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Abstract

In this short note, completing a sequence of studies [CKS, Co05], we con-
sider the k-Grassmannians of a number of polar geometries of finite rank n.
We classify those subspaces that are isomorphic to the j-Grassmannian of a
projective m-space. In almost all cases, these are parabolic, that is, they are
the residues of a flag of the polar geometry. Exceptions only occur when
the subspace is isomorphic to the Grassmannian of 2-spaces in a projective
m-space and we describe these in some detail. This Witt-type result implies
that automorphisms of the Grassmannian are almost always induced by au-
tomorphisms of the underlying polar space.

1 Introduction and preliminaries

In [CKS] the authors considered the k-Grassmannian Γ of a projective n-space and
asked whether a subspace S that is isomorphic to the l-Grassmannian of a projec-
tive m-space is necessarily parabolic. That is, is it recognizable in the diagram?
They show that this is true in most cases, so that any two isomorphic Grassman-
nian subspaces are conjugate under the action of the automorphism group of Γ.
In this sense their result is akin to Witt’s theorem. In [Co05] the second author
employs the above result to study a similar question, but now letting Γ be a sym-
plectic k-Grassmannian. In the present note, we finish off this sequence of studies
by considering the case where Γ is the k-Grassmannian of an almost arbitrary
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polar space of finite rank (See Table 1 for the precise list). Our main result, Theo-
rem 1, shows that in contrast to what happens in the cases studied above, not all
Grassmannian subspaces are parabolic, although the exceptions are limited.

For convenience of the reader, before describing our result in more detail, we
shall review some basic definitions in Subsection 1.1, and we describe the geome-
tries we shall deal with in some detail in Subsection 1.2. The experienced reader
should probably skip to Subsection 1.3 for the precise statement of the main re-
sult.

1.1 Basic definitions

We assume the reader is familiar with the concepts of a partial linear rank two
incidence geometry [Bu95] Γ = (Π, Λ) (also called a point-line geometry) and the
Lie incidence geometries [Co76] also known as shadow spaces [Bl99, Coh95].

The collinearity graph of Γ is the graph (Π, γ) where γ consists of all pairs of points
belonging to a common line. For a point x ∈ Π we will denote by γ(x) the
collection of all points collinear with x. For points x, y ∈ Π and a positive integer
t a path of length t from x to y is a sequence x0 = x, x1, . . . , xt = y such that
{xi, xi+1} ∈ γ for each i = 0, 1, . . . , t − 1. The distance from x to y, denoted by
dΓ(x, y), or simply d(x, y), is defined to be the length of a shortest path from x to
y if some path exists and otherwise is +∞.

By a subspace of Γ we mean a subset S ⊂ Π such that if l ∈ Λ and l ∩ S contains
at least two points, then l ⊂ S. Clearly the intersection of subspaces is a subspace
and consequently it is natural to define the subspace generated by a subset X of
Π, 〈X〉Γ, to be the intersection of all subspaces of Γ which contain X.

1.2 The geometries under study

Projective Grassmannians We now describe the j-Grassmannian of a projective
m-space over a field F. This is the Lie incidence geometry whose isomorphism
type will be denoted Am,j(F).

Let V be a vector space of dimension m + 1 over F. The projective geometry
Am(F) is the incidence geometry whose i-objects are the (linear) i-spaces of V, for
i = 1, 2, . . . , m, and in which two objects are incident if one is contained in the
other as a subspace.

For 1 ≤ j ≤ m, let Lj(V) be the collection of all linear j-spaces of V. For pairs
(C, A) of incident subspaces of V with dim(A) = a < j < dim(C) = c let

Sj(C, A) = {B ∈ Lj(V) | A ⊆ B ⊆ C}.

If j is clear from the context, we shall drop it from the notation.

The j-Grassmannian of V, denoted Aj(V) or simply A = (P ,L) is the point-line
geometry whose point set is P = Lj(V) and whose lines are the sets Sj(C, A),
where dim(A) = j − 1 and dim(C) = j + 1. Given a point p ∈ A the collection of
points collinear to p is denoted α(p).
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The Polar Grassmannians We shall study the Lie incidence geometries that are
polar Grassmannians of the types Mn,k(F) listed in Table 1. The polar Grassman-
nian of type Mn,k(F) is constructed from a non-degenerate reflexive sesquilinear
form β of Witt index n on a vector space W of dimension m over the field F (see
“Construction of a polar Grassmannian” below). The type of β is given in the
table and m is the subscript of the group, which is the full linear isometry group
of β. In case β is σ-hermitian, we restrict to the case where σ ∈ Aut(F) has order
2, F is a quadratic extension over the fixed field F

σ = {x ∈ F | λσ = λ}, and the
norm Nσ : F → F

σ is surjective.

Mn,k Char(F) β group n k
Bn,k(F) any parabolic orthogonal O2n+1(F) ≥ 3 1 ≤ k ≤ n
Cn,k(F) 6= 2 symplectic Sp2n(F) ≥ 3 1 ≤ k ≤ n

Dn,k(F) any hyperbolic orthogonal O+
2n(F) ≥ 3 1 ≤ k ≤ n − 2

2A2n,k(F) any σ-hermitian U+
2n(F) ≥ 3 1 ≤ k ≤ n

2A2n+1,k(F) any σ-hermitian U+
2n+1(F) ≥ 3 1 ≤ k ≤ n

2Dn+1,k(F) any elliptic orthogonal O−
2n+2(F) ≥ 3 1 ≤ k ≤ n

Table 1: The polar Grassmannians considered in this paper

We shall use the following terminology to distinguish the essentially different
geometries for our purposes. Let Mn,k be as in Table 1. If k = 1, then we call
Γ a polar space. In the remaining cases where k = n, we call Γ a dual polar space.
The remaining polar Grassmannians will be called proper polar Grassmannians.
Occasionally we may call any of these orthogonal if they derive from Bn, Dn or
2Dn+1 and non-orthogonal otherwise.

Construction of polar Grassmannians The polar Grassmannian of isomorphism
type Mn,k(F) is a point-line geometry denoted Γ = (Π, Λ). Below we describe
the point-set Π and line-set Λ for each type Mn,k(F). Given a point p ∈ Γ the
collection of points collinear to p (including p) is denoted γ(p).

For a subset X of W, let X⊥ = {w ∈ W : β(w, x) = 0, ∀x ∈ X}. Let U be a
subspace of W. Then, U is totally isotropic if U ⊆ U⊥. Recall that the Witt index
of W with respect to β is n. The non-degenerate polar building of rank n is the
incidence geometry ∆, whose i-objects are the totally isotropic i-spaces of W and
in which two objects are incident whenever one contains the other as a subspace.

For 1 ≤ k ≤ n, let Ik(W) be the collection of all k-objects of ∆. For pairs (C, A) of
subspaces of W with dim(A) = a < k < dim(C) = c let

Tk(C, A) = {B ∈ Ik | A ⊂ B ⊂ C}.

If k is clear from the context, we shall drop it from the notation. Note that
B ∈ Tk(C, A) forces A to be an object incident to B, but C is not necessarily an
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object of ∆. Note also that if C and A are incident objects of ∆, then Sk(C, A) =
Tk(C, A).

Fix k with 1 ≤ k ≤ n unless Mn = Dn in which case we assume 1 ≤ k ≤ n − 3.
Then, the polar k-Grassmannian Γ = (Π, Λ) of ∆ is the point-line geometry whose
point set is Π = Ik(W) and whose lines are the sets T(C, A), where A is a (k − 1)-
object of ∆ and C is a (k+ 1)-space of W with A ⊆ C ⊆ A⊥. Note that k = 1 forces
C to be a 2-object and A = 0. Similarly, k = n forces A to be an (n − 1)-object and
C = A⊥.

Finally we construct the geometry of type Dn,n−2. We first describe the build-
ing ∆ of type Dn. Its objects X are the totally singular (t.s.) subspaces of dimen-
sion 1, 2, . . . , n − 2, n. The type of X is dim(X) if 1 ≤ i ≤ n − 2. The type of
X is n or n − 1 if dim(X) = n. Another n-space Y has the same type as X if
codimX(X ∩Y) = codimY(X ∩ Y) is even. Incidence is given by inclusion except
that two t.s. n-spaces Y and Y are incident if codimX(X ∩Y) = codimY(Y ∩ X) =
1.

The point set P of Γ consists of objects of type n − 2 and lines are collections
of points of the form

L(L0, L−, L+) = {P ∈ P | L0 ⊆ P ⊆ L+ ∩ L−},

where (L0, L−, L+) is a flag of type (n − 3, n − 1, n).

1.3 Parabolic Grassmannian subspaces of polar Grassmannians.

When E ⊂ F ⊂ W, dim(E) = e, dim(F) = f satisfy e < k − 1, f > k + 1 with
E, F totally isotropic, the collection T(E, F) is a subspace of Γ and is isomorphic
to an ordinary Grassmannian geometry A f−e−1,k−e(F). Such a subspace is called
“parabolic” since the stabilizer in Aut(Γ) is a parabolic subgroup of Aut(Γ). It is
natural to ask: Is every subspace of the polar Grassmannian of type Mn,k(F) that
is isomorphic to some Am,j(F) parabolic?

Theorem 1. Let Γ be of type Mn,k(F) as in Table 1 and let S ∼= Am,j(F) be a subspace
of Γ.

(i) If Mn is of type Cn, 2A2n, 2A2n+1, or Dn,n−2, then S is parabolic.

(ii) If Mn,k is of type Bn,k, 2Dn+1,k, or Dn,l with 1 ≤ k ≤ n − 3, then S is parabolic
or k ≤ n − 3 and S ∼= A3,2(F) is embedded naturally as D3,1(F) into the polar
subspace T(C⊥, C), for some (k − 1)-object C.

Notes on Theorem 1: The polar spaces of type Cn , 2A2n−1, and 2A2n are similar,
but they differ significantly from orthogonal polar spaces in that their hyperbolic
lines are longer. This largely explains the division into cases (i) and (ii) of the the-
orem. The orthogonal Dn,n−2 geometry appears in case (i) because all exceptions
in (ii) are coming from the isomorphism A3,2

∼= D3,1 which in Dn,n−2 is merely an
isomorphism between two parabolic subspaces.
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The symplectic and unitary cases can be handled in a way similar to [Co05]. This
has allowed us to leave out a significant portion of the proofs. Additional ar-
guments are needed to handle the orthogonal Grassmannians. Finally the Dn,n−2

geometry needs an approach of its own because of the special positioning of node
n − 2 in the diagram.

1.4 Notation and a lemma on convexity of residues

Before proceeding to the proofs we introduce some notation: Since we will gen-
erate all kinds of subspaces, of the vector space W, of the polar Grassmannian
Γ = (Π, Λ), etc. we need to distinguish between these. When X is some collection
of subspaces or vectors from V we will denote the linear subspace of V spanned
by X by 〈X〉V . Analogously, we denote the subspace spanned by X ⊆ W by
〈X〉W . When X is a set of points in Γ, we will denote the subspace of Γ generated
by X by 〈X〉Γ. And, when X is a set of points of the projective Grassmannian A
we will denote the subspace of A generated by X by 〈X〉A .

We will also have to compare distances in Γ to distances in some subspace S
of Γ. The following observation is trivial, but useful.

Lemma 1.1. Let Γ be a partial linear space with subspace S and let x, y ∈ S.

(a) If dS(x, y) ≤ 2, then dΓ(x, y) = dS(x, y).

(b) If dS(x, y) ≥ 3, then dΓ(x, y) ≤ dS(x, y). Moreover, if S is convex in Γ, then
equality holds.

Each polar or projective Grassmannian is the shadow space of some building ∆.
A parabolic subspace is then the shadow of a residue R of ∆. As is probably
well-known such a subspace inherits convexity from the convexity of R in ∆. For
the benefit of those familiar with the chamber system viewpoint of buildings, we
include a proof here.

Lemma 1.2. If Γ is some shadow space of a building ∆ and R is a residue, then the shadow
of R in Γ is a convex subspace.

Proof That the shadow of R in Γ is a subspace is trivial. We now show it is convex.
Let x and y be two points on a residue R. Let X be a path from x to y containing
a point z not incident to R. Let γ = (c0, . . . , cm) be a gallery whose points form
X so that c0 ∈ x ∩ R and cm ∈ y ∩ R. Using a retraction ρ onto some apartment
containing c0 and cm we find a gallery supporting a path from x to y whose length
is at most that of X. Since ρ preserves distances from c0, ρ(z) is still a point
outside R. Thus we may assume that γ lies in this apartment. Next we note that
by convexity of R in the chamber system ∆, γ can only be a minimal gallery if it
lies within R (and X lies on R). We may then assume that c1 6∈ R. Since γ is not
minimal, the folding f onto the root α determined by {c0, c1} and containing c0

sends γ to a gallery from c0 to cm. Moreover, the points on c0 and f (c1) coincide.
Therefore the corresponding path in Γ is strictly shorter than X. It follows that X
is not a geodesic in Γ and that any geodesic must consist of points in the shadow
of R.
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2 Properties of Projective Grassmannians

In this short section we recall some properties of a projective Grassmannian inci-
dence geometry A = Aj(V) of type Am,j(F). We omit the proofs because they are
either well known or entirely straightforward to prove.

Lemma 2.1. Suppose 2 ≤ j ≤ m − 1. If x, y, z are points of Am,j on distinct lines
S(Ei , Di), i = 1, 2, 3, then either E1 = E2 = E3 or D1 = D2 = D3.

Lemma 2.2. (i) There are two classes of maximal singular subspaces of A = (P ,L)
with representatives S(V, D) where dim(D) = j− 1 and S(E, 0) where dim(E) =
j + 1. Then, S(V, D) ∼= Am+1−j,1(F) and S(E, 0) ∼= Aj,j(F). Those of the first
class will be referred to as type + and the second class as type −.

(ii) If M1 and M2 are maximal singular subspaces and M1 ∩ M2 is a line then M1 and
M2 are in different classes. If M1 ∩ M2 is a point then they are in the same class.

Lemma 2.3. Let M be a maximal singular subspace of A of type +. Then 〈M〉V = V.

Now let U be a hyperplane of V and X a 1-space of V with X not contained in U.
Set P(U) = {x ∈ P : x ⊂ U} and PX = {x ∈ P : X ⊂ x}.

Lemma 2.4. (i) P(U) is a subspace of P and P(U) ∼= Am−1,j(F).

(ii) PX is a subspace of P and PX
∼= Am−1,j−1(F).

(iii) If x ∈ P(U) then α(x) ∩ PX is a maximal singular subspace of type − in PX

isomorphic to Aj−1,j−1(F). Furthermore, 〈x, α(x) ∩ PX〉A is a maximal singular
subspace of type − in P .

(iv) If y ∈ PX then α(y) ∩ P(U) is a maximal singular subspace of type + in P(U)
isomorphic to Am−j,1(F). Furthermore, 〈y, α(y) ∩P(U)〉A is a maximal singular
subspace of type + in P .

(v) If x1, x2 ∈ P(U) are collinear then α(x1) ∩ α(x2) ∩ PX is a point. Similarly, if
y1, y2 ∈ PX are collinear then α(y1) ∩ α(y2) ∩ P(U) is a point.

Lemma 2.5. The diameter of the collinearity graph of Aj(V) is min{j, m + 1 − j}. For
x, y ∈ P , d(x, y) = dim(x/x ∩ y) = dim(y/x ∩ y).

3 Properties of polar Grassmannians

In this section we review some properties of polar Grassmannians of type Mn,k(F)
as listed in Table 1.

We first study the singular subspaces of Γ. In the interest of brevity, just like
in Section 2, we omit the proofs because these are either well known or easy to
reproduce.

Lemma 3.1. Let Γ be of type Mn,k as in Table 1. Then Γ is a subgeometry of Ak(W).
Hence, the singular subspaces of Γ are contained in singular subspaces of Ak(W).

Lemmas 3.1 and 2.2 imply the following lemma.
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Lemma 3.2. Suppose Mn,k(F) is as in Table 1.

(i) The polar Grassmannian space Γ has two classes of maximal singular subspaces
with representatives T(B, 0) where B is a totally isotropic subspace of W, with
dim(B) = k + 1, and T(C, A) where A and C are incident totally isotropic sub-
spaces of W, where dim(A) = k − 1, and dim(C) = n. In the former case
T(B, 0) ∼= Ak,k(F) and in the latter T(C, A) ∼= An−k,1(F). We refer to the first
as type − maximal singular subspaces and the latter as type +.

(ii) If M1 and M2 are maximal singular subspaces of Γ of different types, then M1 ∩ M2

is either empty or a line.

(iii) If M1 and M2 are distinct type − maximal singular subspaces of Γ, then M1 ∩ M2

is either empty or a point.

Note 3.3 If in part (i) of Lemma 3.2 we have Mn,k = Dn,k, then C can be of type
n − 1 or n. In addition, in cases Mn,1, D4,3, D4,4 – the latter two viewed as having
type D4,1 – the maximal singular subspace of type + has A = {0}.

Definition 3.4 A symp of Γ or A is a maximal geodesically closed subspace
which is isomorphic to a non-degenerate polar space.

We shall now determine all symps of Γ. Note that every non-degenerate polar
space is the convex closure of any two of its points at distance 2 from each other.
Therefore we determine such pairs of points in Γ and describe their convex clo-
sure. If this convex closure is not a symp, we call the pair of points special.

Lemma 3.5. (i) Let Mn,k be one of Bn,1, Cn,1, 2A2n,1, 2A2n+1,1, 2Dn+1,1, Dn,1 with
n ≥ 4. Then there is one class of points at distance two in Γ. For one such pair
(x, y) as subspaces of W, dim(x ∩ y) = 0. The unique symp on {x, y} is Γ itself.

(ii) Let Mn,k be one of Bn,k, Cn,k, 2A2n,k, 2A2n+1,k, 2Dn+1,k, with 2 ≤ k ≤ n − 1 or be
Dn,k with 2 ≤ k ≤ n − 3. Then, there are three classes, of type +, 0, and −, of
points at distance two in Γ.

A pair (x, y) is of − type if, as subspaces of W, dim(x ∩ y) = k − 2 and x ⊥ y.
The unique symp of − type on {x, y} is T(x + y, x ∩ y) ∼= A3,2.

A pair (x, y) is of + type if, as subspaces of W, dim(x ∩ y) = k − 1 and
(x + y)/(x ∩ y) is a non-degenerate 2-space. The unique symp of + type on such
a pair is T((x ∩ y)⊥, x ∩ y) ∼= Mn+1−k,1.

A pair (x, y) is of 0 type if, as subspaces of W, dim(x ∩ y) = k − 2, and z =
(x + y) ∩ (x + y)⊥ is a point of Γ. Now (x, y) is called a special pair, the convex
closure of {x, y} is the set of points on the two lines xy and yz, which is not a symp.

(iii) Let Mn,k be one of Bn,n, Cn,n, 2A2n,n, 2A2n+1,n, 2Dn+1,n. Then there is one class of
points at distance two in Γ. For one such pair (x, y), as subspaces of W,
dim(x ∩ y) = n − 2. The unique symp on such a pair is T((x ∩ y)⊥, x ∩ y) ∼=
M2,2.
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Corollary 3.6. Let Mn,k be as in Table 1. If x and y are two points at distance two
from each other in Γ having at least two common neighbors, then they are contained in a
unique symp as described in Lemma 3.5.

Proof The condition on the number of common neighbors excludes the possibility
that x and y form a special pair. The result follows from Lemma 3.5.

4 Proof of the Main Theorem

In this section we handle all cases of Theorem 1 with the exception of the Dn,n−2-
geometry, which requires special consideration and will be dealt with in Section 5.

4.1 Polar spaces and dual polar spaces

In this first lemma, we encounter the exceptional A3,2-subspaces of Theorem 1
(ii).

Lemma 4.1. (i) Let Γ be a polar space of type Cn,1 with Char(F) 6= 2, or one of type
2A2n,1, 2A2n+1,1. If Γ contains a subspace S ∼= Am,j, then 1 ≤ m ≤ n, j = 1 and S
is parabolic.

(ii) Let Γ be a polar space of type Bn,1, Dn,1 with n ≥ 3, or 2Dn+1,1. If Γ contains
a subspace S ∼= Am,j, where min{j, m + 1 − j} = 2 and m ≥ 3, then in fact
S ∼= A3,2 and it is embedded as D3,1 into a non-degenerate 6-space of the natural
embedding W of Γ.

Proof Obviously subspaces of type Am,1 exist and must be parabolic. If Γ con-
tains a subspace of type Am,j with min{j, m + 1 − j} ≥ 2, then it also contains a
subspace S′ ∼= A3,2. Let U = 〈S′〉W a vector subspace of W. Since S′ is strongly
hyperbolic (see [CS]) it follows that dim(U) = 6. We now have an embedding
from the orthogonal polar space S′ into the polar space G ∼= Mn,1. Consider
a polar frame F = {e1, f1, e2, f2, e3, f3} in S′. By Blok and Brouwer [BB98] and
Cooperstein and Shult [CoSh] we know that this set generates S′.

(i) In the cases 2A2n,k and 2A2n+1,k, F generates a subspace of type 2A6,1 6∼= S′,
a contradiction (See [BlCo]). In the case Cn,k, since Char(F) 6= 2, F generates a
subspace of type C3,1 6∼= S′, again a contradiction. This concludes case (i).

(ii) In the cases Bn,1, Dn,1 with n ≥ 3, or 2Dn+1,1, F generates the full subspace
T(U, 0) of type D3,1 supported by U. Clearly S′ ⊆ T(U, 0). Since subspaces of
type D3,1(F) do not contain proper subspaces isomorphic to themselves we have
S′ = T(U, 0).

We now show that in case (ii) S cannot be of type Am,j with min{j, m+ 1− j} =
2 and m ≥ 4. Suppose there is such a subspace. Then there is also a subspace
S′ ∼= A4,2. Then S′ contains a point p and a line L no point of which is collinear
to p. This contradicts the fact that the Buekenhout-Shult axioms hold in the polar
space Γ.
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It is easy to see that dual polar spaces don’t have proper parabolic projective
Grassmannian subspaces. For completeness we include the following lemma.

Lemma 4.2. The dual polar spaces of type Bn,n, Cn,n, 2A2n,n, 2A2n+1,n, and 2Dn+1,n have
no subspaces of type Am,j(F) such that min{m + 1 − j, j} ≥ 2.

Proof: If on the contrary there is such a subspace, then there is also a subspace
S ∼= A3,2(F). Since S is a polar space it is contained in some symp S of Γ by
Corollary 3.6. By Lemma 3.5, the only type of symp is of the form T(C⊥, C),
where dim(C) = n − 2. Now S has polar rank 2, whereas S has polar rank 3, a
contradiction.

4.2 Proper polar Grassmannians

We now consider the cases where Γ is a proper polar Grassmannian. Our proof is
by induction on N = n + k + m + min{j, m + 1 − j}.

Lemma 4.3. Let Γ be of type 2A2n,k or 2A2n+1,k, or Cn,k(F) with Char(F) 6= 2, and let
2 ≤ k ≤ n − 1. Then any subspace S ∼= A3,2(F) of Γ is parabolic.

Proof: Assume S ∼= A3,2(F). Since S is a polar space it is contained in some symp
S of Γ By Corollary 3.6. By Lemma 3.5 there are two possibilities for S :

(−) If S is of − type, then there are totally isotropic subspaces D ⊂ E such
that dim(D) = k − 2, dim(E) = k + 2 with S = T(E, D). In this case we have
S ∼= T(E, D). Since a geometry of type A3,2 does not have proper subspaces
isomorphic to itself, we find S = S , which is parabolic.

(+) If S is of + type, then there is a totally isotropic subspace C, dim(C) =
k − 1 such that S = T(C⊥, C). Let U = 〈S〉W a vector subspace of C⊥. The map
taking x ∈ S to x/C is an embedding of the polar space S into PG(U/C). Since
S is strongly hyperbolic (see [CS]) it follows that dim(U/C) = 6. We now have
an embedding from the orthogonal polar space S into the polar space T(C⊥, C)
of type Mn+1−k,1. In the cases 2A2n,k and 2A2n+1,k, this is impossible because the
smallest subspace of 2A2n,1 spanned by three hyperbolic lines is 2A6,1, which is
not isomorphic to D3,1. In the case Cn,k, since Char(F) 6= 2, the smallest subspace
of Cn,1 containing three pairwise orthogonal hyperbolic lines is C3,1, which is not
isomorphic to D3,1. This contradiction concludes the proof.

Lemma 4.4. Let Γ be of type Bn,k or 2Dn+1,k with 2 ≤ k ≤ n − 1, or Dn,k with 2 ≤ k ≤
n − 3. Then a subspace S ∼= A3,2(F) of Γ is parabolic, or it is embedded as T(U, C) ∼=
D3,1, where dim(C) = k − 1, dim(U) = k + 5, and U/C is non-degenerate.

Proof: The proof is almost identical to that of Lemma 4.3 with the following excep-
tion. In case S is a symp of + type, as in Lemma 4.1, S is embedded into T(C⊥, C)
of type Mn+1−k,1 as T(U, C), where dim(C) = k − 1, dim(U) = k + 5, and U/C is
non-degenerate.

Lemma 4.5. Let Γ be of type Bn,k, 2Dn+1,k, Cn,k, 2A2n,k, 2A2n+1,k and 2 ≤ k ≤ n − 1, or
Dn,k with 2 ≤ k ≤ n − 3.

If S ∼= Am,j is a subspace of Γ, where min{j, m + 1 − j} = 2 and m ≥ 4, then S is
parabolic.
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Proof By assumption S has a subspace S′ ∼= A4,2(F). Let D be a symp of S′.
Since D ∼= A3,2 is a polar space it is contained in a symp S of Γ by Corollary 3.6.
According to Lemma 3.5 there are two types of symps.

Either S is of + type and we have S = T(C⊥, C) for some t.i. (k − 1)-space C,
or S is of − type and we have S = S(B, A), where A is a t.i. (k − 2)-space and
B ⊃ A is a t.i. (k + 2)-space.

We claim that S cannot be of + type. Namely, we claim that S′ ⊆ S contra-
dicting Lemma 4.1. To see this, suppose that x ∈ S′ −D. Then, considering the
A4,2 geometry S′ we see that γ(x) ∩ D is a projective plane. In particular, x is
collinear to three pairwise collinear points, not all on one line and all containing
C. By Lemma 2.1, C ⊆ x so that x ∈ S . This proves the claim.

This contradiction shows that S = S(B, A) where A is a t.i. (k − 2)-space and
B ⊃ A is a t.i. (k + 2)-space. From this it follows that if x, y ∈ S with d(x, y) = 2,
then as subspaces of W they satisfy x ⊥ y by Lemma 3.5. Since the diameter of S
is two by Lemma 2.5 it then follows that B = 〈S〉W is a totally isotropic subspace
of W. Consequently, S ⊂ T(B, 0). By Theorem (2.15) of [CKS] it follows that S is
parabolic and the theorem holds.

Remark: We’d like to point out that the proof of Lemma 4.5 does not rely on
Lemmas 4.3 and 4.4.

Having proved Lemmas 4.3 and 4.4, we may assume that m ≥ 5 and min{j, m +
1 − j} ≥ 3. We continue with the notation of the introduction where V was in-
troduced as an (m + 1)-dimensional vector space and A = (P ,L) is the Grass-
mannian geometry of j-dimensional subspaces of V. Let τ : P → S be an
isomorphism of geometries. As in Section 2 let U be a hyperplane of V and
X a one-dimensional subspace of V such that X is not contained in U and set
P(U) = {x ∈ P : x ⊂ U} and PX = {x ∈ P : X ⊂ x}. Also, set SU = τ(P(U))
and SX = τ(PX).

Since SU
∼= Am−1,j(F) and (m − 1) + min{j, m − j} < m + min{j, m + 1 − j} it

follows by our induction hypothesis that SU = T(BU , AU) where AU ⊂ BU are
totally isotropic subspaces with dim(AU) = aU , dim(BU) = bU and m − 1 =
bU − aU , j = k − aU .

Similarly, since SX
∼= Am−1,j−1(F) and (m − 1) + min{j − 1, m − (j − 1)} < m +

min{j, m + 1 − j} it follows that SX = T(BX, AX) where AX ⊂ BX are totally
isotropic subspaces with dim(AX) = aX , dim(BX) = bX and m = bX − aX , j− 1 =
k − aX.

Let x ∈ SU , y ∈ SX be collinear. Then by Lemma 2.4, Y− = 〈x, SX ∩ γ(x)〉Γ and
Y+ = 〈y, SU ∩ γ(y)〉Γ are maximal singular subspaces of S which meet in a line.
Namely, τ−1(Y−) = S(τ(x)−1 + τ(y)−1, 0), whereas τ−1(Y+) = S(V, τ(x)−1 ∩
τ(y)−1), which meet in the line τ−1(Y− ∩ Y+) = S(τ(x)−1 + τ(y)−1, τ(x)−1 ∩
τ(y)−1).

Let Mε be a maximal singular subspace of Γ containing Yε, ε ∈ {+,−}. By
Lemma 3.2, Mε can be of type + or −. Since M− and M+ are distinct and intersect
in at least a line, they are of different type, again by Lemma 3.2. Consequently, at
least one of M−, M+ is of type +. For the sake of argument, assume M+ is of type
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+. Then there is a maximal totally isotropic subspace B and a (k− 1)-dimensional
subspace A ⊂ B such that M+ = T(B, A).

Now consider M+ ∩ SU = T(B, A) ∩ T(BU , AU). Since Y+ ⊆ M+ we have M+ ∩
SU ⊇ SU ∩ γ(y). On the other hand, since y ∈ M+ and M+ is singular we have
M+ ∩ SU ⊆ SU ∩ γ(y). Thus, M+ ∩ SU = SU ∩ γ(y). By looking at P(U) we
see that SU ∩ γ(y) is in fact a maximal singular subspace of SU = T(BU , AU). It
follows that AU ⊆ A and BU ⊆ B so that M+ ∩ SU = T(BU , A).

Then BU = 〈M+ ∩ SU〉W = 〈SU ∩ γ(y)〉W by Lemma 2.3 which implies that
BU ⊂ y⊥ since x′ ∈ γ(y) implies y ⊥ x′.

Now assume that y′ ∈ SX such that y′, y are collinear. Then by looking at V, we
find that SU ∩ γ(y) and SU ∩ γ(y′) are maximal singular subspaces of SU inter-
secting in a point. Hence, they must be in the same class of maximal singular
subspaces of SU . Applying the argument for y to y′, we find that BU ⊂ (y′)⊥.

Since the collinearity graph of SX is connected, it follows that for all z ∈ SX , we
have BU ⊂ z⊥. Since 〈SX〉W = BX we have BX ⊥ BU .

Set D = BU + BX, a totally isotropic subspace. Now SU , SX ⊂ T(D, 0). Since
〈SU , SX〉A = S (as follows from [BB98, CoSh, RS85]), it follows that S ⊂ T(D, 0),
for, if x, y are collinear points of Π and x, y ⊂ D, then for every z ∈ T(x + y, x ∩ y)
also z ⊂ D. Now we are done by Theorem (2.15) of [CKS].

5 The geometry of type Dn,n−2

In this section we consider geometries Γ of type Dn,n−2(F), for some arbitrary
field F. Our techniques here are significantly different from those in Section 4.
In Lemmas 5.2 and 5.4 we consider pairs of points at distance 2 or 3. Lemma 5.1
allows us to determine the convex subspaces containing such pairs.

Lemma 5.1. If x and y are points of Γ at distance k in the collinearity graph, then x and
y share an object of type n − 2 − k, so x and y are contained in a subgeometry of type
Dk+2,k(F). Moreover, this subgeometry is a convex subspace of Γ.

Proof The first part follows immediately from the definition of collinearity. The
second part follows from Lemma 1.2.

Lemma 5.2. Subspaces of Γ isomorphic to A3,2(F) are parabolic.

Proof Let S be a subspace isomorphic to A3,2(F) and let x, y ∈ S be at distance 2.
Note that S has diameter 2 and is the convex closure, in S, of any two points at
distance 2 in S. By Lemma 1.1, also dΓ(x, y) = 2 and S is contained in the convex
closure of {x, y} in Γ. Hence, by Lemma 5.1, we may assume that n = 4 and
k = 2.

Considering an apartment of type D4 on x and y one finds the following two
possibilities. (1) x and y form a ”special pair”, that is, they have exactly one
common neighbor. Since x and y already have many common neighbors in S,
this is impossible. (2) x and y are at symplectic distance 2, that is they share
an object R of type 1, 3, or 4. Note that R and S are isomorphic. Both are the
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convex closures of the two points in S so that S ⊆ R. Moreover, both R and S are
generated by the six points of an apartment, so that we have R = S. Thus, S is
parabolic.

In the proof of Lemma 5.4 we shall study a pair of points x and y at distance
3 from each other and a collection C of points on some geodesic from x to y.
Lemma 5.1 says that we can study that situation entirely within a geometry of
type D5,3. Since all possible configurations of pairs of points are realized inside an
apartment of the D5-building, we shall describe this apartment here. Recall that Γ

is constructed from the polar space on the 10-dimensional vector space W over F

endowed with the non-degenerate symmetric bilinear form β such that Q(x) =
β(x, x) is a non-degenerate hyperbolic quadratic form on W. Let {ei, fi}

5
i=1 be

a hyperbolic basis for W with respect to β, so that β(ei, fi) = 1 = β( fi , ei) for
i = 1, 2, 3, 4, 5, and all other inner products between these basis vectors are zero.
The apartment Σ for the D5,3-geometry supported by this basis consists of all
points and lines of Γ spanned, as subspaces of W, by subsets of this basis.

Now fix the point X = 〈e1, e2, e3〉W . In Figure 1, for each distance class relative
to X, we have listed a representative point in Σ. We call the classes Ci, where
i ∈ {0, 1, 2g, 2q, 2s, 3h, 3q, 3hh, 4}. If x and y are points such that y ∈ Ci(x), then
we shall write distΓ(x, y) = i. An arrow indicates that collinear representatives
exist.

0 : 〈e1, e2, e3〉W → 1 : 〈e1, e2, e4〉W → 2g : 〈e1, e4, e5〉W

ւ ↓ ւ ↓
2q : 〈e1, e2, f3〉W → 2s : 〈e1, f3, e4〉W → 3h : 〈 f3, e4, e5〉W

ւ ↓ ւ
3q : 〈e1, f2, f3〉W → 3hh : 〈 f2, f3, e4〉W → 4 : 〈 f1, f2, f3〉W

Figure 1: Representative objects for all distance classes in a D5,3 apartment.

Analyzing the apartment Σ, we find the following.

Lemma 5.3. Figure 2 is the distance distribution diagram for the D5,3-apartment.

We briefly explain the meaning of Figure 2. The classes Ci, where i ∈ {0, 1,
2g, 2q, 2s, 3h, 3q, 3hh, 4}, are represented by balloons and are arranged exactly as
in Figure 1. The numbers inside the balloons indicate the size of the class. The
edge between classes Ci and Cj has two labels: nij and nji. The label nij close to Ci

indicates the number of neighbors in Cj for each member of Ci. Each class Ci also
has a label nii indicating the number of neighbors in Ci for each member of Ci.

We now show that Γ does not contain any Grassmannian subspaces S of diameter
3 or more. We do this by creating a certain set of points CS inside S and showing
that it must be contained in a set C of points in Γ, which is in fact smaller, thus
obtaining a contradiction.
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Figure 2: The distance distribution diagram of the D5,3 apartment.

Lemma 5.4. The geometry Γ does not contain subspaces of type Am,l for 3 ≤ l ≤ m − 2.

Proof If such a subspace exists, then there also exists a subspace S of type A5,3.
Let x, y ∈ S with dS(x, y) = 3. We consider the sets

CS = {u ∈ S | dS(x, u) = 2, and dS(u, y) = 1},
C = {u ∈ S | distΓ(x, u) = 2g, 2q, and distΓ(u, y) = 1}.

By Lemma 5.2, for any u ∈ CS we have distΓ(u, x) = 2g, 2q, so that CS ⊆ C. Our
aim is to derive a contradiction from the fact that C is “too small” to contain CS.

Note that, by Lemma 1.1, 2 ≤ distΓ(x, y) ≤ 3.
First let distΓ(x, y) = 3, then by Lemma 5.1, x and y are contained in a sub-

space R of type D5,3. Moreover, every u ∈ C is on a geodesic from x to y, and
since R is convex by Lemma 1.2, we may from now on assume that n = 5 and
k = 3.

Checking the D5 apartment we find that x and y can be in one of three possible
relative positions (see Figure 1). Two of these cases (3q and 3hh) enforce C = ∅

contradicting CS 6= ∅. In the third case (3h), all points of C lie on a line, whereas
CS contains triples of pairwise non-collinear points, again a contradiction.

Next, assume distΓ(x, y) = 2.
First assume dist(x, y) = 2s. We know that if u ∈ C, then dist(x, u) = 2g or

2q. Suppose that u has distance 2g to x. Then, y ∩ x⊥ ⊆ u ⊆ x⊥ ∩ y⊥. This leaves
exactly two possibilities for u. Now suppose that u has distance 2q to x. Then,
u = 〈x ∩ y⊥, t〉W , where t is some 1-space in y − x⊥ (since dist(x, u) 6= 2s). All
points but one on the line given by x ∩ y⊥ and 〈x ∩ y⊥, y〉W satisfy this condition.
The one remaining point is the unique common neighbor of x and y, which is
not contained in S. So C is the union of two isolated points and a line minus a
point. Since CS contains a plane, we cannot have CS ⊆ C. This rules out the case
dist(x, y) = 2s.

Next assume that dist(x, y) = 2q and that u ∈ C. Again, dist(x, u) = 2g or 2q.
If dist(x, u) = 2g, then u ⊆ x⊥ ∩ y⊥. In particular, u ∩ y ⊆ x⊥ ∩ y = y ∩ x, which



688 R. J. Blok – B. N. Cooperstein

rules out dist(x, u) = 2g. Thus dist(x, u) = 2q. This means that u = 〈x ∩ y, t〉W ,
where t is some 1-space in y⊥ − x⊥. Since y⊥ ∩ x⊥ forms a grid, if u′ is another
such 1-space, then u and u′ are either not collinear, or if they are, then the line
uu′ contains a common neighbor of x and y. In particular, C does not contain any
projective planes, but CS does. This rules out the case dist(x, y) = 2q altogether.

Finally assume dist(x, y) = 2g. Let u ∈ C. Then, u ∩ y contains x ∩ y or not.
If not, then dist(x, u) 6= 2 as we can see in Figure 1, so x ∩ y ⊆ u ∩ y. If u ∩ x is
an (n − 3)-object, then u is a common neighbor of x and y, a contradiction. So
u ∩ y = x ∩ y. This leaves two cases: dist(x, u) ∈ {2s, 2g}, but as u ∈ C, this
means dist(x, u) = 2g. In particular, x ∩ y ⊆ u ⊆ x⊥ ∩ y⊥. In the residue of x ∩ y
we see that C is the subset of a geometry of type A3,2 of 2-spaces missing the 2-
space corresponding to x and disjoint from the 2-space corresponding to y. Thus
every line meeting C in at least two points, in fact has a point outside C. Since CS

contains full lines only, we cannot have CS ⊆ C.

Theorem 5.5. A subspace of Γ isomorphic to Am,l with 2 ≤ min{l, m + 1 − l} is
parabolic.

Proof By Lemma 5.4 we must have l ∈ {2, m − 1}. Up to a graph automorphism
we may assume S ∼= Am,2 where m ≥ 3. If m = 3 the claim is Lemma 5.2. Now
assume m ≥ 4. Consider points x, y, z ∈ S such that y and z are collinear, and
dist(x, w) = 2 for all w on the line spanned by y and z. In S we easily see that the
collection of common neighbors to x, y and z forms a line.

Now we consider x, y, and z as points of Γ and show that they are incident to
a common object of type n or (n − 1). By Lemma 5.2, x and y are in a subspace
of type A3,2, that is parabolic. That is, they are incident to a flag of type {n − 3},
{n − 4, n}, or {n − 4, n − 1}. The configuration of the points x, y, and z cannot
be realized in a single A3,2-subspace. Therefore x, y, and z cannot all share the
same (n − 3)-object. However, if x and y do share an (n − 3)-object that is not
also shared with z, then Figure 1 shows that x has distance 2q to y, but distance 2s
to z. Our configuration precludes this. Therefore we may assume without loss of
generality that x and y are incident to a necessarily unique object u of type n, but
not to a common object of type n − 1 or n − 3. Interchanging the roles of y and
z, we find that z must share an object u′ of type n or n − 1 with x. We find that
u = 〈x, y〉W and u′ = 〈x, z〉W are orthogonal maximal totally singular subspaces
in W. It follows that u = u′.

Now consider a graph (Θ,∼), where Θ = {{x, y} | x, y ∈ S, dS(x, y) = 2} in
which {x, y} ∼ {x′, y′} if, possibly after switching the roles of x and y, we have
x = x′ and y is collinear to y′ and x is not collinear to any point on the line yy′. We
claim that the graph (Θ,∼) is connected. First note that if {x, y}, {x, y′} ∈ Θ, then
either x has distance 2 to all points on the line yy′, or, since dim(V) = m + 1 ≥ 5,
there exists some point y′′ meeting 〈x, y, y′〉V only in the 1-space y ∩ y′. Now
{x, y} ∼ {x, y′′} ∼ {x, y′}. Thus, in order to show connectedness, we can remove
the condition on ∼ that x not be collinear to any point on the line yy′. Evidently
the resulting graph, and hence (Θ,∼) itself, is connected. Moreover, every point
x is clearly part of some pair in Θ. Therefore, by the preceding, all points x lie on
the same object of type n (or n − 1).
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6 An application

Theorem 1 has several applications. One was suggested by M. Pankov. We’ll
illustrate this with the following observation.

Let ∆ be a building of type Mn(F) 6= Dn(F) and let Γ be its k-Grassmannian
as in Table 1. Let Π and ∆Π be the polar and dual polar space associated to ∆.

We first list a result which is fairly well-known.

Lemma 6.1.

(a) Aut(Π) ∼= Aut(∆).

(b) Aut(∆Π) ∼= Aut(∆).

Proof (a) Since every i-object of ∆ can be identified as a singular subspace of di-
mension i in Π [BS74, Ti86], we have a homomorphism ϕ : Aut(Π) → Aut(∆).
Also, for every shadow space Θ of ∆ we have a homomorphism θ : Aut(∆) →
Aut(Θ). This holds in particular for every polar Grassmannian Θ and even more
specifically for Θ = Π, Γ, ∆Π. Taking Θ = Π we see that θ = ϕ−1.

(b) By part (a) we have a homomorphism θ : Aut(∆) → Aut(∆Π). As seen in
e.g. [Ca82], the i-objects X of ∆ correspond bijectively to convex closures of pairs
of points in ∆Π at distance n − i from each other in the collinearity graph of ∆Π.
This allows to construct the building ∆ from ∆Π. Since automorphisms preserve
distances, subspaces and convexity, we have a homomorphism ϕ : Aut(∆Π) →
Aut(∆) such that ϕ ◦ θ = id.

Corollary 6.2. If Mn 6= Dn, B4,2, 2D5,2, then Aut(Γ) ∼= Aut(∆).

Proof For k = 1, n, this is Lemma 6.1. So we may assume that 2 ≤ k ≤ n − 1. By
Theorem 1 the conditions on Γ imply that for every maximal singular subspace
B ≤ W of ∆ the subspace S = S(B, 0) is parabolic and any subspace isomorphic to
S is necessarily of the form S(B′, 0) for some maximal singular subspace B′ ≤ W
of ∆. Thus there is a bijection between the point set of ∆Π and the collection of
subspaces of type An−1,k in Γ.

Next, we consider collinearity. Let B1, B2 be distinct points of Θ. Note that
B1 ∩ B2 is a singular m-space in W for some m = 0, 1, 2, . . . , n − 1. For m ≥ k,
this is visible in Γ from the fact that S(B1 ∩ B1, 0) = S(B1, 0) ∩ S(B2, 0) is a non-
empty Grassmannian subspace of type Am−1,k. In fact, whenever m ≥ k, the
subspace S(B, 0) contains S(B1 ∩ B2, 0) if and only if B ⊇ B1 ∩ B2. In particular the
subspaces L of type An−2,k of the form S(B1, 0) ∩ S(B2, 0) correspond bijectively
to the lines of ∆Π.

Any automorphism of Γ preserves the collection of subspaces S of type An−1,k

and also preserves the collection of intersections L of type An−2,k of a pair of
such An−1,k-type subspaces. Therefore we have a homomorphism ϕ : Aut(Γ) →
Aut(∆Π) and the result now follows from Lemma 6.1.
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A result similar to Corollary 6.2 was obtained by Pankov et al. in [PaPrZy06].
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