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Abstract

For the generalized-Euler-constant function
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defined on R¥, the expansion y(a) = ¥2, (7].1)]. {(j,a), where ((j,a) is the
Hurwitz zeta function, is derived and a formula for its numerical computa-

tion is presented.

1 Introduction

Recently, [4] and [5], a generalized-Euler-constant-function a — < (a) has been
introduced as the limit of the sequence n — y,(a) given as
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where (1) is the Euler-Mascheroni constant. The author showed that, fora > 0,
the function a — (a) is well defined and strictly decreasing on R™. Subse-
quently, several estimates concerning the rate of convergence of the sequence
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n +— yn(a) were presented. In our contribution we shall reconfirm, using a dif-
ferent method, the existence of the function (a) by expanding it into an infinite
series in terms of the Hurwitz zeta function® {(s,a) := Y° ((a 4 i)~°. This way
we shall obtain a generalization of the well known expansion (see e.g. [3, p. 35])

& el
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where {(s) = Y k7% (s > 1) is the Riemann zeta-function. Concerning the com-
k=1

putational aspects we shall derive an approximation to y(a) in terms of the func-
tion {(s,a), assumed to be numerically known. This supposition is not too pre-
tentious since there are known certain algorithms for numerical computation of
Hurwitz zeta function {(s,a), especially when s is an integer and a an algebraic
number [1]. We also note that {(s,a) is a function built-in Mathematica [6], for
example.

2 An expansion using Hurwitz zeta function

The identity (1) can be re-formed using the telescoping method as follows
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where .
hi = hi(a) = a—i—i' (3)

Thus, for positive integersn > m > 1,
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i=m
Now, the Hurwitz zeta function can be introduced approximating the loga-
rithmic function. Indeed, according to the identity
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valid for any positive integer p and t # —1, we have

p—1 'hi+1 h (_t)p
_ _ 1
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'Hurwitz zeta function is also known as the generalized Riemann zeta function.
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forh > —1. Thus

N
h—ln(1+h)=2¥+rp(h), (5)
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forp >2and h > 0.
Now, considering (2) and (5), we obtain
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stands for the error term. Obviously, appealing to (6), we have
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Additionally, using the inequality 1/(1+h;) = 1/(1+1/(a +1)) > 74, valid
for i > m, and appealing to (9) and (6), we also estimate
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Considering (10) and the convergence of the series Y% (a + i)~ (1), we see
that

p*(a,p) == limpo.(a p)

exists for 2 > 0 and p > 2 and the estimate
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holds true with {(s, a) being the Hurwitz zeta function,

. > 1
{(s,a) == lim Zy,(s,a) = i;o CESIE (a>0,s>1). (13)
Moreover, referring to (7), the convergence
(@) = lim 7,(a)
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Hence, letting p — oo in (12)—(14) and considering the absolute convergence of
the obtained double series, we get the following theorem.

Theorem 1. The generalized-Euler-constant function y(a) has the expansions

vwzi“”mwzzz 5 (15)
L
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for a > 0, where {(j,a) = Y.2,(a +1i)7/ is the generalized Riemann zeta function
known also as Hurwitz zeta function.

Using the theorem above, properties of the function y(a) such as the mono-
tonicity, the differentiability and the boundedness, for example, can be studied.
However, to estimate 7 (a) numerically we shall use a slightly different approach.

3 An approximation to y(a)
The following theorem gives a useful two-parameter approximation.

Theorem 2. For real a > 0 and for integers (parameters) m > 1 and p > 2 we have

v(a) = owm(a, p) + pm(a, p), (16)
where
I P = O DN e ) atm
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Proof. Using (4), (5) and (8), we get

m-1 a—i—m P
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where, according to (10),
Om(a, p) = Hm oyn(a, p) (20)

exists for p > 2. Referring to (10) and (11), the estimates
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are seen to hold true. Consequently, letting n — oo in (19), the relations (16)—(17)
follow.

Since, for b > 0 and s > 1, the function x — (b + x)~* is strictly decreasing on
R, the estimates

Zun(s,0) = ) o1y
,0) = — > —_—
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hold true for integers n > m > 1 and forreal b > 0and s > 1.
Obviously, the relations (21)—(23) imply the estimates (18). [ |

Now, using Theorem 2, the constant y(a) can be computed quite accurately.
Namely, according to (18), we have, fora > 0,

—21x107% < pi(a2) < -16x1077,
09x107° < p3(a,3) < 1.3x107°,
—26x 107 < p7,0(a,19) < —32x 107

Even for small m or p, Theorem 2 gives a useful estimate for (a). For example,
setting m = p = 2 in it, we obtain the next corollary.
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Corollary 2.1. For a > 0 the following estimates hold

L 11 2 1 1
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Consequently, 11%17(51) = o0 and limy(a) =0.
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Proof. Using (17), we calculate
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Using (22)—(23), we estimate
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and, appealing to (18), also
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The relations (26)—(28) verify the corollary. ]

Figure 1 shows the graph of the function (a) and the graphs of its lower and
upper bounds y*(a) and y**(a).

1 } ) : Euler—Mascheroni constant

0.5 1.0 1.5 2.0

Figure 1: The graph of the function 7y(a) (dashed line) between its bounds; v*(a)
and v**(a).

The relative error E(a) of the approximation y(a) ~ v**(a),

B = 100
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Figure 2: The graph of the absolute relative error of the approximation y(a) ~
7 (a).

is absolutely less than 20% as it is evident from Figure 2 showing the graph of the
function a — (y**(a) — y*(a)) /v**(a) > |E(a)|.
Corollary 2.2. For real a > 0 and for integers n > m > 1, we have

L 4 / a+n+1
Z P ,a) +1In W + Om,n (a, P)/ (29)
i=m j=2

where pmn(a, p) can be estimated using (10)—(11) and (22)—(23).
Proof. The corollary follows directly from (19) and (1). ]

References

[1] E.A. Karatsuba, Fast computation of the values of the Hurwitz zeta function and
Dirichlet L-series, (Russian) Problemy Peredachi Informatsii 34(1998), no. 4,
62-75; translation in Problems Inform. Transmission 34(1998), no. 4, 342-353.

[2] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized
Euler) constants, Math. Comp. 72(2003), no. 243, 1379-1397.

[3] W. Magnus, E. Oberhettinger and R.P. Soni; Formulas and theorems for the
special functions of mathematical physics, 3rd/ed, Springer-Verlag, Berlin-
Heidelberg-New York, 1966.

[4] A. Sintdmadrian, A generalization of Euler’s constant, Numer. Algor. 46(2007),
141-151.

[5] A. Sintdmarian, Some inequalities regarding a generalization of Euler’s constant,
J. Ineq. Pure Appl. Math. 9(2008)2, art. 46, 7 pp.

[6] S. Wolfram, Mathematica, version 6.0, Wolfram Research, Inc., 1988-2008.

University of Ljubljana, Slovenia
email :vito.lampret@fgg.uni-lj.si



