
An extension of a theorem of E. A. Barbashin to

the dichotomy of abstract evolution operators

Ciprian Preda Petre Preda

Abstract

A necessary and sufficient condition for the uniform exponential dichotomy
is pointed out using a discrete-time argument. Thus are extended known re-
sults due to Barbashin [1], Datko [7], Lovelady [10], Pazy[13], Preda[14, 15,
16].

1 Introduction and Preliminaries

Let X be a real or complex Banach space and B(X) the Banach algebra of
all linear and bounded operators acting on X. We denote by || · || the norms of
vectors and operators on X.

Consider now the Cauchy problem

du(t, x)

dt
= A(t)u(t, x), u(0, x) = x ∈ X, t ≥ 0

with A(·) being locally integrable on R+.
Intuitively speaking, dichotomy means the existence of a projection-valued

function, P(·), such that the solutions which start in ImP(0) decay (in norm) to
zero, and the solutions which start in Im(I − P(0)) are unbounded.

Regarding the importance of this concept, we can say that dichotomy has an
essential contribution in the analysis of the qualitative properties of nonlinear
evolution equations such as linearized (in-)stability or the existence of the invari-
ant and center manifolds (see for instance [5], [17])
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Also, it is known that the best way to deal with the asymptotic behavior of the
solutions (of above system u̇(t) = A(t)u(t)) is to involve the classical notion of an
evolution family (of linear and bounded operators). We now recall the definition
of an evolution family.

Definition 1. 1. An operator-valued two variables function
Φ : {(t, s) ∈ R × R : t ≥ s ≥ 0} 7→ B(X) is called an evolution family if the following
properties hold:

• e1) Φ(t, t) = I, for all t ≥ 0;

• e2) Φ(t, s)Φ(s, r) = Φ(t, r), for all t ≥ s ≥ r ≥ 0;

• e3) Φ(·, s)x is continuous on [s, ∞), for all s ≥ 0, x ∈ X;

Φ(t, ·)x is continuous on [0, t), for all t ≥ 0, x ∈ X;

• e4) there are M, ω > 0 such that

‖Φ(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0.

Example 1.1. Consider the operator Cauchy problem (A, 0, I) given by

{

U̇(t) = A(t)U(t)
U(0) = I, as usually I denotes the identity on X

If sup
t≥0

t+1
∫

t

A(τ)dτ < ∞ then Φ(t, t0) = U(t)U−1(t0) is an evolution family which

has the additional property that (e2) holds for any t, s, r ∈ R+. For details, we
refer the reader to [4], [5], [12].

Throughout in this paper we suppose that for every t0 ≥ 0 the vector subspace

X1(t0) = {x0 ∈ X : Φ(·, t0) ∈ L∞
[t0,∞)(X)}

is closed in X, where L∞
[t0,∞)(X) is the Banach space of X-valued function f de-

fined a.e. on [t0, ∞), such that f is strongly measurable and essentially bounded.
Also we assume that X1(t0) admits a complement X2(t0) and we will denote by
P(t0) a projection (that is P(t0) ∈ B(X), P2(t0) = P(t0)) such that Ker P(t0) =
X2(t0) and also we denote by Q(t0) = I − P(t0).

Remark 1.1. For any evolution family Φ we have that
(i) Φ(t, t0) X1(t0) ⊂ X1(t) (or equivalent Φ(t, t0)P(t0) = P(t)Φ(t, t0)P(t0)), for

all t ≥ t0 ≥ 0;
(ii) Φ(t, s)P(s)Φ(s, t0)P(t0) = Φ(t, t0)P(t0), for all t ≥ s ≥ t0 ≥ 0;
(iii) Φ(t, t0)Q(t0)x 6= 0, for all t ≥ t0 ≥ 0 and x ∈ X with Q(t0)x 6= 0;

Remark 1.2. If Φ is the evolution family from Example 1.1. then X1(t0) =
U(t0)X1(0), X2(t0) = U(t0)X2(0) and P(t0) = U(t0)P(0)U

−1(t0), for all t0 ≥
0. Thus, in the case of evolution families generated by differential system the
splitting at any moment t0 ≥ 0 can be obtained by the splitting at the moment
zero.
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We will assume in what follows that the projection-valued function P(·) is strongly
continuous and bounded on R+. Also, we will say that P(·) is a dichotomy projection
family if in addition it satisfies

• Φ(t, t0)P(t0) = P(t)Φ(t, t0), for all t ≥ t0 ≥ 0

• Φ(t, t0) : KerP(t0) → KerP(t) is an isomorphism for all t ≥ t0 ≥ 0;

Definition 1.2. An evolution family Φ is said to be uniformly exponentially di-
chotomic (u.e.d) if there exist P a projection family and N1, N2, ν > 0 such that

• d1) ||Φ(t, t0)P(t0)x|| ≤ N1e−ν(t−t0)||P(t0)x||, for all x ∈ X and all t ≥ t0 ≥ 0.

• d2) ||Φ(t, t0)Q(t0)x|| ≥ N2eν(t−t0)||Q(t0)x||, for all x ∈ X and all t ≥ t0 ≥ 0.

Looking for an extension of the classical Lyapunov theorem (see for instance
[2]) to abstract Hilbert spaces, R. Datko establishes in [6] an auxiliary result which
has come into widespread usage in the study of the asymptotic behavior of one-
parameter semigroups of linear operators. His result is classical now and it says
that the semigroup T = {T(t)}t≥0 is exponentially stable if and only if, for
each vector x from a general Hilbert space X, the function t → ‖T(t)x‖ lies in
L2(R+, R+) (where R+ = [0, ∞)). Later, A.Pazy (see for instance [13]) shows that
the result remains valid even if L2(R+, R+) is replaced by any Lp(R+, R+), where
p ∈ [1, ∞) and X is a general Banach space. In 1973, R.Datko [7] generalize the
results above, and he states that an evolution family {Φ(t, s)}t≥s≥0, on a Banach
space X, is uniformly exponentially stable if and only if there is p ∈ [1, ∞) such

that sup
s≥0

∞
∫

s
‖Φ(t, s)x‖pdt < ∞, for each x ∈ X. Also, a nonlinear version of Datko-

Pazy’s theorem is obtained in [8] by Ichikawa in 1984. It is worth to mention here
that a version of Datko’s result could be already found in the monograph of Krein
and Daleckij (see Theorem 6.2., page 133 from [5]) for evolution families gener-
ated by differential systems (see Example 1.1.). Also, a discrete-time version, for
the case of C0-semigroups was provided by Zabczyk [19] in 1974.

A first extension of Datko-Pazy theorem to the general case of exponential
dichotomy is due to Popescu and Preda in [14], where is analyzed the case of
differential systems. Later Preda and Megan generalize the Datko-Pazy theorem
for dichotomy, firstly for C0-semigroups [15] and later for evolution families [16].

It is worth to mention here that in Datko’s integral characterization, the in-
tegrand is the first parameter of the evolution family. Integral characterizations
with the second parameter as integrand are obtained firstly by Barbashin in 60’s.
Thus in [1], E.A. Barbashin proved that the differential system (A, 0, I) is uni-
formly exponentially stable if and only if there is K > 0 such that
∫ t

0 ||U(t)U−1(τ)||dτ ≤ K, for all t ≥ 0. This result is extended to the more gen-
eral case of the exponential dichotomy of differential systems in [4], [10], [16].
More precisely it is established that the differential system (A, 0, I) is uniformly
exponentially dichotomic if and only if there is K > 0 with

(
∫ t

0 ||U(t)P(0)U−1(τ)||p dτ)
1
p + (

∫ ∞

t ||U(t)Q(0)U−1(τ)||p dτ)
1
p ≤ K, for all t ≥ 0.
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Analyzing the technique of proof of the above results we can distinguish that
Datko’s line of results is connected with the Lyapunov method for the study of
the asymptotic behaviour of differential systems and Barbashin’s line of results
is related to Perron’s method (test functions). The present approach is a double
extension of Barbashin’s result, first from differential systems to abstract evolu-
tion families and second (which is the fact the main extension) from stability to
the general case of uniform exponential dichotomy. Moreover, the technique of
proof allows us to use a discrete-time argument which is much more convenient
for verifying the hypothesis and for other computational reasons. Also, it is ob-
tained as an auxiliary result, a version of Datko’s theorem for the exponential
instability of abstract evolution families.

2 The main result

Lemma 2.1.Let f , g : R+ → R+ with g continuous on R+. If
i) f (t) ≤ g(t − t0) f (t0), for each t ≥ t0 ≥ 0;
ii) there exists δ > 0 with g(δ) < 1.

Then there exist N, ν > 0, independently of f , such that f (t) ≤ Ne−ν(t−t0) f (t0),
for each t ≥ t0 ≥ 0.

Proof. See for instance [11].

Lemma 2.2. Let f , g : R+ → R+, g continuous with g(t) > 0, for each t ≥ 0.
If

i) f (t) ≥ g(t − t0) f (t0), for each t ≥ t0 ≥ 0;
ii) there exists δ > 0 with g(δ) > 1.

Then there exist N, ν > 0 such that f (t) ≥ Neν(t−t0) f (t0), for each t ≥ t0 ≥ 0.

Proof: Let t ≥ t0 ≥ 0. We denote by n = [ t−t0
δ ], where [s] denotes the greatest

integer less than or equal with s. It follows that t0 + nδ ≤ t < t0 + (n + 1)δ and

f (t) ≥ g(t − nδ − t0) f (t0 + δ) ≥ inf
s∈[0,δ]

g(s) f (t0 + nδ) ≥

≥ βg(δ) f (t0 + (n + 1)δ) ≥ βgn(δ) f (t0),

where β = infs∈[0,δ] g(s). Denoting g(δ) = eνδ we get that νδ = ln g(δ) and

ν = 1
δ ln g(δ) > 0. Thus we have that

f (t) ≥ βeνnδ f (t0) ≥ βeν(n+1)δ e−νδ f (t0) ≥

≥ βe−νδ eν(t−t0) f (t0) for each t ≥ t0 ≥ 0

and
f (t) ≥ Neν(t−t0) f (t0), for each t ≥ t0 ≥ 0,

where N = βe−νδ = infs∈[0,δ] g(s) 1
g(δ)

, ν = 1
δ ln g(δ).

Proposition 2.1. Let Φ be an evolution family with the property that
Φ(t, t0)P(t0) = P(t)Φ(t, t0) for every t ≥ t0 ≥ 0. If there exist p > 0 and L > 0
such that
(

∫ ∞

t0

dτ

||Φ(τ, t0)Q(t0)x||p

)
1
p
≤

L

||Q(t0)x||
, for all t0 ≥ 0, x ∈ X, with Q(t0)x 6= 0
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then there are N, ν > 0 such that ‖Φ(t, t0)Q(t0)x‖ ≥ Neν(t−s)‖Φ(s, t0)Q(t0)x‖,
for all t ≥ s ≥ t0 ≥ 0, x ∈ X.

Proof. Let t ≥ t0 ≥ 0, τ ∈ [t, t + 1], x ∈ X with Q(t0)x 6= 0. Then

||Φ(τ, t0)Q(t0)x|| ≤ Meω||Φ(t, t0)Q(t0)x||

Thus
1

||Φ(t, t0)x||
≤ Meω

(

∫ t+1

t

dτ

||Φ(τ, t0)Q(t0)x||p

)
1
p

≤ Meω
(

∫ ∞

t0

dτ

||Φ(τ, t0)x||p

)
1
p
≤

MLeω

||Q(t0)x||
.

Hence

||Φ(t, t0)Q(t0)x|| ≥
||Q(t0)x||

MLeω
, for allt ≥ t0 ≥ 0, and x ∈ X.

Let t ≥ t0 ≥ 0, x ∈ X with Q(t0)x 6= 0 and τ ∈ [t0, t]. Then

||Φ(t, t0)Q(t0)x|| = ||Φ(t, τ)Φ(τ, t0)Q(t0)x|| = ||Φ(t, τ)Q(τ)Φ(τ, t0)Q(t0)x||

≥
||Φ(τ, t0)Q(t0)x||

MLeω
and by integrating it follows that

(t − t0)
1
p

||Φ(t, t0)Q(t0)x||
≤ MLeω

(

∫ t

t0

dτ

||Φ(τ, t0)Q(t0)x||p

)
1
p
≤

≤ MLeω
(

∫ ∞

t0

dτ

||Φ(τ, t0)Q(t0)x||p

)
1
p
≤

ML2eω

||Q(t0)x||
,

for all t ≥ t0 ≥ 0, x ∈ X with Q(t0)x 6= 0. So, we get

||Φ(t, t0)Q(t0)x|| ≥
(t − t0)

1
p

ML2eω
||Q(t0)x||, for all t ≥ t0 ≥ 0, and x ∈ X

which implies that

||Φ(t, t0)Q(t0)x|| ≥
(t − τ)

1
p

ML2eω
||Φ(τ, t0)Q(t0)x||, for all t ≥ τ ≥ t0.

Applying Lemma 2.2. we can find N, ν > 0 such that

||Φ(t, t0)x|| ≥ Neν(t−τ)||Φ(τ, t0)Q(t0)x||, for all t ≥ τ ≥ t0, and x ∈ X.

Remark 2.1. Note that if in the above result we take Φ(t, t0) to be one-to-one
for all t ≥ t0 ≥ 0 and Q(t0) = I for all t0 ≥ 0, then we can get a version of Datko’s
theorem (see [7]) for the instability of evolution families.
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Proposition 2.2. Let Φ be an evolution family. If there exist p > 0 and L > 0
such that

(

∫ t

0
||Φ(t, τ)P(τ)||p dτ

)
1
p
≤ L, for all t ≥ 0

then there are N, ν > 0 such that ‖Φ(t, t0)P(t0)‖ ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0.

Proof. Let t ≥ t0 + 1 and r(t) = M sup
τ≥0

||P(τ)||eωt. Then

||Φ(t, t0)P(t0)||
p
∫ t

t0

r−p(τ − t0)dτ =
∫ t

t0

||Φ(t, τ)P(τ)Φ(τ, t0)P(t0)||
pr−p(τ − t0)dτ

≤
∫ t

t0

||Φ(t, τ)P(τ)||p dτ ≤
∫ t

0
||Φ(t, τ)P(τ)||p dτ ≤ Lp.

But
∫ t

t0

r−p(τ − t0)dτ =
∫ t−t0

0
r−p(s)ds ≥

∫ 1

0
r−p(s)ds = α > 0

and hence

α
1
p ||Φ(t, t0)P(t0)|| ≤ L, for all t ≥ t0 + 1,

which implies that

||Φ(t, t0)P(t0)|| ≤
L

α
1
p

, for all t ≥ t0 + 1.

Taking now t0 ≤ t < t0 + 1 we have that

||Φ(t, t0)P(t0)|| ≤ Meω sup
t≥0

||P(t)||.

Denoting

L′ = max{
L

α
1
p

, Meω sup
t≥0

||P(t)||},

we obtain that

(⋄⋄) ||Φ(t, t0)P(t0)|| ≤ L′, for all t ≥ t0 ≥ 0.

Taking by this time t ≥ t0 ≥ 0 and τ ∈ [t0, t] we get that

||Φ(t, t0)P(t0)|| ≤ L′||Φ(t, τ)P(τ)||,

which implies that

(⋄ ⋄ ⋄) (t − t0)
1
p ||Φ(t, t0)P(t0)|| ≤ L′L, for all t ≥ t0 ≥ 0.

Adding up (⋄⋄) with (⋄ ⋄ ⋄) we deduce that

||Φ(t, t0)P(t0)|| ≤
L′(1 + L)

1 + (t − t0)
1
p

, for all t ≥ t0 ≥ 0,
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and hence

||Φ(t, t0)P(t0)|| ≤ ||Φ(t, τ)P(τ)|| ||Φ(τ, t0)P(t0)|| ≤

≤
L′(1 + L)

1 + (t − τ)
1
p

||Φ(τ, t0)P(t0)||, for all t ≥ τ ≥ t0 ≥ 0.

Applying Lemma 2.1. we have that there exist N, ν > 0 such that

||Φ(t, t0)P(t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0.

Remark 2.2. The converse statement from Proposition 2.2. is also valid.

Remark 2.3. Note that if in the above result we take P(τ) = I for all τ ≥ 0,
then we can get an extension of Barbashin’s theorem (see [1]) for the uniform
exponential stability of abstract evolution families.

Theorem 2.1. Let Φ be an evolution family with Φ(t, t0)P(t0) = P(t)Φ(t, t0),
for every t ≥ t0 ≥ 0. If there exist p > 0 and L > 0 such that

( ∞

∑
k=[t0]+1

1

||Φ(k, t0)Q(t0)x||p

)
1
p
≤

L

||Q(t0)x||
,

for all t0 ≥ 0, x ∈ X, with Q(t0)x 6= 0

then there are N, ν > 0 such that ‖Φ(t, t0)Q(t0)x‖ ≥ Neν(t−t0)‖Q(t0)x‖, for all
t ≥ t0 ≥ 0, x ∈ X.

Proof. Let t0 ≥ 0 and x ∈ X with Q(t0)x 6= 0. Take now t ≥ t0 ≥ 0 and denote
by k = [t]. Then we can find M ≥ 1 and ω ≥ 0 such that

||Φ(k + 1, t0)Q(t0)x||
p ≤ Mpeωp||Φ(t, t0)Q(t0)x||

p,

which implies that

∫ k+1

k

1

||Φ(t, t0)Q(t0)x||p
dt ≤

Mpeωp

||Φ(k + 1, t0)Q(t0)x||p
,

and hence

∞

∑
k=[t0]+1

∫ k+1

k

1

||Φ(t, t0)Q(t0)x||p
dt ≤ Mpeωp

∞

∑
i=[t0]+2

1

||Φ(i, t0)Q(t0)x||p
.

Thus we can get that

(

∫ ∞

[t0]+1

dt

||Φ(t, t0)Q(t0)x||p

)
1
p
≤

MeωpL

||Q(t0)x||
,

for all t0 ≥ 0 and x ∈ X with Q(t0)x 6= 0.

Thus

∫ ∞

t0

dt

||Φ(t, t0)Q(t0)x||p
≤

MpeωpLp

||Q(t0)x||p
+

∫ [t0]+1

t0

dt

||Φ(t, t0)Q(t0)x||p
.
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Taking into account that

‖Φ([t0] + 1, t0)Q(t0)x‖ ≤ Meω‖Φ(t, t0)Q(t0)x‖

which implies that

1

||Φ(t, t0)Q(t0)x||
≤

Meω

||Φ([t0] + 1, t0)Q(t0)x||
≤

Meω L

||Q(t0)x||
,

for all t ∈ [t0, [t0] + 1].
Thus we can obtain that

∫ [t0]+1

t0

dt

||Φ(t, t0)Q(t0)x||p
≤

MpeωpLp

||Q(t0)x||p

and hence

∫ ∞

t0

dt

||Φ(t, t0)Q(t0)x||p
≤

2MpeωpLp

||Q(t0)x||p

for all t0 ≥ 0 and x ∈ X with Q(t0)x 6= 0.

By Proposition 2.1. we can find N, ν > 0 such that

||Φ(t, t0)Q(t0)x|| ≥ Neν(t−t0)||Q(t0)x||, for all t ≥ t0, and x ∈ X.

Theorem 2.2. Let P : R+ → B(X) be a dichotomy projection family. Then Φ

is uniformly exponentially dichotomic if and only if there exist p, L > 0 such that

( n

∑
k=0

||Φ(n, k)P(k)||p
)

1
p
+

( ∞

∑
k=[t0]+1

||Φ−1(k, t0)Q(k)||p
)

1
p
≤ L,

for all n ∈ N, t0 ≥ 0.

Proof.Sufficiency. Let t ≥ τ + 1, τ ≥ 0, n = [t], k = [τ]. Then k + 1 ≤ n and

||Φ(t, τ)P(τ)||p = ||Φ(t, n)Φ(n, k + 1)Φ(k + 1, τ)P(τ)||p ≤

≤ M2pe2ωp||Φ(n, k + 1)P(k + 1)||p.

Moreover

n−1

∑
k=0

∫ k+1

k
||Φ(t, τ)P(τ)||p dτ ≤ M2pe2ωp

n−1

∑
k=0

||Φ(n, k + 1)P(k + 1)||p =

= M2pe2ωp
n

∑
i=1

||Φ(n, i)P(i)||p ≤ M2pe2ωpLp,

which implies that

∫ n

0
||Φ(t, τ)P(τ)||p dτ ≤ M2pe2ωpLp,
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and hence

∫ t

0
||Φ(t, τ)P(τ)||p dτ =

∫ n

0
||Φ(t, τ)P(τ)||p dτ +

∫ t

n
||Φ(t, τ)P(τ)||p dτ ≤

≤ M2e2ωLp + Mpepω(sup
t≥0

||P(t)||)p = k′, ∀ t ≥ 1.

For t ∈ [0, 1) we have that

∫ t

0
||Φ(t, τ)P(τ)||p dτ ≤ Mpepω(sup

t≥0

||P(t)||)p ≤ k′,

which implies that

(

∫ t

0
||Φ(t, τ)P(τ)||p dτ

)
1
p
≤ (k′)

1
p , for all t ≥ 0.

Applying Proposition 2.2. we can find N1, ν1 > 0 with

||Φ(t, t0)P(t0)|| ≤ N1e−ν1(t−t0), for all t ≥ t0 ≥ 0.

Let x ∈ X with Q(t0)x 6= 0. Then

||Q(t0)x|| = ||Φ−1(k, t0)Φ(k, t0)Q(t0)x|| ≤

≤ ||Φ−1(k, t0)Q(k)|| ||Φ(k, t0)Q(t0)x||

and hence

( ∞

∑
k=[t0+1]

1

||Φ(k, t0)Q(t0)x||p

)
1
p
≤

( ∞

∑
k=[t0+1]

||Φ−1(k, t0)Q(k)||p

||Q(t0)x||p

)
1
p
≤

≤
L

||Q(t0)x||
, for all t0 ≥ 0.

Using now Theorem 2.1. we have that there exist N2, ν2 > 0 such that

||Φ(t, t0)Q(t0)x|| ≥ N2eν2(t−t0)||Q(t0)x||, for all t ≥ t0 ≥ 0,

and hence Φ is uniformly exponentially dichotomic.

Necessity follows easily by Definition 1.2.
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