω) is continuously and compactly embedded in La(x)(Ω)

assures that there exists a positive constant C1 such that

|u|a(·) ≤ C1 · ‖u‖−→p (·), ∀ u ∈ W
1,−→p (·)
0 (Ω). (13)

Similarly, W
1,−→p (·)
0 (Ω) is continuously and compactly embedded in Lb(x)(Ω)

and this guarantees that there exists a positive constant C2 such that

|u|b(·) ≤ C2 · ‖u‖−→p (·), ∀ u ∈ W
1,−→p (·)
0 (Ω). (14)

We fix ρ0 ∈ (0, 1) such that ρ0 < min
{

1
C1

, 1
C2

}

. Then relations (13) and (14)

imply

|u|a(·) < 1, for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0

and

|u|b(·) < 1, for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0.

Furthermore, relation (5) yields

∫

Ω
|u|a(x) dx ≤ |u|a

−

a(·), for all u ∈ W
1,−→p (·)
0 with ‖u‖−→p (·) = ρ0 (15)

and
∫

Ω
|u|b(x) dx ≤ |u|b

−

b(·), for all u ∈ W
1,−→p (·)
0 with ‖u‖−→p (·) = ρ0. (16)
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Relations (13) and (15) imply
∫

Ω
|u|a(x) dx ≤ Ca−

1 ‖u‖a−
−→p (·)

, for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0. (17)

By relations (14) and (16) we get
∫

Ω
|u|b(x) dx ≤ Cb−

2 ‖u‖b−
−→p (·)

, for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0. (18)

Using relation (5), for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) < 1, we obtain

‖u‖
P+
+

−→p (·)

NP+
+−1

= N

(

∑
N
i=1 |∂xi

u|pi(·)

N

)P+
+

≤
N

∑
i=1

|∂xi
u|

P+
+

pi(·)
≤

N

∑
i=1

|∂xi
u|

p+i
pi(·)

≤
N

∑
i=1

∫

Ω
|∂xi

u|pi(x dx. (19)

Relations (19), (18) and (17) show that for any u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) =

ρ0 we have

J(u) ≥
1

P+
+ NP+

+−1
‖u‖

P+
+

−→p (·)
−

A

a−
Ca−

1 ‖u‖a−
−→p (·)

−
B

b−
Cb−

2 ‖u‖b−
−→p (·)

=
1

P+
+ NP+

+−1
ρ

P+
+

0 −
A

a−
Ca−

1 ρa−
0 −

B

b−
Cb−

2 ρb−
0

= ρa−

0

(

1

2P+
+ NP+

+−1
ρ

P+
+−a−

0 −
A

a−
Ca−

1

)

+

ρ
P+
+

0

(

1

2P+
+ NP+

+−1
−

B

b−
Cb−

2 ρ
b−−P+

+
0

)

.

Defining

µ1 =
1

4P+
+ NP+

+−1
ρ

P+
+−a−

0

a−

Ca−
1

and µ2 =
1

4P+
+ NP+

+−1
ρ

P+
+−b−

0

b−

Cb−
2

,

simple computations show that

ρa−

0

(

1

2P+
+ NP+

+−1
ρ

P+
+−a−

0 −
A

a−
Ca−

1

)

≥
1

4P+
+ NP+

+−1
ρ

P+
+

0 , ∀ A ∈ (0, µ1) ,

and

ρ
P+
+

0

(

1

2P+
+ NP+

+−1
−

B

b−
Cb−

2 ρ
b−−P+

+
0

)

≥
1

4P+
+ NP+

+−1
ρ

P+
+

0 , ∀ B ∈ (0, µ2) .

Consequently, defining
µ := min{µ1, µ2} , (20)
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and

a :=
1

4P+
+ NP+

+−1
ρ

P+
+

0

we conclude that for any A ∈ (0, µ) and any B ∈ (0, µ) we have

J(u) ≥ a > 0 ,

for all u ∈ W
1,−→p (·)
0 (Ω) with ‖u‖−→p (·) = ρ0, where ρ0 was fixed such that ρ0 ∈

(0, min{1, 1/C1, 1/C2}) at the beginning of the proof of (i).
(ii) Let ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, ϕ 6= 0 and t > 1. We have

J(tϕ) =
∫

Ω

{

N

∑
i=1

tpi(x)

pi(x)
|∂xi

ϕ|pi(x) − A
ta(x)

a(x)
|ϕ|a(x) − B

tb(x)

b(x)
|ϕ|b(x)

}

dx

≤
tP+

+

P−
−

N

∑
i=1

∫

Ω
|∂xi

ϕ|pi(x) dx − A
ta−

a+

∫

Ω
|ϕ|a(x) dx − B

tb−

b+

∫

Ω
|ϕ|b(x) dx

≤
tP+

+

P−
−

N

∑
i=1

∫

Ω
|∂xi

ϕ|pi(x) dx − B
tb−

b+

∫

Ω
|ϕ|b(x) dx.

Since b− > P+
+ , by (9) we deduce that lim

t→∞
J(tϕ) = −∞ and, thus, (ii) is proved.

(iii) Let Φ ∈ C∞
0 (Ω), Φ ≥ 0, Φ 6= 0 and t ∈ (0, 1). We conclude that

J(tΦ) =
∫

Ω

{

N

∑
i=1

tpi(x)

pi(x)
|∂xi

Φ|pi(x) − A
ta(x)

a(x)
|Φ|a(x) − B

tb(x)

b(x)
|Φ|b(x)

}

dx

≤
tP−

−

P−
−

N

∑
i=1

∫

Ω
|∂xi

Φ|pi(x) dx − A
ta+

a+

∫

Ω
|Φ|a(x) dx − B

tb+

b+

∫

Ω
|Φ|b(x) dx

≤
tP−

−

P−
−

N

∑
i=1

∫

Ω
|∂xi

Φ|pi(x) dx − A
ta+

a+

∫

Ω
|Φ|a(x) dx < 0

for t < δ1/(P−
−−a+) with

0 < δ < min

{

1,
AP−

−

∫

Ω
|Φ|a(x) dx

a+ ∑
N
i=1

∫

Ω
|∂xi

Φ|pi(x) dx

}

.

It follows that (iii) is proved.
Thus, the proof of Lemma 1 is complete.
Proof of Theorem 2. Let µ > 0 be defined as in (20) and A ∈ (0, µ), B ∈ (0, µ).
Using Lemma 1 (i) and (ii) and the Mountain Pass Theorem (see, e.g. [3]) we

deduce that there exists a sequence {un} in W
1,−→p (·)
0 (Ω) such that

J(un) → c and J′(un) → 0 in
(

W
1,−→p (·)
0 (Ω)

)⋆

, (21)

where
(

W
1,−→p (·)
0 (Ω)

)⋆

is the dual space of W
1,−→p (·)
0 (Ω).
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First, we show that {un} is bounded in W
1,−→p (·)
0 (Ω). Assume by contradiction

the contrary. Then, passing if necessary to a subsequence, still denoted by {un},
we may assume that ‖un‖−→p (·) → ∞ as n → ∞. Thus, we may consider that

‖un‖−→p (·) > 1 for any integer n. Relations (21) and the above considerations imply

that for n large enough it holds that

1 + c + ‖un‖−→p (·) ≥ J(un)−
1

b−
〈J

′
(un), un〉

≥

(

1

P+
+

−
1

b−

)

∫

Ω

N

∑
i=1

|∂xi
un|

pi(x) dx +

A

(

1

b−
−

1

a−

)

∫

Ω
|un|

a(x) dx.

For each n and i ∈ {1, ..., N} we define

ξn,i =

{

P+
+ , if |∂xi

un|pi(·)
< 1,

P−
− , if |∂xi

un|pi(·)
> 1.

Some elementary computations show that for all u ∈ W
1,−→p (·)
0 (Ω) we have

‖u‖
P−
−

−→p (·)

NP−
−−1

= N

(

∑
N
i=1 |∂xi

u|pi(·)

N

)P−
−

≤
N

∑
i=1

|∂xi
u|

P−
−

pi(·)
(22)

On the other hand, we point out that

∫

Ω
|u|a(x) dx ≤ |u|a

+

a(·) + |u|a
−

a(·), for all u ∈ W
1,−→p (·)
0 (Ω). (23)

Since, by Theorem 1, W
1,−→p (·)
0 (Ω) is compactly embedded in La(x)(Ω) and relation

(23) holds true it follows that there exists a positive constant C3 such that

∫

Ω
|u|a(x) dx ≤ C3(‖u‖a+

−→p (·)
+ ‖u‖a−

−→p (·)
), for all u ∈ W

1,−→p (·)
0 (Ω). (24)

Since a− < b− (see relation (9)), using relation (24) we find that there exists a
positive constant C4 such that

A

(

1

b−
−

1

a−

)

∫

Ω
|u|a(x) dx ≥ −C4

(

‖u‖a+
−→p (·)

+ ‖u‖a−
−→p (·)

)

, for all u ∈ W
1,−→p (·)
0 (Ω).

(25)
Using relations (4), (5), (22) and (25) we infer that for n large enough we have
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1 + c + ‖u‖−→p (·)

≥

(

1

P+
+

−
1

b−

)

∫

Ω

N

∑
i=1

|∂xi
un|

pi(x) dx + A

(

1

b−
−

1

a−

)

∫

Ω
|un|

a(x) dx

≥

(

1

P+
+

−
1

b−

)

N

∑
i=1

|∂xi
un|

ξn,i

pi(·)
− C4

(

‖u‖a+
−→p (·)

+ ‖u‖a−
−→p (·)

)

≥

(

1

P+
+

−
1

b−

)

N

∑
i=1

|∂xi
un|

P−
−

pi(·)
−

(

1

P+
+

−
1

b−

)

∑
{i; ξn,i=P+

+ }

(

|∂xi
un|

P−
−

pi(·)
− |∂xi

un|
P+
+

pi(·)

)

− C4

(

‖u‖a+
−→p (·)

+ ‖u‖a−
−→p (·)

)

≥

(

1

P+
+

−
1

b−

)

1

NP−
−−1

‖un‖
P−
−

−→p (·)
− N

(

1

P+
+

−
1

b−

)

−C4

(

‖u‖a+
−→p (·)

+ ‖u‖a−
−→p (·)

)

,

where C4 is a positive constant.
Taking into account that condition (9) holds true, dividing the above inequal-

ity by ‖un‖
P−
−

−→p (·)
and passing to the limit as n → ∞ we obtain a contradiction.

It follows that {un} is bounded in W
1,−→p (·)
0 (Ω). This information and the fact

that W
1,−→p (·)
0 (Ω) is a reflexive space implies that there exist a subsequence, still

denoted by {un}, and u1 ∈ W
1,−→p (·)
0 (Ω) such that {un} converges weakly to u1

in W
1,−→p (·)
0 (Ω). Since, by Theorem 1, the space W

1,−→p (·)
0 (Ω) is compactly embed-

ded in La(x)(Ω) and Lb(x)(Ω), we conclude that {un} converges strongly to u1 in

La(x)(Ω) and Lb(x)(Ω). Then, by inequality (3), we deduce

lim
n→∞

∫

Ω
|un|

a(x)−2 un(un − u1) dx = 0 ,

and

lim
n→∞

∫

Ω
|un|

b(x)−2 un(un − u1) dx = 0 .

On the other hand, by relation (21) we have

lim
n→∞

〈J′(un), un − u1〉 = 0.

Thus, by using the above equations, we get

lim
n→∞

N

∑
i=1

∫

Ω
|∂xi

un|
pi(x)−2 ∂xi

un(∂xi
un − ∂xi

u1) dx = 0 . (26)

Relation (26) and the fact that {un} converges weakly to u1 in W
1,−→p (·)
0 (Ω) imply

lim
n→∞

N

∑
i=1

∫

Ω

(

|∂xi
un|

pi(x)−2 ∂xi
un − |∂xi

u1|
pi(x)−2 ∂xi

u1

)

(∂xi
un − ∂xi

u1) dx = 0 .

(27)
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Next, we recall that the following elementary inequality

(

|η|t−2η − |̺|t−2̺
)

(η − ̺) ≥ 2−t|η − ̺|t, for all η, ̺ ∈ R , (28)

is valid for all t ≥ 2.
Applying the above inequality in relation (27) we get

lim
n→∞

N

∑
i=1

∫

Ω
|∂xi

un − ∂xi
u1|

pi(x) dx = 0 ,

and, consequently, {un} converges strongly to u1 in W
1,−→p (·)
0 (Ω).

Then, by relation (21), we get

J(u1) = c > 0 and J′(u1) = 0,

that is, u1 is a nontrivial weak solution of problem (10).

Next, we prove that there exists a second weak solution u2 ∈ W
1,−→p (·)
0 (Ω) such

that u2 6= u1.
By Lemma 1 (i), on the boundary of the ball centered at the origin and of

radius ρ0 in W
1,−→p (·)
0 (Ω), denoted by Bρ0(0), we have

inf
∂Bρ0

(0)
J > 0.

On the other hand, by Lemma 1 (iii), there exists Φ ∈ W
1,−→p (·)
0 (Ω) such that Φ ≥ 0,

Φ 6= 0 and J(tΦ) < 0, for t > 0 small enough. Moreover, by relations (17), (18),
(19) and (5) we obtain that for any u ∈ Bρ0(0), the inequality

J(u) ≥
1

P+
+ NP+

+−1
‖u‖

P+
+

−→p (·)
−

A

a−
Ca−

1 ‖u‖a−
−→p (·)

−
B

b−
Cb−

2 ‖u‖b−
−→p (·)

(29)

holds true and it follows that

−∞ < c := inf
Bρ0

(0)
J < 0. (30)

Particularly, we have found that J is bounded from below.
Let ε such that

0 < ε < inf
∂Bρ0

(0)
J − inf

Bρ0
(0)

J. (31)

The same arguments as in the proof of Lemma 3.4 in [25] can be used in order

to show that J is weakly lower semi-continuous on W
1,−→p (·)
0 (Ω).

Now, we concentrate our attention on functional J : Bρ0(0) → R. Since

J ∈ C1
(

Bρ0(0), R

)

, J is bounded from below in Bρ0(0) and J is weakly lower

semi-continuous on Bρ0(0), we can apply Ekeland’s Variational Principle for J

(see [9]) in order to obtain that there exists uε ∈ Bρ0(0) such that:
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1) J(uε) ≤ inf
Bρ0

(0)
J + ε

and

2) J(uε) < J(u) + ε · ‖u − uε‖−→p (·), ∀ u ∈ Bρ0(0) with u 6= uε.

Actually, we have J(uε) ≤ inf
Bρ0

(0)
J + ε ≤ inf

Bρ0
(0)

J + ε < inf
∂Bρ0

(0)
J, since the last

inequality holds true, then we get uε ∈ Bρ0(0).

Now, we let I : Bρ0(0) → R defined by

I(u) = J(u) + ε · ‖u − uε‖−→p (·), ∀ u ∈ Bρ0(0).

It is clear that uε is a minimum point of functional I and thus

I(uε + t · v)− I(uε)

t
≥ 0, (32)

for a small t > 0 and v ∈ B1(0). By relation (32), we deduce that

J(uε + t · v)− J(uε)

t
+ ε‖v‖−→p (·) ≥ 0,

for a small t > 0 and v ∈ B1(0).
Passing, in the above inequality, to the limit as t → 0, it follows that 〈J′(uε), v〉+

ε‖v‖−→p (·) > 0 and we infer that ‖J′(uε)‖ ≤ ε. This implies the existence of a se-

quence {zn} in Bρ0(0) such that

J(zn) → c and J′(zn) → 0. (33)

It is obvious that {zn} is bounded in W
1,−→p (·)
0 (Ω). Since W

1,−→p (·)
0 (Ω) is a re-

flexive space and {zn} is a bounded sequence, then there exists u2 ∈ W
1,−→p (·)
0 (Ω)

such that, up to a subsequence, {zn} converges weakly to u2 in W
1,−→p (·)
0 (Ω). Us-

ing similar arguments as in the case of the weak solution u1, we can show that

{zn} converges strongly to u2 in W
1,−→p (·)
0 (Ω).

Then, since J ∈ C1(W
1,−→p (·)
0 (Ω), R) and relation (33) holds true, we obtain

J(u2) = c < 0 and J′(u2) = 0, (34)

that is, u2 is a nontrivial weak solution for problem (10).
Finally, we conclude that u1 6= u2 since

J(u1) = c > 0 > c = J(u2).

Thus, Theorem 2 is completely proved.
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