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Abstract

Given two sequences of monic orthogonal polynomials {Pn}n≥0 and
{Bn}n≥0 such that B2n(x) = Pn(x2), n ≥ 0, we show that the Laguerre-Hahn
character of one of them remains valid for the other. Then we give relations
between their classes and the coefficients of their structure relations. As an
application, with an appropriate choice of the sequence {Pn}n≥0, we obtain
a new nonsymmetric semi-classical sequence of polynomials {Bn}n≥0 of class
s = 1.

1 Introduction

A sequence of monic polynomials {Bn}n≥0 , deg Bn = n, n ≥ 0, is said to be
a Laguerre-Hahn sequence of class s if it is orthogonal with respect to a linear
functional w satisfying

(Φw)′ + Ψw + B(x−1w2) = 0

where

∏
c∈ZΦ

(
∣∣Ψ(c) + Φ′(c)

∣∣+ |B(c)|+
∣∣∣
〈

w, θcΨ + θ2
c Φ + wθ0θcB

〉∣∣∣) 6= 0.
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Here Φ, Ψ, and B are polynomials, ZΦ denotes the set of zeros of Φ, and s =
max(deg Φ − 2, deg B − 2, deg Ψ − 1). When B = 0, the sequence {Bn}n≥0 is said
to be semi-classical (see [13]. When Φ = 0, w is said to be a second degree linear
functional.
Laguerre-Hahn orthogonal polynomials were introduced in [11] in connection
with continued fractions and the Riccati equations that the corresponding Stielt-
jes functions satisfy. Among the Laguerre-Hahn sequences of orthogonal poly-
nomials only those which are of class s = 0 and those of class s = 1 which are
symmetric are completely described in the literature ( see [1] and [5] ).
In general the problem of determining in an explicit way the Laguerre-Hahn
polynomial sequences becomes a very difficult task when the class is greater than
or equal to one. This is a consequence of the fact that for such sequences the co-
efficients of the three term recurrence relation satisfy a very complex non linear
system. In this paper, we present a constructive process for some special cases of
sequences of Laguerre-Hahn polynomials in such a way that we give the answer
to the following question.

Consider two sequences of monic orthogonal polynomials {Pn}n≥0 and {Bn}n≥0 such

that B2n(x) = Pn(x
2), n ≥ 0. Notice that this relation holds when the sequence {Bn}n≥0

is symmetric and furthermore B2n+1(x) = xP∗
n (x

2), n ≥ 0, where P∗
n denotes the nth

kernel polynomial associated with {Pn}n≥0 . These polynomials have been introduced in
[8].
Let assume that either {Pn}n≥0 or {Bn}n≥0 is a Laguerre-Hahn sequence. What can be
said about the Laguerre-Hahn character of the other one?.

This question was partially answered by many authors. For instance in [2] the
authors proved that, in a symmetric case, if {Pn}n≥0 is semi-classical then the se-
quence {Bn}n≥0 is also semi-classical. Some extension for general quadratic trans-
forms in the variable have been analyzed in [12]. The first author and cowork-
ers (see [6] and [7]) proved that for some particular symmetric semi-classical se-
quences of polynomials {Bn}n≥0 the corresponding sequences {Pn}n≥0 are semi-
classical of class one as well as some generalizations of this result. More precisely,
there is shown that a symmetric sequence {Bn}n≥0 is semi-classical if and only
if {Pn}n≥0 is semi-classical. Finally D. Beghdadi [4] showed that if w, the linear
functional such that {Bn}n≥0 is the corresponding sequence of orthogonal polyno-
mials, is a second degree linear form then σw, the linear functional corresponding
to {Pn}n≥0 , is also a second degree linear functional.

The answer we will give to the previous question constitutes a generalization
of all these results.

In section 2, we introduce some notations and preliminary results to be used in
the sequel. In section 3, we show that if one of the two monic orthogonal polyno-
mial sequences {Pn}n≥0 or {Bn}n≥0 is a Laguerre-Hahn sequence, then the other
one is also a Laguerre-Hahn sequence. In this case we prove that s ≤ 2s′ + 3
where s′ and s are, respectively, the classes of {Pn}n≥0 and {Bn}n≥0. In section 4
we give the expressions of the structure relation coefficients of {Bn}n≥0 in terms
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of those of {Pn}n≥0. From this structure relation a fourth order differential equa-
tion with polynomial coefficients that such polynomials satisfy can be deduced
using the techniques introduced in [9]. Finally, in section 5, as an example, we
study the class of the linear functional w when {Pn}n≥0 is a particular Laguerre-
Hahn sequence of monic polynomials of class zero. We focus our attention on the
associated Laguerre polynomials of the first kind (see [3] and [5]) and a singular
case (see [1] and [5]), respectively. Thus we obtain a new symmetric sequence of
monic Laguerre-Hahn polynomials {Bn}n≥0 of classs = 2 as well as a new non
symmetric Laguerre-Hahn polynomial sequence of class s = 2. The recurrence
relation coefficients for such sequences are explicitly given.

2 Notations and preliminary results

Let P be the linear space of polynomials with complex coefficients and P ′ be its
algebraic dual space. We denote by 〈u, f 〉 the action of u ∈ P ′ on f ∈ P and
S(u)(z) = − ∑n≥0

un

zn+1 the formal Stieltjes function of u where un = 〈u, xn〉 ,

n ≥ 0, are the moments of u. Let introduce the following operations on P ′.

(i) The left multiplication of a linear functional by a polynomial

(2.1) 〈gu, f 〉 = 〈u, g f 〉 , f , g ∈ P , u ∈ P ′.

(ii) The right multiplication of a linear functional by a polynomial

(2.2) (u f )(x) =

〈
u,

x f (x)− ξ f (ξ)

x − ξ

〉
, f ∈ P , u ∈ P ′.

(iii) The product of two linear functionals

(2.3) 〈vu, f 〉 = 〈u, v f 〉 , f ∈ P , u,v ∈ P ′.

(iv) The dilation of a linear functional

(2.4) 〈hau, f 〉 = 〈u, ha f 〉 , a ∈ IC − {0} , f ∈ P , u ∈ P ′,

where

(2.5) (ha f ) (x) = f (ax).

(v) The shift of a linear functional

(2.6) 〈τ−bu, f 〉 = 〈u, τb f 〉 , b ∈ IC, f ∈ P , u ∈ P ′,

where

(2.7) (τb f )(x) = f (x − b).

(vi) The even part of a linear functional

(2.8) 〈σu, f 〉 = 〈u, σ f 〉 ,
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where

(2.9) (σ f )(x) = f (x2).

(vii) The division of a linear functional by a polynomial of first degree

(2.10)
〈
(x − c)−1u, f

〉
= 〈u, θc f 〉 , c ∈ IC, f ∈ P , u ∈ P ′,

where

(2.11) (θc f )(x) =
f (x)− f (c)

x − c
.

(viii). The derivative Du of a linear functional u

(2.12) 〈Du, f 〉 = −
〈
u, f ′

〉
.

Definition 2.1. ([8] ) A sequence of polynomials {Bn}n≥0 is said to be a monic orthogo-
nal polynomial sequence (MOPS) with respect to a linear functional w if
i) deg Bn = n and the leading coefficient of Bn(x) is equal to 1
ii) 〈w, BnBm〉 = rnδn,m, n, m ≥ 0, rn 6= 0, n ≥ 0.

It is well known (see [8]) that a sequence of monic orthogonal polynomials satis-
fies a three-term recurrence relation

(2.13)
B0(x) = 1, B1(x) = x − β0,

Bn+2(x) = (x − βn+1) Bn+1(x)− γn+1Bn(x), n ≥ 0

with
(βn, γn+1) ∈ IC × (IC − {0}), n ≥ 0.

In such conditions w is said to be regular or quasi-definite [8]. In the sequel we
consider regular linear functionals w with w0 = 1.

Notice that the orthogonality is preserved by a shifting on the variable. Indeed

the shifted sequence
{

B̂n

}
n≥0

defined by B̂n(x) = a−nBn(ax + b), n ≥ 0, a 6= 0,

satisfies the recurrence relation ( [8], [13])

(2.14)
B̂0(x) = 1, B̂1(x) = x −

β0−b
a ,

B̂n+2(x) = (x −
βn+1−b

a )B̂n+1(x)−
γn+1

a2 B̂n(x), n ≥ 0.

Such a sequence is orthogonal with respect to the linear functional
ŵ = (ha−1 ◦ τ−b)w.

The sequence {B
(1)
n }n≥0 of associated polynomials of first kind for the sequence

{Bn}n≥0 is defined by

(2.15) B
(1)
n (x) =

〈
w,

Bn+1(x)− Bn+1(ξ)

x − ξ

〉
, n ≥ 0.
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It satisfies the shifted recurrence relation ( see [8], [13] )

(2.16)
B
(1)
0 (x) = 1, B

(1)
1 (x) = x − β1

B
(1)
n+2(x) = (x − βn+2)B

(1)
n+1(x)− γn+2B

(1)
n (x), n ≥ 0.

A linear functional w is said to be symmetric if and only if w2n+1 = 0, n ≥ 0.
Equivalently, in (2.13) we get βn = 0, n ≥ 0.

If the sequence {Bn}n≥0 satisfies

(2.17)
B0(x) = 1, B1(x) = x − β0,

Bn+2(x) = (x − (−1)n+1β0)Bn+1(x)− γn+1Bn(x), n ≥ 0,

with γn+1 ∈ IC − {0} , n ≥ 0, then there exist two MOPS {Pn}n≥0 and {Rn}n≥0

such that (see [14])

(2.18)
B2n(x) = Pn(x2), n ≥ 0,

B2n+1(x) = (x − β0)Rn(x2), n ≥ 0.

Conversely, if {Pn}n≥0 is a MOPS and {Bn}n≥0 is a sequence of monic polyno-
mials such that B2n(x) = Pn(x2), n ≥ 0, then {Bn}n≥0 is a MOPS if and only if
there exists a MOPS {Rn}n≥0 such that B2n+1(x) = (x − β0)Rn(x2), n ≥ 0. The
sequence {Pn}n≥0 satisfies the following recurrence relation

(2.19)
P0(x) = 1, P1(x) = x − βP

0
Pn+2(x) = (x − βP

n+1) Pn+1(x)− γP
n+1Pn(x), n ≥ 0,

where

(2.20)





βP
0 = γ1 + β2

0,

βP
n+1 = γ2n+2 + γ2n+3 + β2

0, n ≥ 0,

γP
n+1 = γ2n+1γ2n+2, n ≥ 0.

On the other hand, {Rn}n≥0 satisfies

(2.21)
R0(x) = 1, R1(x) = x − βR

0 ,
Rn+2(x) = (x − βR

n+1)Rn+1(x)− γR
n+1Rn(x), n ≥ 0,

where

(2.22)





βR
0 = γ1 + γ2 + β2

0,

βR
n+1 = γ2n+3 + γ2n+4 + β2

0, n ≥ 0,

γR
n+1 = γ2n+2γ2n+3, n ≥ 0.
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Equations (2.20) and (2.22) are obtained from [13, Proposition 4.4] and [14].

Denoting by w, u, and v the linear functionals associated with {Bn}n≥0,
{Pn}n≥0, and {Rn}n≥0, respectively, we get

(2.23) u = σw,

(2.24) β0u = σ(xw),

(2.25) v = γ−1
1 (x − β2

0)u.

The regularity of v and (2.25) mean that (see [8], [9], [10], [13])

(2.26) Pn(β
2
0) 6= 0, n ≥ 0.

Conversely, if β0 ∈ IC and u is a linear functional such that the corresponding
MOPS {Pn}n≥0 satisfies (2.19) and (2.26) then the linear functional v defined in
(2.25) where, γ1 = βP

0 − β2
0, is regular ([8], [9], [10], [13]). Denote by {Rn}n≥0 the

MOPS corresponding to v. Then the sequence {Bn}n≥0 defined by (2.18) satisfies
(2.17) with (2.20) and (2.22). Furthermore, its corresponding linear functional w
satisfies (2.23) and (2.24).

Definition 2.2. Let {Bn}n≥0 be a MOPS with respect to the linear functional w. {Bn}n≥0

is said to be a Laguerre-Hahn orthogonal polynomial sequence ( respectively, w is said to
be a Laguerre-Hahn linear functional) of class s if the following conditions hold.
There exist Φ, a nonzero monic polynomial of degree t, Ψ, a polynomial of degree p, and
B, a polynomial of degree r, such that

(2.27) (Φw)′ + Ψw + B(x−1w2) = 0

as well as

(2.28) ∏
c∈ZΦ

(
∣∣Ψ(c) + Φ′(c)

∣∣+ |B(c)|+
∣∣∣
〈

w, θcΨ + θ2
c Φ + wθ0θcB

〉∣∣∣) 6= 0

where ZΦ denotes the set of zeros of Φ. The class s of {Bn}n≥0 is given by
s = max(p − 1, t − 2, r − 2).

In terms of the Stieltjes function, S(w), (2.27) reads (see [9] and [11])

(2.29) A(z)S′(w)(z) = B(z)S2(w)(z) + C(z)S(w)(z) + D(z)

with

(2.30)
A(z) = Φ(z),

C(z) = −Φ′(z)− Ψ(z),
D(z) = −(wθ0Φ)′(z)− (wθ0Ψ)(z) − (w2θ2

0B)(z).

The condition (2.28) is equivalent to the fact that A, B, C, and D are coprime poly-
nomials and the class s is given by s = max(deg A − 2, deg B − 2, deg C − 1).



Quadratic decomposition of a Laguerre-Hahn polynomial sequence I 647

If w is a Laguerre-Hahn linear functional of class s fulfilling (2.27), then
ŵ = (ha−1 ◦ τ−b)w is also a Laguerre-Hahn linear functional of the same class and
satisfies [4]

(2.31), (Φ̂ŵ)′ + Ψ̂ŵ + B̂(x−1ŵ2) = 0

where

(2.32) Φ̂(z) = a−tΦ(az + b), B̂(z) = a−tB(az + b), Ψ̂(z) = a1−tΨ(az + b).

A Laguerre-Hahn orthogonal polynomial sequence {Bn}n≥0 satisfies the follow-
ing structure relation (see [1] and [9]). For every n ≥ 0

(2.33)

Φ(x)B
′

n+1(x)− B(x)B
(1)
n (x) =

(Cn+1(x)− C0(x))

2
Bn+1(x)− γn+1Dn+1(x)Bn(x),

where

(2.34) C0(x) = C(x), E0(x) = B(x),

(2.35) D0(x) = D(x),

(2.36) En+1(x) = γn+1Dn(x), n ≥ 0,

(2.37) Cn+1(x) = −Cn(x) + 2(x − βn)Dn(x), n ≥ 0,

(2.38)
γn+1Dn+1(x) = −Φ(x) + En(x) + (x − βn)

2Dn(x)− (x − βn)Cn(x), n ≥ 0.

Remark. If c is a common zero of Φ, B, C, and D then it is also a common zero of
En, Cn, and Dn, n ≥ 0. Thus in both sides of (2.33) we can divide by x − c.

In the sequel we will assume that {Bn}n≥0, {Pn}n≥0, {Rn}n≥0, u, w, and v sat-
isfy (2.17)-(2.26).

3 The case when either {Pn}n≥0 or {Bn}n≥0 is a Laguerre-Hahn

MOPS.

First of all we will prove the two following lemmas

Lemma 3.1. Using the notations introduced in section 2

(3.1) σ( f (x2)u) = f (x)σu,

(3.2) σu′ = 2(σ(xu))′ ,

(3.3) σu2 = (σu)2 + x−1(σ(xu))2 ,

(3.4) σ(x−1u2) = 2x−1σ(xu)σu.
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Proof. For (3.1) and (3.2) see ([13, formula (1.10)]).
For (3.3) we have
〈
(σu)2 + x−1(σ(xu))2 , xn

〉
=

n

∑
k=0

(σu)k(σu)n−k +
n−1

∑
k=0

(σ(xu))k(σ(xu))n−1−k

=
n

∑
k=0

u2ku2n−2k +
n−1

∑
k=0

u2k+1u2n−2k−1

=
2n

∑
k=0

uku2n−k

=
〈

σu2, xn
〉

, n ≥ 1,

and
〈
(σu)2 + x−1(σ(xu))2 , 1

〉
= 1 =

〈
σu2, 1

〉
.

So, the desired formula follows.
Finally, for (3.4) we have

〈
σ(x−1u2), xn

〉
=

〈
x−1u2, x2n

〉

=
〈

u2, x2n−1
〉

=
2n−1

∑
k=0

uku2n−1−k

=
n−1

∑
k=0

u2k+1u2n−2k−2 +
n−1

∑
k=0

u2ku2n−2k−1, n ≥ 1.

The change of indices k → n − k − 1 in the second sum gives

〈
σ(x−1u2), xn

〉
= 2

n−1

∑
k=0

u2k+1u2n−2k−2, n ≥ 1.

On the other hand,

〈
2x−1σ(xu)σu, xn

〉
= 2

〈
σ(xu)σu, xn−1

〉

= 2
n−1

∑
k=0

(σ(xu))k(σu)n−1−k

= 2
n−1

∑
k=0

u2k+1u2n−2k−2, n ≥ 1.

Hence

〈
σ(x−1u2), xn

〉
=

〈
2x−1σ(xu)σu, xn

〉
, n ≥ 1.

Notice that this equality is also true for n = 0 Indeed,〈
σ(x−1u2), 1

〉
= 0 =

〈
2x−1σ(xu)σu, 1

〉
.

Then (3.4) follows.

Lemma 3.2. Let ũ be a linear functional and let Φ, Ψ, and B be three polynomials. Let
us split these polynomials as follows
(3.5)
Φ(x) = Φe(x2) + xΦo(x2), Ψ(x) = Ψe(x2) + xΨo(x2), B(x) = Be(x2) + xBo(x2).
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Then we get
(3.6)

σ((Φũ)′ + Ψũ + B(x−1ũ2)) = (2xΦo(x)σũ)′ + Ψe(x)σũ + xBo(x)(x−1(σũ)2)
+2(Φe(x)σ(xũ))′ + Ψo(x)σ(xũ) + Bo(x)(x−1(σ(xũ))2) + 2Be(x)(x−1(σũ)σ(xũ)).

Proof. From the linearity of the operator σ we have

(3.7) σ((Φũ)′ + Ψũ + B(x−1ũ2)) = σ((Φũ)′) + σ(Ψũ) + σ(B(x−1ũ2))).

On the other hand, taking into account (3.2)

σ((Φũ)′) = 2(σ(xΦũ))′

= 2(σ[(xΦe(x2) + x2Φo(x2))ũ])′ ( by (3.5))
= 2(Φe(x)σ(xũ))′ + 2(xΦo(x)σũ)′ (by (3.1)).

From (3.1) and (3.5)

σ(Ψũ) = σ((Ψe(x2) + xΨo(x2))ũ)
= Ψe(x)σũ + Ψo(x)σ(xũ).

From (3.5) we have

σ(B(x−1ũ2)) = σ(Be(x2)(x−1ũ2) + Bo(x2)ũ2)
= Be(x)σ(x−1ũ2) + Bo(x)σũ2 (by (3.1))
= 2Be(x)(x−1σ(xũ)σũ)+

Bo(x)(σũ)2 + Bo(x)(x−1(σ(xũ))2) by (3.3) and (3.4)
= 2Be(x)(x−1σ(xũ)σũ) + xBo(x)(x−1(σũ)2)+

Bo(x)(x−1(σ(xũ))2).

So, the statement follows.

Proposition 3.3. If {Pn}n≥0 is a Laguerre-Hahn MOPS with respect to a linear func-
tional u of class s′ then {Bn}n≥0 is a Laguerre-Hahn MOPS with respect to the linear
functional w of class s ≤ 2s′ + 3. Furthermore, if u satisfies

(3.8) (ΦPu)′ + ΨPu + BP(x−1u2) = 0

then, w satisfies (2.27) with

(3.9) Φ(x) = (x + β0)Φ
P(x2),

(3.10) B(x) = 2xBP(x2),

and

(3.11) Ψ(x) = 2x(x + β0)Ψ
P(x2)− 2ΦP(x2).

Proof. Put w̃ = (Φw)′ + Ψw + B(x−1w2). To prove that w̃ = 0 it is enough to
prove that σw̃ = 0 and σ(xw̃) = 0.
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The even and odd parts of the polynomials Φ, Ψ, and B in (3.9), (3.10), and
(3.11) are
Φe(x) = β0ΦP(x), Φo(x) = ΦP(x),
Ψe(x) = 2xΨP(x)− 2ΦP(x), Ψo(x) = 2β0ΨP(x),
Be(x) = 0, Bo(x) = 2BP(x).

Then, from Lemma 3.2 we get

σw̃ = (2xΦP(x)σw)′ + 2(xΨP(x)− ΦP(x))σw + 2xBP(x)(x−1(σw)2)+
+(2β0ΦP(x)σ(xw))′ + 2β0ΨP(x)σ(xw) + 2BP(x)(x−1(σ(xw))2).

Taking into account (2.23) and (2.24) we obtain

σw̃ = 2(x + β2
0)[(Φ

Pu)′ + ΨPu + BP(x−1u2)] = 0 ( by (3.8)).

Similarly,

σ(xw̃) = σ(x(Φw)′ + xΨw + xB(x−1w2))
= σ((xΦw)′ + (xΨ − Φ)w + xB(x−1w2))
= 4β0x[(ΦPu)′ + ΨPu + BP(x−1u2)]
= 0.

So, w̃ = 0. Hence w satisfies (2.27) with (3.9), (3.10), and (3.11), which im-
plies that {Bn}n≥0 is a Laguerre-Hahn polynomial sequence.

Next we will prove that s ≤ 2s′ + 3. If deg Ψ = p, deg Φ = t, deg B =
r, deg ΨP = p′, deg ΦP = t′ and deg BP = r′, then from (3.9), (3.10) and (3.11)
we get t = 2t′ + 1, r = 2r′ + 1, and p ≤ max(2p′ + 2, 2t′). As a consequence:

If either t′ = s′ + 2 or r′ = r + 2 and p′ ≤ s′ + 1 then t = 2s′ + 5 or r = 2s′ + 5
and p ≤ 2s′ + 4. Therefore s ≤ 2s′ + 3.

If t′ ≤ s′ + 1, r′ ≤ s′ + 1 and p′ = s′ + 1 then t ≤ 2s′ + 5, r ≤ 2s′ + 5, and
p = 2s′ + 4. Therefore s ≤ 2s′ + 3.

Remark. If we take β0 = 0, then we recover the following result stated in [1]:

Corollary 3.4. Let w be a symmetric Laguerre-Hahn linear functional of class s satisfy-
ing (2.27) and (2.28). If s is even, then Φ and B are even and Ψ is odd. If s is odd, then
Φ and B are odd and Ψ is even.

Proposition 3.5. If {Bn}n≥0 is a Laguerre-Hahn MOPS then {Pn}n≥0 is a Laguerre-
Hahn MOPS. Furthermore, if w satisfies (2.27) and we split these polynomials according
to their even and odd parts as in (3.5) then u satisfies:

(3.12) (ΦP
1 u)′ + ΨP

1 u + BP
1 (x

−1u2) = 0

where

(3.13)





ΦP
1 (x) = 2(xΦo(x) + β0Φe(x)),
ΨP

1 (x) = Ψe(x) + β0Ψo(x),
BP

1 (x) = (x + β2
0)B

o(x) + 2β0Be(x),
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and

(3.14) (ΦP
2 u)′ + ΨP

2 u + BP
2 (x

−1u2) = 0

where

(3.15)





ΦP
2 (x) = 2(xΦe(x) + β0xΦo(x)),

ΨP
2 (x) = xΨo(x)− Φe(x) + β0(Ψ

e(x)− Φo(x)),
BP

2 (x) = (x + β2
0)B

e(x) + 2β0xBo(x) .

Proof. Applying Lemma 3.2 to the functional equation (2.27) and using (2.23)
and (2.24) we get (3.12) with (3.13).
On the other hand, multiplication of (2.27) by x gives

(3.16) (xΦ(x)w)′ + (xΨ(x)− Φ(x))w + xB(x)(x−1w2) = 0.

Applying Lemma 3.2 to (3.16) and using (2.22) and (2.23) we get (3.14) with
(3.15).

Notice that from the functional equation (3.12) we can not conclude that u is a
Laguerre-Hahn linear functional since we have not proved that at least one of the
polynomials ΦP

1 , ΨP
1 , and BP

1 is not zero, which is not always true. For example if
w is symmetric ( β0 = 0 ) of even class s, then, according to the Corollary 3.4, we
have ΦP

1 = ΨP
1 = BP

1 = 0. This is the reason of the functional equation (3.14).
Now assume that ΦP

1 = ΨP
1 = BP

1 = 0 and ΦP
2 = ΨP

2 = BP
2 = 0. Then, from (3.13)

and (3.15), we get {
xΦo(x) + β0Φe(x) = 0,

xΦe(x) + β0xΦo(x) = 0,

and, as a consequence, {
(x − β2

0)Φ
e(x) = 0,

(x2 − β2
0)Φ

o(x) = 0.

Hence

Φe(x) = Φo(x) = 0

and therefore Φ(x) = 0.
Similarly, using (3.13) and (3.15), we prove that Ψ = B = 0, a contradiction.
Consequently, at least one of the polynomials ΦP

1 , ΨP
1 , BP

1 , ΦP
2 , ΨP

2 , and BP
2 is not

zero. Therefore u is a Laguerre-Hahn linear functional.

4 The structure relation

Let assume that {Pn}n≥0 is a Laguerre-Hahn polynomial sequence. According to
Proposition 3.3, {Bn}n≥0 is also a Laguerre-Hahn polynomial sequence. Then it
satisfies a structure relation. Our aim is to express Cn and Dn, n ≥ 0, the poly-
nomial coefficients of the structure relation for the sequence {Bn}n≥0, in terms of
those of {Pn}n≥0 which we will denote CP

n and DP
n , n ≥ 0 . We get the following

result:
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Proposition 4.1. If {Pn}n≥0 is a Laguerre-Hahn MOPS of class s′ satisfying the struc-
ture relation
(4.1)

ΦP(x)P
′

n+1(x)− BP(x)P
(1)
n (x) =

CP
n+1(x)− CP

0 (x)

2
Pn+1(x)− γP

n+1DP
n+1(x)Pn(x),

for every n ≥ 0, then the Laguerre-Hahn MOPS {Bn}n≥0 of class s satisfies (2.33) where
for every n ≥ s′ + 2,

(4.2) C2n(x) = ΦP(x2) + 2x(x + β0)(C
P
n (x

2) + 2
γP

n DP
n (x

2)

γ2n−1
),

(4.3)

C2n+1(x) = −ΦP(x2)− 2x(x + β0)C
P
n (x

2) + 4x(x + β0)(x
2 − β2

0 −
γP

n

γ2n−1
)DP

n (x
2),

(4.4) D2n(x) = 2x(x + β0)
2DP

n (x
2),

(4.5)

D2n+1(x) = x(CP
n+1(x

2)−CP
n (x

2)+ 2
γP

n+1

γ2n+1
DP

n+1(x
2)+ 2(x2 − β2

0 −
γP

n

γ2n−1
)DP

n (x
2)).

To prove this proposition we need the following lemma.

Lemma 4.2. The associated polynomials of the first kind for the sequence of monic poly-
nomials {Bn}n≥0 are given by

(4.6) B
(1)
2n+1(ζ) = (ζ + β0)P

(1)
n (ζ2), n ≥ 0,

(4.7) B
(1)
2n+2(ζ) = P

(1)
n+1(ζ

2) + γ2n+3P
(1)
n (ζ2), n ≥ 0.

Proof. Using (2.15) one has

B
(1)
2n+1(ζ) =

〈
w,

B2n+2(x) −B2n+2(ζ)
x−ζ

〉
(w acts on the variable x )

=
〈

w,
Pn+1(x

2) −Pn+1(ζ
2)

x−ζ

〉
(from (2.18) )

=
〈

w, (x + ζ) Pn+1(x
2) −Pn+1(ζ

2)
x2−ζ2

〉

=
〈

σ((x + ζ)w), Pn+1(x) −Pn+1(ζ
2)

x−ζ2

〉

= (β0 + ζ)
〈

u,
Pn+1(x) −Pn+1(ζ

2)
x−ζ2

〉
( from (2.23) and (2.24) )

= (β0 + ζ)P
(1)
n (ζ2).

Hence, one get (4.6).

From (2.16) and (2.17)

B
(1)
2n+3(ζ) = (ζ + β0)B

(1)
2n+2(ζ) − γ2n+3B

(1)
2n+1(ζ),
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which implies

B
(1)
2n+2(ζ) =

B
(1)
2n+3(ζ)+γ2n+3B

(1)
2n+1(ζ)

ζ+β0

= P
(1)
n+1(ζ

2) + γ2n+3P
(1)
n (ζ2)( according to (4.6) ).

Therefore (4.7) follows.

Next, we will give the proof of Proposition 4.1.

Proof. Differentiation of (2.18) gives

(4.8) B′
2n+2(x) = 2xP′

n+1(x
2), n ≥ 0.

The change of variable x → x2 in (4.1) yields, for n ≥ 0,

ΦP(x2)P
′

n+1(x
2)− BP(x2)P

(1)
n (x2) =

CP
n+1(x

2)−CP
0 (x

2)
2 Pn+1(x

2)−
γP

n+1DP
n+1(x

2)Pn(x2).

Multiplying both sides of the above expression by 2x(x + β0) and taking into
account (2.18), (3.9), (3.10), (4.6), and (4.8) we get

(4.9)

Φ(x)B
′

2n+2(x)− B(x)B
(1)
2n+1(x) = x(x + β0)(C

P
n+1(x

2)− CP
0 (x

2))B2n+2(x)−
2γP

n+1x(x + β0)D
P
n+1(x

2)B2n(x), n ≥ 0.

The change of indices n → 2n in (2.17) gives

(4.10) B2n(x) =
1

γ2n+1
(−B2n+2(x) + (x + β0)B2n+1(x)), n ≥ 0.

Substitution of (4.10) in (4.9) gives for every n ≥ 0

(4.11)
Φ(x)B

′

2n+2(x)− B(x)B
(1)
2n+1(x) = −2x(x + β0)

2 γP
n+1DP

n+1(x
2)

γ2n+1
B2n+1(x)+

x(x + β0)(C
P
n+1(x

2)− CP
0 (x

2) +
2γP

n+1DP
n+1(x

2)
γ2n+1

)B2n+2(x).

The identification with (2.33), where n → 2n + 1, leads to

M(x, n)B2n+2(x) = N(x, n)B2n+1(x),

where for every n ≥ 0,

M(x, n) = 2x(x + β0)(
CP

n+1(x
2)−CP

0 (x
2)

2 +
γP

n+1DP
n+1(x

2)
γ2n+1

)− C2n+2(x)−C0(x)
2 ,



654 B. Bouras – F. Marcellan

N(x, n) = 2x(x + β0)
2 γP

n+1DP
n+1(x

2)
γ2n+1

− γ2n+2D2n+2(x).

Taking into account that B2n+1 and B2n+2 have no common zeros, then B2n+2

divides N(x, n), which is a polynomial of degree at most 2s′ + 3.

As a consequence, M(x, n) = N(x, n) = 0, n ≥ s′ + 1. Therefore

(4.12) D2n+2(x) = 2
γP

n+1

γ2n+1γ2n+2
x(x + β0)

2DP
n+1(x

2), n ≥ s′ + 1,

and
(4.13)

C2n+2(x) = C0(x)+ 4x(x+ β0)(
CP

n+1(x
2)− CP

0 (x
2)

2
+

γP
n+1DP

n+1(x
2)

γ2n+1
), n ≥ s′+ 1.

Taking into account (2.20) in (4.12), where n → n − 1, we get (4.4).

From (4.13), where n → n − 1, (2.30), (2.34), and (3.11) we get (4.2).

Substituting (4.2) and (4.4) in (2.37), where n → 2n, and taking into account
β2n = β0, (4.3) follows.

Finally substitution of (4.2), where n → n + 1, and (4.3) in (2.37), where n →
2n + 1, gives (4.5).

5 Examples

5.1 A symmetric Laguerre-Hahn sequence of orthogonal polynomials of

class s = 2

Let us consider β0 = 0 and let {Pn}n≥0 be the Laguerre-Hahn polynomial se-
quence satisfying the recurrence (2.19) with

(5.1) βP
0 = α − 1 + λ, βP

n+1 = 2n + α + 1, n ≥ 0

(5.2) γP
1 = ρ, γP

n+1 = n(n + α), n ≥ 1,

where λ ∈ IC , α + n 6= 0, n ≥ 1, and ρ ∈ IC − {0}.
This sequence has been studied in [1] and [5] in the framework of the Laguerre-
Hahn analogues of class 0 of the Laguerre polynomial sequence since its corre-
sponding linear functional u satisfies (3.8) with

(5.3) ΦP(x) = x,

(5.4) ΨP(x) = −x + α − 1,
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(5.5) BP(x) = x2 + [2(1 − α)− λ]x + α(α − 1 + λ)− ρ.

Using (5.1), (5.2), and (2.19) we can show by an easy recurrence that

(5.6) Pn(0) = (−1)n((α)n(α + λ − 1 −
ρ

α
) + (n − 1)!ρ)/α, n ≥ 2.

Here, for every complex number α, (α)0 = 1, (α)n = α(α + 1)...(α + n − 1), n ≥ 1,
will denote the Pochhammer symbol.
Hence, under some conditions on the parameters ρ , λ, and α, we can assume that
{Pn}n≥0 verifies

Pn(0) 6= 0, n ≥ 0.

Therefore, according to Proposition 3.3, w is a Laguerre-Hahn linear functional of
class s ≤ 3 and satisfies (2.27) with Φ(x) = x3, Ψ(x) = −2x2(x2 − α + 2),

B(x) = 2x{x4 + [2(1 − α)− λ]x2 + α(α − 1 + λ)− ρ}.

To determine the class s of w we use (2.28). One has Φ(0) = 0, (Φ
′
+ Ψ)(0) = 0,

B(0) = 0, and 〈w, θ0Ψ + θ2
0Φ + wθ2

0 B〉 = 0.
As a consequence, we can divide by x in (2.27) and we get

(5.7) Φ(x) = x2,

(5.8) Ψ(x) = −2x3 + (2α − 4)x,

(5.9) B(x) = 2{x4 + [2(1 − α)− λ]x2 + α(α − 1 + λ)− ρ}.

So w is a Laguerre-Hahn linear functional of class s ≤ 2. Notice that when
ρ 6= α(α− 1+λ) a new symmetric Laguerre-Hahn form of class s = 2 is obtained.

Concerning the expression of γn, the change of indices n → 2n in (2.17) yields

(5.10) B2n+2(x) = xB2n+1(x)− γ2n+1B2n(x), n ≥ 0.

Taking into account (2.18),

(5.11) Pn+1(x
2) = x2Rn(x

2)− γ2n+1Pn(x
2), n ≥ 0.

Thus for x = 0 (5.11) becomes

Pn+1(0) = −γ2n+1Pn(0)

or, equivalently,

(5.12) γ2n+1 = −
Pn+1(0)

Pn(0)
, n ≥ 0.
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From (2.20), one has

(5.13) γ2n+2 = −
γP

n+1Pn(0)

Pn+1(0)
, n ≥ 0.

From (5.2), (5.6), (5.12), and (5.13) we get

(5.14) γ1 = α − 1 + λ

(5.15) γ2n+1 =
(α)n+1(α + λ − 1 −

ρ
α ) + ρn!

(α)n(α + λ − 1 − ρ
α) + ρ(n − 1)!

, n ≥ 1,

(5.16) γ2n+2 =
(α)n+1n(α + λ − 1 − ρ

α) + ρ(n + α)n!

(α)n+1(α + λ − 1 − ρ
α ) + ρn!

, n ≥ 0.

5.2 A non symmetric Laguerre-Hahn sequence of orthogonal polynomials

of class s = 2

Let us consider a complex number β0 6= 0 and let {Pn}n≥0 be the Laguerre-Hahn
polynomial sequence satisfying the recurrence (2.19) with

(5.17) βP
0 = α + 3, βP

n+1 = 2n + α + 5, n ≥ 0

(5.18) γP
1 = ρ, γP

n+1 = (n + 2)(n + α + 2), n ≥ 1,

where α + n + 2 6= 0, n ≥ 1.

This sequence has been studied in [3] from the point of view of the analytic
properties of general associated Laguerre and Hermite polynomials as well as in
[1] and [5] in the framework of the Laguerre-Hahn analogues of class 0 of the La-
guerre polynomial sequence since its corresponding linear functional u satisfies
(3.8) with

(5.19) ΦP(x) = x,

(5.20) ΨP(x) = x − α − 3,

(5.21) BP(x) = −α − 1.

We will assume that
Pn(β

2
0) 6= 0, n ≥ 0,
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so that the linear functional w is regular. Notice that an explicit expression of Pn

in terms of hypergeometric functions is given in [3, formula (2.8)].

Therefore, according to Proposition 3.3, w is a Laguerre-Hahn linear func-
tional of class s ≤ 3 and satisfies (2.27) with

(5.22) Φ(x) = (x + β0)x
2,

(5.23) Ψ(x) = 2x(x + β0)(x
2 − α − 3)− 2x2,

(5.24) B(x) = −2(α + 1)x.

To determine the class s of w we use (2.28). One has Φ(0) = 0, (Φ
′
+ Ψ)(0) = 0,

B(0) = 0, and 〈w, θ0Ψ + θ2
0Φ + wθ2

0 B〉 = 0.

As a consequence, we can divide by x in (2.27) and we get

(5.25) Φ(x) = (x + β0)x,

(5.26) Ψ(x) = 2(x + β0)(x
2 − α −

5

2
)− 2x,

(5.27) B(x) = −2(α + 1).

So w is a Laguerre-Hahn linear functional of class s = 2.

Concerning the expression of γn, the change of indices n → 2n in (2.17) yields

(5.28) B2n+2(x) = (x + β0)B2n+1(x)− γ2n+1B2n(x), n ≥ 0.

Taking into account (2.18),

(5.29) Pn+1(x
2) = (x2 − β0

2)Rn(x
2)− γ2n+1Pn(x

2), n ≥ 0.

Thus, for x = β0 (5.29) becomes

Pn+1(β
2
0) = −γ2n+1Pn(β

2
0)

or, equivalently,

(5.30) γ2n+1 = −
Pn+1(β

2
0)

Pn(β2
0)

, n ≥ 0.

From (2.20), one has

(5.31) γ2n+2 =
(n + 2)(n + α + 2)

γ2n+1
, n ≥ 0.
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