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Abstract

The aim of this paper is twofold. First, we investigate the properties of
the composition of harmonic mappings with harmonic mappings, and the
composition of biharmonic mappings with harmonic mappings. Second, we
consider the Goodman-Saff conjecture for biharmonic mappings in the unit
disk. In fact, we show that the answer to the Goodman-Saff conjecture is pos-
itive for a special class of univalently biharmonic mappings which contains
the set of all harmonic univalent mappings.

1 Introduction and Preliminaries

A four times continuously differentiable complex-valued function F = u + iv in a
domain D ⊂ C is biharmonic if and only if ∆F, the Laplacian of F, is harmonic in D.
Note that ∆F is harmonic in D if F satisfies the biharmonic equation ∆(∆F) = 0
in D, where ∆ represents the Laplacian operator

∆ = 4
∂2

∂z∂z
.

Biharmonic functions arise in a lot of physical situations, particularly in fluid
dynamics and elasticity problems, and have many important applications in en-
gineering and biology. See [7, 8, 9] for more details.
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It has been shown that a mapping F is biharmonic in a simply connected do-
main D if and only if F has the following representation

F = |z|2G + K,

where G and K are complex-valued harmonic functions in D (cf. [1, 2]). Also it
has been known that G and K can be expressed as

G = g1 + g2 and K = k1 + k2,

where g1, g2, k1 and k2 are analytic in D (cf. [3, 5]).

It is known that a harmonic mapping of an analytic function is harmonic, but
an analytic function of a harmonic mapping is not necessarily harmonic (cf. [5]).

In 1987, Reich discussed the harmonicity of the composition of two harmonic
mappings and obtained the following:

Theorem A. [10, Theorem 1] Suppose f (z) = z+ B(z) and G(z) = B′(z), where B(z)
is analytic in the neighborhood under consideration. A necessary and sufficient condition
that there locally exists a non-affine complex harmonic function g(w), such that g( f (z))
is harmonic is that G(z) satisfies

G′2 = α2G4 + 2cG3 + α2G2

for some complex constant α and some real constant c.

In [10], Reich have also included a proof of the following version of the Cho-
quet-Deny theorem.

Theorem B. Suppose f is a sense-preserving harmonic homeomorphism and is neither
analytic nor affine. A necessary and sufficient condition that f−1 is also harmonic is that

f (z) =
σ

α
z +

1

α
log

[

µ − e−σz

µ − e−σz

]

+ const,

where σ, α, µ are non-zero complex constants, |µ| > sup
z

|e−σz|.

It is natural to ask the following question about the composition of harmonic
mappings with harmonic mappings.

Question 1.1. What is the harmonic mapping if all its pre-compositions or post-
compositions by any harmonic mapping are still harmonic?

The first aim of this paper is to discuss Question 1.1 and similar questions
about the composition of harmonic mappings with analytic functions, and the
composition of biharmonic mappings with analytic functions or harmonic map-
pings. The second aim of this paper is to discuss the Goodman-Saff conjecture for
biharmonic mappings (see Section 2).
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2 Main Results

Our results are as follows.

Theorem 2.1. Let f be a harmonic mapping. Then

1. for any harmonic F, F ◦ f is harmonic if and only if f is analytic or anti-analytic.

2. for any harmonic F, f ◦ F is harmonic if and only if f (z) = az + bz + c, where a,
b and c are constants.

3. for any harmonic F, both f ◦ F and F ◦ f are harmonic if and only if f (z) = az + c
or f (z) = bz + c, where a, b and c are constants.

4. for any analytic F, F ◦ f is biharmonic if and only if f is analytic or anti-analytic.

5. for any harmonic F which is not analytic, F ◦ f is biharmonic if and only if f is
analytic or anti-analytic.

6. for any biharmonic F which is not harmonic, F ◦ f is biharmonic if and only if
f (z) = az + c or f (z) = bz + c, where a, b and c are constants.

It is worth recalling that if f is an affine mapping, then for any harmonic map-
ping F, the composition f ◦ F is still harmonic. This fact is easy to verify, however.

Theorem 2.2. Let f be an analytic function. Then

1. f (z) = az + b, where a and b are constants, if there exists some non-constant
harmonic mapping F which is neither analytic nor anti-analytic such that F ◦ f is
harmonic.

2. for any biharmonic F, f ◦ F or F ◦ f is harmonic if and only if f (z) = c, where c is
a constant.

3. for any harmonic F, f ◦ F is biharmonic if and only if f (z) = az + b, where a and
b are constants.

4. for any biharmonic F, F ◦ f is biharmonic if and only if f (z) = az + b, where a
and b are constants.

5. for any biharmonic F which is not harmonic, f ◦ F is biharmonic if and only if
f (z) = az + b, where a and b are constants.

The next two theorems deal with cases that are not covered in Theorems 2.1
and 2.2.

Theorem 2.3. Let f be a non-constant biharmonic mapping in a simply connected do-
main D ⊂ C. Then for any analytic function F in D, f ◦ F is biharmonic if and only if f
is harmonic.

Theorem 2.4. Let f be a harmonic mapping in a simply connected domain D ⊂ C.
Let F be either a harmonic function in D or a biharmonic function in D which is not
harmonic. Then f ◦ F is biharmonic if and only if f (z) = az + bz + c, where a, b and c
are constants.
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To state our final result, we need some preparation. It is well-known that if
an analytic function maps the unit disk D univalently onto a convex domain,
then it also maps each concentric subdisk onto a convex domain (cf. [4]). It is
natural to ask to what extent the special properties of conformal mappings will
generalize to harmonic mappings of the disk onto convex domains. Goodman
and Saff ([6]) constructed an example of a function convex in the vertical direction
whose restriction to the disk |z| < r does not have that property for any radius

r in the interval
√

2 − 1 < r < 1. In the same paper, they conjectured that the

radius
√

2 − 1 is best possible.

Definition 2.5. A domain Ω is convex in the direction eiφ, if for every fixed com-
plex number a, the set Ω ∩ {a + teiφ : t ∈ R} is either connected or empty.

Let K(φ) (KH(φ) resp.) denote the class of all complex-valued analytic (har-
monic resp.) univalent functions f on the unit disk D with f (D) convex in the
direction eiφ. If f ∈ K(φ) (KH(φ) resp.) is such that f (D) is convex in every direc-
tion (i.e. f (D) is a convex domain), then in this case we say that f ∈ K (KH resp.).

Ruscheweyh and Salinas [11, Theorem 1] ultimately succeeded in proving the

Goodman-Saff conjecture by showing that if f ∈ KH(φ), 0 < r ≤ r0 =
√

2 − 1,
then one has f (rz) ∈ KH(φ). In particular, this gives

Theorem C. Let f ∈ KH , 0 < r ≤ r0 =
√

2 − 1. Then f (rz) ∈ KH .

In view of the development in the class of biharmonic mappings, it is inter-
esting to ask whether the same conjecture holds for biharmonic mappings. That
is, to what extent the special properties of conformal mappings will generalize to
biharmonic mappings on the disk onto convex domains.

We now introduce the following notations:

H = { f : f is harmonic univalent in D with f (0) = 0}

and

BH = {g : g = λ1|z|2 f +λ2 f , where f ∈ H, λ1 and λ2 (λ
2
1 + λ2

2 6= 0) are constants}.

Obviously, we have the following.

Proposition 2.6. For any F ∈ BH, if F = λ1|z|2 f + λ2 f , where f ∈ H, then F is
harmonic if and only if λ1 = 0.

For the second aim of this paper, we consider the conjecture mentioned above
and obtain the following result.

Theorem 2.7. For any non-constant F ∈ BH, F sends the subdisk |z| < r onto a convex

region for r ≤
√

2 − 1, but onto a non-convex region for any
√

2 − 1 < r < 1.

Since every harmonic mapping is biharmonic, Theorem 2.7 implies Theorem C.
We will prove Theorems 2.1−2.4 in Section 3, where Theorem 2.1 is a solution

to Question 1.1. In Section 4, we will prove Theorem 2.7.
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3 The proofs of Theorems 2.1−2.4

For any two C1-functions f and g for which f ◦ g is defined, it is easy to see that
the following chain rule holds, where z = g(ζ):

• ( f ◦ g)ζ =
∂

∂ζ
( f ◦ g) = fzgζ + fzgζ

• ( f ◦ g)ζ =
∂

∂ζ
( f ◦ g) = fzgζ + fzgζ

•
(∂ f

∂z

)

=
∂ f

∂z
.

3.1. Proof of Theorem 2.1. The sufficiency parts of the statements (1) − (6) are
obvious. Hence we only need to prove the corresponding necessary parts.

Necessary part in (1). Let H(z) = (F ◦ f )(z) be harmonic, where F is harmonic

and ξ = f (z). By the chain rule, we have

Hz = Fξ fz + Fξ fz

and, because f is assumed to be harmonic, we have

Hzz :=
∂2H

∂z∂z
= Fξξ fz fz + Fξ ξ fz fz. (3.2)

Let F(z) = z + 1
2z2. Then, from (3.2) and Hzz = 0, we see that

fz fz = 0.

It follows that fz = 0 or fz = 0. Hence, f is either analytic or anti-analytic.

Necessary part in (2). Let H(z) = ( f ◦ F)(z) be harmonic, where f is harmonic

and ζ = F(z). By the chain rule, we have

Hz = fζ Fz + fζ Fz

and, because f is harmonic, we easily have

Hzz = fζζ FzFz + fζ ζ Fz Fz. (3.3)

Let F(z) = az + bz, where a and b are constants. Then from (3.3) and Hzz = 0,
it follows that

ab fζζ + a b fζ ζ = 0. (3.4)

Setting ab = 1 first and then ab = i, we obtain from (3.4) that fζζ = fζ ζ = 0.

Hence, f has the desired form

f (ζ) = aζ + bζ + c.
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Necessary part in (3). The conclusion follows from Parts (1) and (2).

Necessary part in (4). Choose F(z) = z2 and then F(z) = z3. The biharmonicity

of H leads to

fzz fz z = 0 and f fzz fz z + ( fz)
2 fzz + ( fz)

2 fz z = 0. (3.5)

Equation (3.5) yields that fz = 0 or fz = 0 or f (z) = az + bz + c, where a, b and c
are constants. By letting F(z) = z4, we see that a = 0 or b = 0.

Necessary part in (5). Setting F(z) = z2 and F(z) = z3, we obtain that

fzz fz z = 0 and f fzz fz z + ( fz)
2 fzz + ( fz)

2 fz z = 0. (3.6)

Equation (3.6) yields that

fz = 0 or fz = 0 or f (z) = az + bz + c,

where a, b and c are constants. By letting F(z) = z4 we see that a = 0 or b = 0.

Necessary part in (6). Let F(z) = zz and H = F ◦ f , where f is harmonic. Then

H(z) = f (z) f (z) and we have that

Hz = fz f + f fz

and so,
h(z) = Hzz = fz fz + fz fz.

This gives that

hz = fzz fz + fz fz z

and therefore, the biharmonicity of H is equivalent to

hzz = fzz fzz + fz z fz z = | fzz|2 + | fz z|2 = 0

which gives that
fzz = fz z = 0. (3.7)

Equation (3.7) yields that
f (z) = αz + βz + γ,

where α, β, and γ are constants.
Let F(z) = |z|2 + z4. In this case, the condition hzz = 0 gives that αβ = 0. The

proof is complete.

3.8. Proof of Theorem 2.2. Again, as the sufficiencies in statements (1) − (5)
are obvious, we only need to prove their necessities.

Necessary part in (1). Let H(z) = f (F(z)) and ζ = F(z). Then

Hzz = f ′′
∂ζ

∂z

∂ζ

∂z
= 0
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which gives f ′′(ζ) = 0 and therefore f (ζ) = aζ + b, where a and b are constants.

Necessary part in (2). Let H(z) = ( f ◦ F)(z) = f (ζ) be harmonic, where ζ =

F(z) = zz. Then Hz = z( f ′ ◦ F) and

Hzz = z(( f ′′ ◦ F)z) + ( f ′ ◦ F) = |z|2( f ′′ ◦ F) + f ′ ◦ F = 0

so that ζ f ′′(ζ) + f ′(ζ) = 0. This gives

f (ζ) = c0 log ζ + c1,

where c0 and c1 are constants.
Let F(z) = (z + z)|z|2. Then we have that c0 = 0.
Next we assume that f ◦ F is harmonic, where F(z) = zz. Then F ◦ f = f f and

(F ◦ f )zz = | f ′|2 = 0.

Hence, f (z) must be a constant.

Necessary part in (3). Let ζ = F(z) = z + z. Then

( f ◦ F)ζζζζ = f (4) = 0

which shows that f (ζ) reduces to a cubic polynomial in ζ:

f (ζ) = a1ζ3 + a2ζ2 + aζ + b.

However, if we let F(z) = 1
2(z

2 + z2), then it follows that a1 = a2 = 0. Thus, f (ζ)
becomes a linear function.

Necessary part in (4). Let H(z) = (F ◦ f )(z) and F(z) = |z|2. Then H = f f and

so,
Hzz = | f ′|2 and Hzzzz = | f ′′|2 = 0.

This gives that f ′′(z) = 0 and therefore f (z) = az+ b, where a and b are constants.

Necessary part in (5). Obviously, f (z) = az + b satisfies the requirements. Sup-

pose there exists some analytic function f satisfying the requirements but is not
in the form az + b.

Let H(ζ) = f (F(ζ)) = f (z), where z = F(ζ). Then

∂2H

∂ζ∂ζ
= f ′′

∂z

∂ζ

∂z

∂ζ
+ f ′

∂2z

∂ζ∂ζ

and

∂4H

∂ζ∂ζ∂ζ∂ζ
= f (4)

(∂z

∂ζ

)2(∂z

∂ζ

)2

+ f ′′′
[

4
∂z

∂ζ

∂z

∂ζ

∂2z

∂ζ∂ζ
+

∂2z

∂ζ
2

(∂z

∂ζ

)2
+

∂2z

∂ζ2

(∂z

∂ζ

)2
]

+ f ′′
[

2
∂3z

∂ζ∂2ζ

∂z

∂ζ
+ 2

( ∂2z

∂ζ∂ζ

)2
+ 2

∂3z

∂ζ∂2ζ

∂z

∂ζ
+

∂2z

∂ζ2

∂2z

∂ζ
2

]

.
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Let z = F(ζ) = ζζ . Then we have that

∂4H

∂ζ∂ζ∂ζ∂ζ
= |ζ|4 f (4) + 4|ζ|2 f ′′′ + 2 f ′′ = 0

and, as z = |ζ|2, this gives

z2 f (4) + 4z f ′′′ + 2 f ′′ = 0. (3.9)

Solving this equation for f ′′ gives

f ′′(z) =
c0

z
+

c1

z2
,

where c0 and c1 are constants, if the domain D of f (z) does not contain the origin
O. If D contains O, then the only solution to (3.9) is given by f ′′(z) = 0 which
gives f (z) = az + b, a contradiction.

If D does not contain the origin O, then the last equation gives the solution

f (z) = c0z(log z − 1)− c1 log z + c2z + c3,

where c2 and c3 are constants.
But, an elementary computation shows that c0 = c1 = 0 and hence, f (z)

reduces to linear functions. This is again a contradiction and we finish the proof.

3.10. Proof of Theorem 2.3. The sufficiency is obvious and therefore, we need
to prove the necessary part of the theorem. Since the domain D ⊂ C is simply
connected, by [1, 2], we may assume that f has the representation f = |z|2G + K,
where G and K are harmonic in D. Then the proof will be completed once we
show that G(z) ≡ 0.

Suppose not. Since a harmonic function of an analytic function is known to be
harmonic, it suffices to consider the case

f (z) = |z|2G(z).

Now, we let
H(z) = f (F(z)) = F(z)F(z)G(F(z))

and P(z) = G(F(z)) = f1(z) + f2(z), where f1 and f2 are analytic. Then

h = Hzz = F′F′( f1 + f2) + F′F f2 + F f ′1F′

and

hzz = Hzzzz = F′′F′′ f1 + F′′F′′ f2 + F′′F′ f ′2 + F′′F′ f ′1
+F′′F′ f ′2 + F′′F f ′′2 + F′F′′ f ′1 + f ′′1 F′′F

= F′′ (F′′ f1 + 2F′ f ′1 + F f ′′1

)

+F′′
(

F′′ f2 + 2F′ f ′2 + F f ′′2

)

.
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The hypothesis ∆(∆H) ≡ 0 implies that

F′′ (F′′ f1 + 2F′ f ′1 + F f ′′1

)

= −F′′
(

F′′ f2 + 2F′ f ′2 + F f ′′2

)

. (3.11)

Let F(z) = z2. Then (3.11) yields that

2 f1 + 2z f ′1 + z2 f ′′1 = −(2 f2 + 2z f ′2 + z2 f ′′2 ).

The fact that a function which is analytic and anti-analytic simultaneously must
be constant shows that there is a constant c satisfying the following:

2 f1 + 2z f ′1 + z2 f ′′1 = 2c (3.12)

and
2 f2 + 2z f ′2 + z2 f ′′2 = −2c. (3.13)

It follows from the equations (3.12) and (3.13) that

f1(z) = c1zλ1 + c2zλ2 + c (3.14)

and
f2(z) = c3zλ1 + c4zλ2 − c, (3.15)

where c1, c2, c3, c4 are constants, λ1 = −1+i
√

7
2 , and λ2 = λ1. Hence

G ◦ F(z) = f1(z) + f2(z) = G(z2). (3.16)

We first consider the case when the origin O is not contained in D.
Let F(z) = z4. From (3.11), we know that

f1(z) = c5z−3 + c6z−4 + c0 (3.17)

and
f2(z) = c7z−3 + c8z−4 − c0, (3.18)

where c0, c5, c6, c7, c8 are constants. Then

G(F(z)) = f1(z) + f2(z) = G(z4). (3.19)

It follows from (3.14) − (3.19) that G ≡ 0. Also (3.17) and (3.18) imply that if
O is contained in D, then G ≡ 0. This is the desired contradiction. The proof of
Theorem 2.3 is complete.

3.20. Proof of Theorem 2.4. The sufficiency is obvious. Therefore, we need to
prove only the necessary part of the theorem.

Let f be harmonic in D. Then, f has the representation f = h + g, where h and
g are analytic in D.

Let H(ζ) = ( f ◦ F)(ζ) = f (z), where z = F(ζ) and F is harmonic. Then we
have

Hζζ = h′′Fζ Fζ + g′′ Fζ Fζ
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and

Hζζζζ = h(4)(Fζ)
2(Fζ )

2 + h′′′
(

(Fζ)
2Fζζ + (Fζ)

2Fζζ

)

+ h′′Fζ ζ Fζζ

+g(4)(Fζ)
2(Fζ)

2 + g′′′
(

(Fζ)
2Fζζ + (Fζ)

2Fζ ζ

)

+ g′′Fζ ζ Fζζ .

Now, we let z = F(ζ) = ζ + ζ. Then the last equation reduces to

Hζζζζ = h(4) + g(4) = 0,

which yields that

f (z) = a3z3 + a2z2 + az + b3z3 + b2z2 + bz + c.

Moreover, if we let F(z) = z2 + z3 then we have a3 = a2 = b3 = b2 = 0 and
therefore, f has the form f (z) = az + bz + c.

Next, we consider the case H(ζ) = ( f ◦ F)(ζ) = f (z), where z = F(ζ) and F
is biharmonic. In this case, we see that

Hζζ = h′′Fζ Fζ + h′Fζζ + g′′Fζ Fζ + g′Fζζ

and

Hζζζζ = h(4)(Fζ)
2(Fζ)

2 + h′′′(4Fζ Fζ Fζζ + (Fζ)
2Fζ ζ + (Fζ)

2Fζζ)

+h′′(Fζζ Fζζ + 2Fζζζ Fζ + 2F2
ζζ
+ 2Fζ Fζζ ζ) + h′Fζζζζ

+g(4)(Fζ )
2(Fζ)

2 + g′′′(4Fζ Fζ Fζζ + (Fζ)
2Fζζ + (Fζ)

2Fζ ζ)

+g′′(Fζ ζ Fζζ + 2Fζζζ Fζ + 2Fζζ
2
+ 2Fζ Fζζ ζ) + g′Fζζζζ .

Now, we make the choice z = F(ζ) = tζζ , where t is a real constant. Then

Hζζζζ = t4h(4) + 4zt3h′′′ + 2t2h′′ + t4g(4) + 4zt3g′′′ + 2t2g′′ = 0. (3.21)

From (3.21), we have that

t4h(4) + 4zt3h′′′ + 2t2h′′ = c0 (3.22)

and

t4g(4) + 4zt3g′′′ + 2t2g′′ = −c0, (3.23)

where c0 is a constant.

Equations (3.22) and (3.23) show that g′′ = h′′ = 0 and hence, f takes the form

f (z) = az + bz + c,

where a, b and c are constants. The proof is finished.
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4 Proof of Theorem 2.7

The following lemma is crucial for the proof of Theorem 2.7.

Lemma 4.1. For any F ∈ BH,

∂

∂t

(

arg
∂F(reit)

∂t

)

=
∂

∂t

(

arg
∂ f (reit)

∂t

)

.

Proof. Let F ∈ BH and z = reit. Then, by the definition, F has the form

F(z) = λ1|z|2 f + λ2 f = λ1r2 f + λ2 f

where f ∈ H, λ1 and λ2 are constants with λ2
1 + λ2

2 6= 0. As λ1r2 + λ2 is indepen-
dent of t, we easily have

∂F(reit)

∂t
= (λ1r2 + λ2)

∂ f (reit)

∂t

and
∂2F(reit)

∂t2
= (λ1r2 + λ2)

∂2 f (reit)

∂t2
.

Hence

∂

∂t

(

arg
∂F(reit)

∂t

)

= Im





∂2F(reit)
∂t2

∂F(reit)
∂t



 = Im





∂2 f (reit)
∂t2

∂ f (reit)
∂t



 =
∂

∂t

(

arg
∂ f (reit)

∂t

)

and the proof of the lemma is complete.

4.2. Proof of Theorem 2.7. The proof follows from Lemma 4.1 and Theorem
C.
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