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Abstract

Let p > 0 and let Ω ⊂ Cd be a bounded, strictly pseudoconvex domain
with boundary of class C2. We consider a family of directions in the form of
a continuous function γ : ∂Ω × [0, 1] ∋ (z, t) → γ(z, t) ∈ Ω satisfying some
natural properties. Then for a given lower semicontinuous, strictly positive
function H on ∂Ω we construct a holomorphic function f ∈ O(Ω) such that

H(z) =
∫ 1

0 | f (γ(z, t))|p dt for η-almost all z ∈ ∂Ω where η is a given proba-
bility measure on ∂Ω.

1 Introduction

In this paper we intend to investigate the so-called Radon inversion problem, i.e.
the problem of reconstructing a function on the basis of known integrals of this
function over some subset of submanifolds of its domain.

For a given domain Ω ⊂ C
n and p > 0 we consider a family of holomorphic

functions on Ω, integrable along the family of real directions in the form of a
continuous function γ : ∂Ω × [0, 1) ∋ (z, t) → γ(z, t) ∈ Ω. In particular we can
define the Radon operator by

R : O(Ω)× ∂Ω ∋ ( f , ξ) → R( f , ξ)=
∫ 1

0
| f ◦ γ(ξ, t)|p dt

and formulate the Radon inversion problem in the following way:
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Let us assume that H is a lower semicontinuous function on ∂Ω. Is it possible
to construct a function f ∈ O(Ω) such that R( f , ξ) = H(ξ) for ξ ∈ ∂Ω?

Let us observe that the above problem is similar to the construction of the
inner function (see [1, 13, 14, 15]). It is known that a non-constant holomorphic
function f ∈ O(Ω) with non-tangential limit in all boundary points equal to 1,
does not exist. In fact, all the inner functions constructed in the papers [1, 13, 14,
15] have non-tangential limits well defined only in almost all boundary points (in
terms of a proper surface measure). In the Radon inversion problem the role of
the non-tangential limit is played bythe value R( f , ξ) which is well defined in all
boundary points ξ.

We will solve the probability version of the Radon inversion problem. In par-
ticular (see Theorem 4.1) for a given probability measure η on ∂Ω, we construct
a holomorphic function f such that R( f , ξ) = H(ξ) for η-almost all ξ ∈ ∂Ω.
However, the full version still remains an open problem.

As an application we give a description of so called exceptional sets (Theo-
rem 4.8)

E
p
Ω
( f ) := {ξ ∈ ∂Ω : R( f , ξ) = ∞} . (1.1)

For more information about exceptional sets we refer the reader to e.g. [2, 3, 4, 5,
6, 9, 10, 11].

We also solve the Dirichlet problem for plurisubharmonic and real analytic
functions (Theorem 4.4).

1.1 Geometric notions.

In this paper we assume, in general, that Ω ⊂ C
d is a bounded, strictly convex

domain with boundary of class C2 and a defining function ρ. Only the last section
will be devoted to strictly pseudoconvex domains. We consider the natural scalar
product 〈◦, ◦〉. As usual, by B(ξ; r) we denote the open ball with center ξ and
radius r, i.e. B(ξ; r) :=

{
z ∈ Cd : ‖ξ − z‖ < r

}
. Note that there exists πd > 0 such

that L2d(B(ξ, r)) = πdr2d for ξ ∈ Cd and r > 0, where L
2d is the 2d-dimensional

Lebesgue measure. Assume that 0 ∈ Ω ⊂ B(0, R) for some R > 0.
A subset A ⊂ Cd is called α-separated if ‖z1 − z2‖ > α for all distinct elements

z1 and z2 of A. It is clear that for α > 0 each α-separated subset of ∂Ω is finite.

If g : Cd → C is a function of class C2 then we denote gξ =
(

∂g
∂z1

(ξ), ...,
∂g
∂zd

(ξ)
)

and

Hg(P, w) :=
1

2

d

∑
j,k=1

∂2g

∂zj∂zk
(P)wjwk +

1

2

d

∑
j,k=1

∂2g

∂zj∂zk
(P)wjwk +

d

∑
j,k=1

∂2g

∂zj∂zk
(P)wjwk.

Definition 1.1. Let X be a compact subset of ∂Ω. We say that a continuous func-
tion γ : X × [0, 1] ∋ (z, t) → γ(z, t) ∈ Ω defines a set of real directions on Ω if γ
has the following properties:

1. γ(X × [0, 1)) ⊂ Ω.

2. γ(X × {1}) ⊂ ∂Ω.
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3. ∂γ
∂t (◦, ◦) is a continuous function on X × [0, 1].

4. There exist constants c1, c2 > 0 such that c1 ‖z − ξ‖ ≤ ‖γ(z, 1)− γ(ξ, 1)‖ ≤
c2 ‖z − ξ‖ for z, ξ ∈ X.

5. γ(ξ, ◦) is tangential to ∂Ω at γ(ξ, 1) i.e. Re
〈

∂γ
∂t (ξ, 1), ργ(ξ,1)

〉
> 0 for ξ ∈ X.

2 Preliminary calculations

We need the following result.

Lemma 2.1. There exist constants c1, c2 > 0 such that for z, ξ ∈ ∂Ω one has:

c1 ‖z − ξ‖2 ≤ Re
〈

ξ − z, ρξ

〉
≤ c2 ‖z − ξ‖2 . (2.1)

Proof. It suffices to use the same arguments as in the proof [12, Lemma 2.1].

In order to control the values of the functions constructed we need some in-
formation about α-separated sets.

Lemma 2.2. Suppose that A = {ξ1, .., ξs} is a 2αt-separated subset of ∂Ω. For z ∈ ∂Ω

let

Ak(z) := {ξ ∈ A : αkt ≤ ‖z − ξ‖ ≤ α(k + 1)t} .

Then the set Ak(z) has at most (k + 2)2d elements. The set A0 has at most 1 element and

s ≤ max
{

1,
(

2R
αt

)2d
}

.

Proof. Putting ρ(z, ξ) = ‖z − ξ‖, it suffices to use the same arguments as in the
proof [12, Lemma 2.2].

Lemma 2.3. If A ⊂ ∂Ω is αt-separated, then for each β > α there exists an integer
K = K(α, β) such that A can be partitioned into K disjoint βt-separated sets.

Proof. see [12, Lemma 2.3]

3 Basic results for strictly convex domains

Let p > 0. Assume that Ω is a bounded strictly convex domain, X is a compact
subset of ∂Ω and γ : X × [0, 1] → Ω defines a set of real directions on Ω.

In particular there exist constants c2 ≥ c1 > 0 such that

c1 ‖z − w‖ ≤ ‖γ(z, 1)− γ(w, 1)‖ ≤ c2 ‖z − w‖ (3.1)

for z, w ∈ X. Due to Lemma 2.1 there exist constants c3, c4 > 0 such that for
z, ξ ∈ ∂Ω

−c3 ‖z − ξ‖2 ≤ Re
〈

z − ξ, ρξ

〉
≤ −c4 ‖z − ξ‖2 . (3.2)
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Lemma 3.1. Denoting

Fm,ξ(z) :=

(
mRe

〈
∂γ

∂t
(ξ, 1), ργ(ξ,1)

〉) 1
p

exp

(
m

p

〈
z − γ(ξ, 1), ργ(ξ,1)

〉)

where q = supξ∈X

{
1, Re

〈
∂γ
∂t (ξ, 1), ργ(ξ,1)

〉}
, if 0 < b1 < 1 < b2 then there exist

α, β1, β2, N0, r0 > 0 such that for m ≥ N0, z, ξ ∈ X one has the following properties:

1. if ‖z − ξ‖ ≤ r0 then b1e−mβ1‖z−ξ‖2 − e−mα ≤
∫ 1

0

∣∣Fm,ξ ◦ γ(z, t)
∣∣p

dt ≤
b2e−mβ2‖z−ξ‖2

+ e−mα;

2. if (0 ≤ t ≤ 1 − r0) ∨ (‖z − ξ‖ ≥ r0) then
∣∣Fm,ξ ◦ γ(z, t)

∣∣p ≤ e−mα.

Proof. There exists a constant 1 > r0 > 0 such that

0 <
1

b2
Re

〈
∂γ

∂t
(ξ, 1), ργ(ξ,1)

〉
≤ Re

〈
∂γ

∂t
(z, t), ργ(ξ,1)

〉
≤ 1

b1
Re

〈
∂γ

∂t
(ξ, 1), ργ(ξ,1)

〉

(3.3)
for t ∈ [1 − r0, 1] and z, ξ ∈ X so that ‖z − ξ‖ ≤ r0. Moreover there exists α > 0
such that

Re
〈

γ(z, t)− γ(ξ, 1), ργ(ξ,1)

〉
≤ −2α

for (z, ξ, t) ∈ {(x, y, s) ∈ X × X × [0, 1] : ‖x − y‖ ≥ r0 ∨ s ≤ 1 − r0}.
Let N0 be such that

e−mα ≥ mqe−2mα

for m ≥ N0. In particular
∣∣Fm,ξ ◦ γ(z, t)

∣∣p ≤ mqe−2mα ≤ e−mα for m ≥ N0 and
(0 ≤ t ≤ 1 − r0) ∨ (‖z − ξ‖ ≥ r0).

Now assume that ‖z − ξ‖ < r0. Due to (3.1), (3.2) and (3.3) we may estimate
for β1 := c2

2c3, β2 := c2
1c4 and m ≥ N0:

∫ 1

0

∣∣Fm,ξ ◦ γ(z, t)
∣∣p

dt ≥
∫ 1

1−r0

∣∣Fm,ξ ◦ γ(z, t)
∣∣p

dt

≥ b1em〈γ(z,1)−γ(ξ,1),ργ(ξ,1)〉 − b1em〈γ(z,1−r0)−γ(ξ,1),ργ(ξ,1)〉

≥ b1e−mc3‖γ(z,1)−γ(ξ,1)‖2 − e−mα ≥ b1e−mβ1‖z−ξ‖2 − e−mα,

and

∫ 1

0

∣∣Fm,ξ ◦ γ(z, t)
∣∣p

dt ≤
∫ 1

1−r0

∣∣Fm,ξ ◦ γ(z, t)
∣∣p

dt + e−mα

≤ b2em〈γ(z,1)−γ(ξ,1),ργ(ξ,1)〉 + e−mα ≤ b2e−mβ2‖z−ξ‖2

+ e−mα.

Lemma 3.2. Assume that Ω is a bounded domain, X is a compact subset of Ω and
γ : X × [0, 1] → Ω is a continuous function such that γ(X × [0, 1)) ⊂ Ω. Let f be
a continuous complex function on Ω and ε, δ ∈ (0, 1). If {gm}m∈N

is a sequence of
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continuous complex functions on Ω such that limm→∞ gm(z) = 0 for z ∈ Ω, then there
exists m0 ∈ N such that
∫ 1

0
|( f + gm) ◦ γ(z, t)|p dt ≥ −ε +

∫ 1

0
| f ◦ γ(z, t)|p dt + δp

∫ 1

0
|gm ◦ γ(z, t)|p dt

∫ 1

0
|( f + gm) ◦ γ(z, t)|p

︸ ︷︷ ︸
Lm(z,t)

dt ≤ ε +
∫ 1

0
| f ◦ γ(z, t)|p dt + δ−p

∫ 1

0
|gm ◦ γ(z, t)|p dt

for m > m0, z ∈ X.

Proof. Let M := supz∈Ω
| f (z)| and r ∈ (1

2 , 1) be such that (1−r)2Mp

(1−δ)p ≤ ε
4 . We may

consider a continuous function Ψ : X × D ∋ (z, λ) →
∫ r

0 | f ◦ γ(z, t) + λ|p dt.

There exists α ∈ (0, p
√

ε
4) such that |Ψ(z, 0)− Ψ(z, λ)| ≤ ε

4 for z ∈ X, and |λ| ≤ α.
As limm→∞ gm(z) = 0 for z ∈ Ω, there exists m0 such that |gm ◦ γ(z, t)| ≤ α for
m > m0, 0 ≤ t ≤ r and z ∈ X. In particular for m > m0 and z ∈ X we can
estimate:

∫ r

0
Lm(z, t)dt ≥ − ε

4
+

∫ r

0
| f ◦ γ(z, t)|p dt

≥ − ε

2
+

∫ r

0
| f ◦ γ(z, t)|p dt + δp

∫ r

0
|gm ◦ γ(z, t)|p dt

and
∫ r

0
Lm(z, t)dt ≤ ε

4
+

∫ r

0
| f ◦ γ(z, t)|p dt

≤ ε

2
+

∫ r

0
| f ◦ γ(z, t)|p dt + δ−p

∫ r

0
|gm ◦ γ(z, t)|p dt.

If t ∈ A1,m,z := {t ∈ [r, 1] : |( f + gm) ◦ γ(z, t)| ≤ δ |gm ◦ γ(z, t)|} then

|gm ◦ γ(z, t)| ≤ | f ◦γ(z,t)|
1−δ ≤ M

1−δ . In particular we may estimate
∫ 1

r
Lm(z, t)dt ≥

∫

[r,1]\A1,m,z

δp |gm ◦ γ(z, t)|p dt ≥
∫ 1

r
| f ◦ γ(z, t)|p dt +

+δp
∫ 1

r
|gm ◦ γ(z, t)|p dt −

∫ 1

r
Mpdt −

∫ 1

r

Mpδp

(1 − δ)p dt

≥ − ε

2
+

∫ 1

r
| f ◦ γ(z, t)|p dt + δp

∫ 1

r
|gm ◦ γ(z, t)|p dt.

If t ∈ A2,m,z :=
{

t ∈ [r, 1] : | f ◦ γ(z, t)| + |gm ◦ γ(z, t)| ≥ δ−1 |gm ◦ γ(z, t)|
}

then |gm ◦ γ(z, t)| ≤ | f ◦γ(z,t)|
δ−1−1

≤ δM
1−δ . In particular

∫ 1

r
Lm(z, t)dt ≤

∫

[r,1]\A2,m,z

δ−p |gm ◦ γ(z, t)|p dt +
∫ 1

r

Mp

(1 − δ)p dt

≤
∫ 1

r
| f ◦ γ(z, t)|p dt + δ−p

∫ 1

r
|gm ◦ γ(z, t)|p dt +

−
∫ 1

r
Mpdt −

∫ 1

r

2Mp

(1 − δ)p dt

≤ − ε

2
+

∫ 1

r
| f ◦ γ(z, t)|p dt + δ−p

∫ 1

r
|gm ◦ γ(z, t)|p dt.
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Lemma 3.3. There exist constants C > c > 0 such that if T is a compact subset of Ω \X,
ε ∈ (0, 1) and H is a continuous strictly positive function on X, then we can choose
N1 > 0 such that for m ≥ N1 and each C√

m
-separated subset A of X, the holomorphic

function gm,A := ∑ξ∈A (H(ξ))
1
p Fm,ξ satisfies

1. |gm,A(w)| ≤ ε for w ∈ T;

2.
∫ 1

0 |gm,A(γ(z, t))| p dt < 2H(z) for all z ∈ X;

3.
∫ 1

0 |gm,A(γ(z, t))| p dt > H(z)
2 for each z ∈ X such that ‖z − ξ‖ ≤ c√

m
for some

ξ ∈ A.

Proof. Let us denote a = min
{

1, 1
p

}
. We may assume that ‖H‖∞ = 1. Let 0 <

δ < b1 < 1 < b2 be such that

(1 + δ)a (b2 + δ)a + 3δa
< 2a (3.4)

(1 − δ)a
(

b1e−
1
16 − δ

)a
− 3δa

> 2−a. (3.5)

Now we can choose α, β1, β2, N0, r0 > 0 from Lemma 3.1. Let c = 1

4
√

β1
. There

exists C > 0 such that C > c and for k ∈ N \ {0} we have

ba
2(k + 2)2de−

aC2β2k2

4 ≤ 2−k.

Due to Lemma 2.2 we have #A ≤
(

4R
√

m
C

)2d
.

Let t := supw∈T,ξ∈X
1
p

〈
w − γ(ξ, 1), ργ(ξ,1)

〉
. As t < 0, for w ∈ T, sufficiently

large N1 and m ≥ N1, we may estimate

|gm,A(w)| ≤ ∑
ξ∈A

(mq)
1
p emt ≤

(
4R

√
m

C

)2d

(mq)
1
p emt ≤ ε

and conclude that property (1) holds.
For z ∈ X let us denote

Ak(z) :=

{
ξ ∈ A :

Ck

2
√

m
≤ ‖z − ξ‖ ≤ C(k + 1)

2
√

m

}
.

Let now s > 0 be so small that ‖η − ξ‖ ≤ s =⇒ (1 − δ)H(η) ≤ H(ξ) ≤
(1 + δ)H(η). We may assume that N1 is large enough that s ≥ C

2
√

N1
+ c√

N1
and

e−aN1α ≤ δ. Observe that we may estimate

ba
2 ∑

k:C(k+1)≥2s
√

m

(k + 2)2de−
aC2β2k2

4 ≤ ∑
k≥

[
2s
√

m
C −1

]
2−k ≤ 2−

2s
√

m
C +1.
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Now if z ∈ X and A0(z) = ∅, then, due to (3.4), Lemma 2.2 and Lemma 3.1, we
may estimate, for N1 large enough and m ≥ N1

(∫ 1

0
|gm,A(γ(z, t))| p dt

)a

≤
∞

∑
k=1

∑
ξ∈Ak(z)

(
H(ξ)

∫ 1

0

∣∣Fm,ξ(γ(z, t))
∣∣p

dt

)a

≤
∞

∑
k=1

∑
ξ∈Ak(z)

H(ξ)a

(
ba

2e−
aC2β2k2

4 + e−amα

)

≤ (1 + δ)aH(z)a

[
2s
√

m
C

]

∑
k=1

ba
2(k + 2)2de−

aC2β2k2

4 +

+2−
2s
√

m
C +1 +

(
4R

√
m

C

)2d

e−amα

≤ δa(1 + δ)aH(z)a + δaH(z)a ≤ 3δaH(z)a.

Due to Lemma 2.2, if A0(z) 6= ∅ then A0(z) = {ξ0} for some ξ0 ∈ ∂Ω where
‖z − ξ‖ ≤ C

2
√

m
≤ s. In particular

(∫ 1

0
|gm,A(γ(z, t))| p dt

)a

≤
(

H(ξ0)
∫ 1

0

∣∣Fm,ξ0
(γ(z, t))

∣∣p
dt

)a

+ 3δaH(z)a

≤ H(ξ0)
a
(
b2 + e−mα

)a
+ 3δaH(z)a

≤ H(z)a(1 + δ)a (b2 + δ)a + 3δaH(z)a
< 2aH(z)a

for z ∈ X, N1 large enough and m ≥ N1, which gives property (2).
Now let ξ1 ∈ A be such that ‖z − ξ1‖ ≤ c√

m
≤ s. Due to Lemma 3.1 and (3.5)

we may estimate, for N1 large enough and m ≥ N1

(∫ 1

0
|gm,A(γ(z, t))| p dt

)a

≥
(

H(ξ0)
∫ 1

0

∣∣Fm,ξ1
(γ(z, t))

∣∣p
dt

)a

− 3δaH(z)a

≥ H(ξ1)
a
(

b1e−
1

16 − e−mα
)a

− 3δaH(z)a

≥ H(z)a(1 − δ)a
(

b1e−
1
16 − δ

)a
− 3δaH(z)a

>
H(z)a

2a

which gives property (3).

Now we are ready to prove the following result:

Theorem 3.4. There exists a natural number K such that, if ε ∈ (0, 1), T is a compact
subset of Ω \ X and H is a continuous, strictly positive function on X, then there exist
holomorphic entire functions f1, ..., fK such that

∥∥ f j

∥∥
T
≤ ε, and one has for z ∈ X the

following inequality

H(z)

4
< max

j=1,...,K

∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt < H(z).
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Proof. Let C > c > 0 be the constants from Lemma 3.3. Due to Lemma 2.3 there
exists a natural number K such that each c√

m
-separated subset of X can be par-

titioned into K disjoint C√
m

-separated sets. Let A be a maximal c√
m

-separated

subset of X. It can be partitioned into A1, ..., AK disjoint C√
m

-separated sets. Now

due to Lemma 3.3 there exists m and holomorphic, entire functions f j := gm,Aj

such that
∥∥ f j

∥∥
T
≤ ε and

1.
∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt < H(z) for all z ∈ X;

2.
∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt > H(z)
4 for each z ∈ X such that ‖z − ξ‖ ≤ c√

m
for some

ξ ∈ Aj.

As A is a maximal c√
m

-separated subset of X there exists, for z ∈ X, j0 ∈ {1, ..., K}
and ξ j0 ∈ Aj0 such that

∥∥z − ξ j0

∥∥ ≤ c√
m

. In particular

H(z)

4
<

∫ 1

0

∣∣ f j0(γ(z, t))
∣∣p

dt ≤ max
j=1,...,K

∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt < H(z).

4 Consequences of Theorem 3.4 for strictly pseudoconvex do-

mains

In this section we assume that Ω is a bounded, strictly pseudoconvex domain
with boundary of class C2, X is a compact subset of ∂Ω and γ : X × [0, 1] → Ω

defines a set of real directions on Ω.
As a first application of Theorem 3.4 we give the following result.

Theorem 4.1. It is possible to choose a neighbourhood W of Ω and a natural number K
such that, if ε ∈ (0, 1), T is a compact subset of Ω \ X and H is a continuous, strictly
positive function on X, then there exist holomorphic functions f1, ..., fK on W such that∥∥ f j

∥∥
T
≤ ε, and one has for z ∈ X the following inequality

H(z)

4
< max

j=1,...,K

∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt < H(z).

Proof. By Fornaess’ embedding theorem [7], there exists a neighbourhood W of

Ω, a strictly convex, bounded domain Ω̃ ⊂ CN with boundary of class C2 and a
holomorphic mapping ψ : U → CN, such that ψ maps W biholomorphically onto
some complex submanifold ψ(W) of C

N, such that

1. ψ(Ω) ⊂ Ω̃;

2. ψ(∂Ω) ⊂ ∂Ω̃;

3. ψ(W \ Ω) ⊂ CN \ Ω̃;

4. ψ(W) intersects ∂Ω̃ transversally.
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Let X̃ = ψ(X). Observe that

γ̃ : X̃ × [0, 1] ∋ (z, t) → ψ(γ(ψ−1(z), t)) ∈ Ω̃

defines a set of real directions on Ω̃. Let K be the natural number from Theorem
3.4 used for the domain Ω̃. Now due to Theorem 3.4 there exist entire holomor-
phic functions f̃1, ..., f̃K on C

N such that
∥∥∥ f̃ j

∥∥∥
ψ(T)

≤ ε, and we have for z ∈ X̃ the

following inequality

H(ψ−1(z))

4
< max

j=1,...,K

∫ 1

0

∣∣∣ f̃ j(γ̃(z, t))
∣∣∣

p
dt < H(ψ−1(z)).

In particular the functions f j = f̃ j ◦ ψ have the required properties.

¿From this moment on we assume that K and W are as in Theorem 4.1.

Lemma 4.2. Let g1, ..., gK be continuous complex functions on Ω, T be a compact subset
of Ω \ X, ε > 0 and u be a strictly positive, continuous function on X. Then there exist
functions f1, ..., fK holomorphic on W such that

1.
∣∣ f j(z)

∣∣ ≤ ε for z ∈ T;

2. u(z) − ε < ∑
K
j=1

∫ 1
0

∣∣( f j + gj)(γ(z, t))
∣∣ p

dt − ∑
K
j=1

∫ 1
0

∣∣gj(γ(z, t))
∣∣p

dt < u(z)

for z ∈ X.

Proof. Let θ = 1 − 1
4K , 1 − δ2p = 1−θ

4 and g(z) = ∑
K
j=1

∫ 1
0

∣∣gj(γ(z, t))
∣∣p

dt. Let us

define a sequence of continuous functions Hj such that, for z ∈ ∂Ω, we have

0 = H0(z) < ... < Hj(z) < Hj+1(z) < ... < lim
j→∞

Hj(z) = g(z) + u(z).

Now we construct sequences
{

f j,k

}j=1,...,K

k∈N
of holomorphic functions on W

such that, if vm(z) := ∑
K
j=1

∫ 1
0

∣∣(gj + ∑
m
k=1 f j,k

)
(γ(z, t))

∣∣p
dt then

(a)
∣∣ f j,k(z)

∣∣ ≤ ε
2k for z ∈ T;

(b) 0 < Hm(z) − vm(z) < 2 ∑
m
k=1

(
1+θ

2

)m−k
(Hk(z) − Hk−1(z)) for z ∈ X and

m ∈ N.

If m = 1 then it is sufficient to select f1,1 = f2,1 = ... = fK,1 = 0. Now assume

that we have constructed holomorphic functions
{

f j,k

}j=1,...,K

k=1,...,m−1
on W such that

(a)-(b) hold. Let us denote

2εm =
1 − θ0

4
inf

z∈∂Ω
(Hm−1(z)− vm−1(z))

Gm(z) = Hm(z)− εm − vm−1(z).

Due to Lemma 3.2 and Theorem 4.1 there exist f1,m, ..., fK,m, holomorphic func-
tions on W, such that property (a) holds and:
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• 0 < Gm(z)− ∑
K
j=1 δ−p

∫ 1
0

∣∣ f j,m(γ(z, t))
∣∣p

dt < θGm(z);

• vm(z) ≥ −εm + vm−1(z) + ∑
K
j=1 δp

∫ 1
0

∣∣ f j,m(γ(z, t))
∣∣p

dt;

• vm(z) ≤ εm + vm−1(z) + ∑
K
j=1 δ−p

∫ 1
0

∣∣ f j,m(γ(z, t))
∣∣p

dt.

Now we may estimate

Hm(z) > εm + vm−1(z) + δ−p
K

∑
j=1

∫ 1

0

∣∣ f j,m(γ(z, t))
∣∣p

dt ≥ vm(z).

Moreover

Hm(z) < εm + vm−1(z) + δ−p
K

∑
j=1

∫ 1

0

∣∣ f j,m(γ(z, t))
∣∣p

dt + θGm(z)

≤ vm(z) + 2εm + ((δ−p − δp)δp + θ)Gm(z)

≤ vm(z) +
1 − θ

4
(Hm−1(z)− vm−1(z)) +

(
1 − θ

4
+ θ

)
Gm(z).

In particular

Hm(z)− vm(z) <
1 + θ

2
(Hm−1(z)− vm−1(z)) +

1 + 3θ

4
(Hm(z)− Hm−1(z))

≤ 2
m

∑
k=1

(
1 + θ

2

)m−k

(Hk(z)− Hk−1(z)).

Let M := supz∈∂Ω(u(z) + g(z)). There exists m0 such that m
(

1+θ
2

)m
M <

ε
4 and

Hm(z) − Hm−1(z) < ε0 := ε(1−θ)
8 for m ≥ m0 and z ∈ X. In particular for z ∈ X

we may estimate

2m

∑
k=1

(
1 + θ

2

)m−k

(Hk(z)− Hk−1(z)) ≤ m

(
1 + θ

2

)m

M +
2m

∑
k=m0

(
1 + θ

2

)2m−k

ε0

≤ ε

4
+

ε

4
≤ ε

2
.

Now we may conclude that there exists m ∈ N sufficiently large, such that, for
z ∈ X, we have

vm(z) > Hm(z)−
m

∑
k=1

(
1 + θ

2

)m−k

(Hk(z)− Hk−1(z)) ≥ u(z) + g(z)− ε.

Observe that the functions f j = ∑
m
k=1 f j,k have the properties (1)-(2).

Now we can prove our second application.

Theorem 4.3. Let ε > 0, u be a lower semi-continuous, strictly positive function on X
and T be a compact subset of Ω \ X. Then there exist holomorphic functions f1, ..., fK on

Ω such that
∥∥ f j

∥∥
T
≤ ε and ∑

K
j=1

∫ 1
0

∣∣ f j(γ(z, t))
∣∣p

dt = u(z) for z ∈ X.
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Proof. Let
{

Tj

}
j∈N

be a sequence of compact sets such that Tj is contained in the

interior of Tj+1 for each j and
⋃

j∈N Tj = Ω.
There exists a sequence Hm of continuous functions on ∂Ω such that 0 =

H0(z) < H1(z) < H2(z) < ... < limj→∞ Hj(z) = u(z).

Due to Lemma 4.2 there exists a sequence
{

f j,k

}j=1,...,K

k∈N
of holomorphic func-

tions on W such that

1.
∣∣ f j,k(z)

∣∣ ≤ 2−kε for z ∈ Tk ∪ T;

2. Hm(z)− 2−m
< ∑

K
j=1

∫ 1
0

∣∣∑m
k=1 f j,k(γ(z, t))

∣∣p
dt < Hm(z) for z ∈ X.

Now it suffices to define f j = ∑
∞
k=1 f j,k and to observe that the functions f1, ..., fK

have the required properties.

Now we can solve the Dirichlet problem for plurisubharmonic functions.

Theorem 4.4. Let Ω be a bounded, strictly pseudoconvex domain with boundary of class
C2 such that [0, 1)Ω ⊂ Ω. Assume that [0, 1]z is transversal to ∂Ω at z ∈ ∂Ω. Let
u be a continuous, strictly positive function on ∂Ω. Then there exist holomorphic func-

tions f1, ..., fK such that v(z) = ∑
K
j=1

∫ 1
0

∣∣ f j(tz)
∣∣2

dt is a plurisubharmonic, real analytic

function on Ω and continuous on Ω. Moreover u(z) = v(z) for z ∈ ∂Ω.

Proof. Observe that γ : ∂Ω × [0, 1] ∋ (z, t) → zt ∈ Ω is a set of real directions on
Ω. Let us define a sequence of continuous functions Hj such that 0 = H0(z) and

Hj(z) − Hj−1(z) = 2−ju(z). Observe that limj→∞ Hj(z) = u(z). Let
{

Tj

}
j∈N

be a

sequence of compact subsets of Ω such that Tj is contained in the interior of Tj+1

for each j.

Let θ = 1 − 1
4K and 1− δ4 = 1−θ

4 . Now we construct sequences
{

f j,k

}j=1,...,K

k∈N
of

holomorphic functions on W such that

(a)
∣∣ f j,k(z)

∣∣ ≤ 2−k for z ∈ Tk.

(b) 0 < Hm(z)− vm(z) < m
(

1+θ
2

)m−1
u(z) for z ∈ ∂Ω and m ∈ N.

(c) |vm+1(z)− vm(z)| ≤ m
(

1+θ
2

)m−2
supw∈∂Ω u(w) for z ∈ Ω and m ∈ N.

where vm(z) := ∑
K
j=1

∫ 1
0

∣∣∑m
k=1 f j,k(tz)

∣∣2
dt and v0 = 0. If m = 1 then it is sufficient

to choose f1,1 = f2,1 = ... = fK,1 = 0. Now assume that we have constructed

holomorphic functions
{

f j,k

}j=1,...,K

k=1,...,m−1
on W such that (a)-(c) holds. Let us denote

2εm =
1 − θ

4
inf

z∈∂Ω
(Hm−1(z)− vm−1(z))

Gm(z) = Hm(z)− εm − vm−1(z).

As [0, 1)Ω ⊂ Ω, due to Lemma 3.2 and Theorem 4.1, there exist f1,m, ..., fK,m,
holomorphic functions on W, such that property (a) holds and:
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• 0 < Gm(z)− ∑
K
j=1 δ−2

∫ 1
0

∣∣ f j,m(tz)
∣∣2

dt < θGm(z) for z ∈ ∂Ω;

• vm(z) ≥ −εm + vm−1(z) + ∑
K
j=1 δ2

∫ 1
0

∣∣ f j,m(tz)
∣∣2

dt for z ∈ Ω;

• vm(z) ≤ εm + vm−1(z) + ∑
K
j=1 δ−2

∫ 1
0

∣∣ f j,m(tz)
∣∣2

dt for z ∈ Ω.

Now we may estimate, for z ∈ ∂Ω,

Hm(z) > εm + vm−1(z) + δ−2
K

∑
j=1

∫ 1

0

∣∣ f j,m(tz)
∣∣2

dt ≥ vm(z).

Moreover for z ∈ ∂Ω we have

Hm(z) < εm + vm−1(z) + δ−2
K

∑
j=1

∫ 1

0

∣∣ f j,m(tz)
∣∣2

dt + θGm(z)

≤ vm(z) + 2εm + ((δ−2 − δ2)δ2 + θ)Gm(z)

≤ vm(z) +
1 − θ

4
(Hm−1(z)− vm−1(z)) +

(
1 − θ

4
+ θ

)
Gm(z).

In particular we obtain property (b):

Hm(z)− vm(z) <
1 + θ

2
(Hm−1(z)− vm−1(z)) +

1 + 3θ

4
(Hm(z)− Hm−1(z))

≤ (m − 1)

(
1 + θ

2

)m−1

u(z) +
1 + θ

2

u(z)

2m
≤ m

(
1 + θ

2

)m−1

u(z).

Moreover for z ∈ Ω we have

|vm+1(z)− vm(z)| ≤ hm(z) := εm + δ−p
∫ 1

0

∣∣ f j,m(tz)
∣∣2

dt.

Due to (b) we may estimate, for z ∈ ∂Ω,

hm(z) ≤ εm + Gm(z) ≤ Hm(z)− vm−1(z) ≤ (Hm − Hm−1 + Hm−1 − vm−1)(z)

≤ 2−mu(z) + (m − 1)

(
1 + θ

2

)m−2

u(z) ≤ m

(
1 + θ

2

)m−2

u(z).

As hm is a continuous and plurisubharmonic function, for z ∈ Ω we obtain prop-
erty (c):

|vm+1(z)− vm(z)| ≤ hm(z) ≤ m

(
1 + θ

2

)m−2

sup
w∈∂Ω

u(w).

Let us now define holomorphic functions f j = ∑
∞
k=1 f j,k on Ω. Observe that vm →

v := ∑
K
j=1

∫ 1
0

∣∣∑∞
k=1 f j,k(tz)

∣∣2
dt uniformly on Ω. In particular v is a continuous

function on Ω, plurisubharmonic and real analytic on Ω. Moreover u(z) = v(z)
for z ∈ ∂Ω.

Before we give the construction of a holomorphic function with given inte-
grals on almost all real directions, we need some additional results.
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Lemma 4.5. Let ε ∈ (0, 1), η be a probability measure on X. Let U be an open subset
of X such that η(U) > 0. Moreover let T be a compact subset of Ω \ X, g be a complex
continuous function on Ω and H be a continuous, strictly positive function on X. Then
there exists a holomorphic function f on W and an open subset V of U such that

1. ‖ f‖T ≤ ε;

2. −ε <
∫ 1

0 |( f + g) (γ(z, t))| p dt −
∫ 1

0 |g(γ(z, t))| p dt < H(z) for z ∈ X;

3. H(z)
5 <

∫ 1
0 |( f + g) (γ(z, t))| p dt −

∫ 1
0 |g(γ(z, t))| p dt for z ∈ V;

4. V ⊂ U and η(V) = η(V) > η(U)
K+1 .

Proof. Let M := supz∈∂Ω H(z). There exists a, ǫ̃ ∈ (0, 1) such that for z ∈ X we

have H(z) > aH(z) + 2ǫ̃ >
aH(z)

4 − 2ǫ̃ >
H(z)

5 and −ε ≤ −2ǫ̃. Let δ ∈ (0, 1) be
such that (1 − δp)M < ǫ̃ and (δ−p − 1)M < ǫ̃.

Due to Theorem 4.1 and Lemma 3.2 there exist f1, ..., fK, holomorphic func-
tions on W, such that

1.
∥∥ f j

∥∥
T
≤ ε;

2. aH(z)
4 < maxj=1,...,K

∫ 1
0

∣∣ f j(γ(z, t))
∣∣p

dt < aH(z);

3.
∫ 1

0

∣∣( f j + g)(γ(z, t))
∣∣ p

dt ≥ −ǫ̃ +
∫ 1

0 |g(γ(z, t))| p dt + δp
∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt;

4.
∫ 1

0

∣∣( f j + g)(γ(z, t))
∣∣ p

dt ≤ ǫ̃ +
∫ 1

0 |g(γ(z, t))| p dt + δ−p
∫ 1

0

∣∣ f j(γ(z, t))
∣∣p

dt.

There exists j0 ∈ {1, ..., K} and an open subset V0 of U such that∫ 1
0

∣∣ f j0(γ(z, t))
∣∣p

dt = maxj=1,...,K

∫ 1
0

∣∣ f j(γ(z, t))
∣∣p

dt for z ∈ V0 and η(V0) ≥ 1
K .

Let f = f j0 . Now for z ∈ V0 we obtain

aH(z)

4
<

∫ 1

0
| f (γ(z, t))| p dt ≤

∫ 1

0
|( f + g)(γ(z, t))| p dt

+ǫ̃ −
∫ 1

0
|g(γ(z, t))| p dt + (1 − δp)M.

In particular

H(z)

5
<

aH(z)

4
− 2ǫ̃ ≤

∫ 1

0
|( f + g)(γ(z, t))| p dt −

∫ 1

0
|g(γ(z, t))| p dt.

In a similar way we obtain for z ∈ X

−ε ≤ −2ǫ̃ ≤
∫ 1

0
|( f + g)(γ(z, t))| p dt −

∫ 1

0
|g(γ(z, t))| p dt.

Moreover for z ∈ X we have

aH(z) >

∫ 1

0
| f (γ(z, t))| p dt ≥

∫ 1

0
|( f + g)(γ(z, t))| p dt

−ǫ̃ −
∫ 1

0
|g(γ(z, t))| p dt − (δ−p − 1)M.
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In particular

H(z) > aH(z) + 2ǫ̃ ≥
∫ 1

0
|( f + g)(γ(z, t))| p dt −

∫ 1

0
|g(γ(z, t))| p dt.

There exists a set S closed in X and such that S ⊂ V0, η(S) >
η(U)
K+1 . Let us

denote Sr := {z ∈ X : infw∈U ‖z − w‖ < r}. Now there exists r0 > 0 such that
Sr ⊂ V0 for 0 < r < r0. As (0, r0) is an uncountable set there exists r1 ∈ (0, r0)
such that µ(∂Sr1) = 0. Now it is sufficient to choose V = Sr1 . In particular

µ(V) = µ(V) >
η(U)
K+1 .

Lemma 4.6. Let ε, a ∈ (0, 1), η be a probability measure on X and T be a compact
subset of Ω \ X. If H is a continuous strictly positive function on X and g is a complex
continuous function on Ω then there exists an open subset V of X and a holomorphic
function f on W such that:

1. | f (z)| ≤ ε for z ∈ T;

2. −ε <
∫ 1

0 |(g + f )(γ(z, t))| p dt −
∫ 1

0 |g(γ(z, t))| p dt < H(z) for z ∈ ∂Ω;

3.
∫ 1

0 |(g + f )(γ(z, t))| p dt > aH(z) +
∫ 1

0 |g(γ(z, t))| p dt for z ∈ V;

4. η(V) = η(V) > 1 − ε.

Proof. First we prove that for m ∈ N and U an open subset of X, there exists an
open subset V of ∂Ω and a holomorphic function f on W such that:

(a) | f (z)| ≤ ε for z ∈ T;

(b) −ε <
∫ 1

0 |(g + f )(γ(z, t))| p dt −
∫ 1

0 |g(γ(z, t))| p dt < H(z) for z ∈ X;

(c)
∫ 1

0 |(g + f )(γ(z, t))| p dt >
(

1 − 4m

5m

)
H(z) +

∫ 1
0 |g(γ(z, t))| p dt for z ∈ V;

(d) V ⊂ U and η(V) = η(V) > µ(U)
(K+1)m .

Due to Lemma 4.5 there exist { fm}m∈N
, a sequence of holomorphic functions on

W, and a sequence {Vm}m∈N
of open subsets of X such that for m ∈ N \ {0}

• | fm(z)| ≤ ε
2m for z ∈ T;

• − ε
2m < vm+1(z)− vm(z) < Hm(z) for z ∈ X;

• vm+1(z)− vm(z) >
1
5 Hm(z) for z ∈ Vm;

• Vm+1 ⊂ Vm ⊂ V0 = U and η(Vm) = η(Vm) >
η(Vm−1)

K+1 ,

where vm(z) =
∫ 1

0

∣∣∣
(

g + ∑
m−1
k=1 fk

)
(γ(z, t))

∣∣∣
p

dt, H1 = H and Hm+1(z) = Hm(z)−
vm+1(z) + vm(z).

Let f = ∑
m
k=1 fk and V = Vm. It is sufficient to prove the properties (b)-(c).
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Observe that

Hm − H1 =
m−1

∑
k=1

(Hk+1 − Hk) = −
m−1

∑
k=1

(vk+1 − vk) = −vm + v1

In particular −ε < vm+1(z)− v1(z) < H1(z) = H(z). Now it is sufficient to prove
that for z ∈ Vm we have

vm+1(z)− v1(z) >

(
1 − 4m

5m

)
H(z). (4.1)

For m = 1 inequality (4.1) is true. Now we assume that (4.1) holds for some
m ∈ N. We then obtain for z ∈ Vm+1

vm+2(z)− v1(z) = vm+2(z)− vm+1(z) + vm+1(z)− v1(z)

>
Hm+1(z)

5
+ vm+1(z)− v1(z) >

>
H(z)

5
+

4

5

(
1 − 4m

5m

)
H(z) =

(
1 − 4m+1

5m+1

)
H(z)

which proves (4.1) and gives the construction of an open subset V of ∂Ω and a
holomorphic function f on W such that (a)-(d) holds.

Let {εk}∞
k=1 be a sequence of strictly positive numbers and m be a natural

number sufficiently large so that
(

1 − 4m

5m

)
H(z)− ∑

∞
k=1 εk > aH(z) for z ∈ X and

∑
∞
k=1 εk < ε. Now using (a)-(d) we can construct a sequence {Vk}k∈N

of open
subsets of X and a sequence { fk}k∈N

of holomorphic functions on W such that

(e) | fk(z)| ≤ εk for z ∈ T;

(f) −εk < ωk+1(z)− ωk(z) < Hk(z) for z ∈ X;

(g) ωk+1(z) >
(

1 − 4m

5m

)
Hk(z) + ωk(z) for z ∈ Vk;

(h) Vk ⊂ E \⋃k−1
j=1 V j and η(Vk) = η(Vk) >

1−∑
k−1
j=1 η(Vj)

(K+1)m ,

where ωk(z) =
∫ 1

0

∣∣∣
(

g + ∑
k
j=1 f j

)
(γ(z, t))

∣∣∣
p

dt, H1 = H and Hm+1(z) = Hm(z)−
ωm+1(z) + ωm(z). Observe that Hm − H1 = −ωm + ω1.

As ∑
∞
j=1 η(Vj) ≤ 1 it holds that limk→∞

1−∑
k−1
j=1 η(Vj)

(K+1)m = 0. In particular there

exists n ∈ N sufficiently large so that 1 − ε < ∑
n
j=1 η(Vj). Let us now define

V =
⋃n

j=1 Vj and f = ∑
n
j=1 f j.

First we prove the properties (1),(4): η(V) = ∑
n
j=1 η(Vj) > 1 − ε and | f (z)| ≤

∑
n
j=1 ε j < ε for z ∈ T.

As ω1 = Hn − H + ωn, property (2) is also obvious: −ε < − ∑
n
j=1 ε j <

ωn+1(z)− ω1(z) < H(z) for z ∈ X.
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Now let z ∈ V. There exists k ∈ {1, ..., n} such that z ∈ Vk. As Hk = H − ωk +
ω1, we obtain property (3):

ωn+1(z)− ω1(z) =
n

∑
j=k+1

(ωj+1(z)− ωj(z)) + ωk(z)− ω1(z) + ωk+1(z)− ωk(z)

> −
∞

∑
j=k+1

ε j + ωk(z)− ω1(z) +

(
1 − 4m

5m

)
Hk(z)

≥ −
∞

∑
j=k+1

ε j +
4m

5m
(ωk(z)− ω1(z)) +

(
1 − 4m

5m

)
H(z)

≥ −
∞

∑
j=1

ε j +

(
1 − 4m

5m

)
H(z) ≥ aH(z).

Now we are ready to prove the following result.

Theorem 4.7. Let ε > 0, η be a probability measure on X and T be a compact subset
of Ω \ X. If H is a lower semicontinuous, strictly positive function on X, then there
exists a function f holomorphic on Ω and continuous on Ω \ X, such that ‖ f‖T < ε,∫ 1

0 |( f ◦ γ)(z, t)|p dt ≤ H(z) for z ∈ X and

η

({
z ∈ X :

∫ 1

0
|( f ◦ γ)(z, t)|p dt = H(z)

})
= 1.

Proof. There exists a sequence of continuous, strictly positive functions {Gk}k∈N

such that 0 < Gj(z) < Gj+1(z) < ... limj→∞ Gj(z) = H(z). Let {Tk}k∈N
be a

sequence of compact subsets of Ω such that Tk ⊂ Tk+1, the interior of Tk is con-
tained in the interior of Tk+1 and

⋃∞
k=1 Tk = Ω \ X. Let {εk}∞

k=1 be a sequence of
strictly positive numbers such that ∑

∞
k=1 εk < 1. Due to Lemma 4.6 there exists a

sequence {Vk}k∈N
of open subsets of X and a sequence { fk}k∈N

of holomorphic
functions on W such that

(a) | fk(z)| ≤ εkε for z ∈ Tk ∪ T;

(b) ωk+1(z)− ωk(z) < Hk(z) for z ∈ X;

(c) ωk+1(z)− ωk(z) > (1 − εk)Hk(z) for z ∈ Vk;

(d) η(Vk) = η(Vk) > 1 − εk,

where ω1 = 0, ωm(z) =
∫ 1

0

∣∣∣
(

∑
m−1
j=1 f j

)
(γ(z, t))

∣∣∣
p

dt, H1 = G1 and Hm+1(z) =

Gm+1(z)− ωm+1(z) + ωm(z).
Observe that for z ∈ X we have

ωk+2(z) < Hk+1(z) + ωk+1(z) = Gk+1(z)− ωk(z) ≤ Gk+1(z).

Moreover for z ∈ Vk+1 we may estimate

ωk+2(z) > ωk+1(z) + (1 − εk+1)Hk+1(z) ≥ εk+1ωk+1(z) + (1 − εk+1)Gk+1(z)

≥ (1 − 2εk+1)Gk+1(z).



Radon inversion problem for holomorphic functions 639

Let Uk :=
⋂∞

m=k Vm and U =
⋃∞

k=1 Uk. Observe that η(Uk) ≥ 1 − ∑
∞
m=k εm and

η(U) = limm→∞ η(Um) = 1. If z ∈ U then there exists k ∈ N such that z ∈ Uk. In
particular z ∈ Vm+1 for m ≥ k and

G(z) = lim
m→∞

(1 − 2εm+1)Gm+1(z) ≤ lim
m→∞

ωm+1(z) ≤ lim
m→∞

Gm(z) = G(z).

Now we can define the function f = ∑
∞
k=1 fk which is holomorphic on Ω and

continuous on Ω \ X, and observe that ω∞(z) ≤ G(z) for z ∈ X and ω∞(z) =
G(z) for η-almost all z ∈ X, i.e. f has the required properties.

As an application of Theorem 4.7 we prove the following description of ex-
ceptional sets (see 1.1) E

p
Ω
( f ).

Theorem 4.8. Let ε > 0, T be a compact subset of Ω \ X and η be a probability measure
on X . If E ⊂ X is a set of type Gδ then there exists a holomorphic function f such that (see
1.1) ‖ f‖T ≤ ε, E

p
Ω
( f ) ⊂ E, η(E \ E

p
Ω
( f )) = 0 and

∫
(X\E)×[0,1] | f ◦ γ|p dL2N

< ∞.

Proof. Let σ be a natural measure on ∂Ω. Due to [8, Theorem 2.6, Proposition 2.5]
there exist sequences {Di}i∈N

, {Ti}i∈N
of compact subsets in X such that:

1.
⋃

i∈N Di = X \ E and Dj ⊂ Dj+1 for j ∈ N;

2. Tj ∩ Dj = ∅ for j ∈ N;

3. E =
⋂∞

j=1

⋃∞
i=j Ti;

4. σ(X \ (E ∪ Dj) ≤ 2−j.

There exists a sequence of continuous functions {um}m∈N
such that 0 ≤ um(z) ≤

1, um(z) = 0 if and only if z ∈ Dm, and um(z) = 1 if and only if z ∈ Tm. Let
H(z) = 1 + ∑

∞
m=1 um(z). Observe that H is a strictly positive lower semicontin-

uous function on X and
∫

X\E Hdσ < ∞. Now due to Theorem 4.7 there exists

a function f , holomorphic on Ω and continuous on Ω \ X, such that ‖ f‖T ≤ ε,∫ 1
0 |( f ◦ γ)(z, t)|p dt ≤ H(z) for z ∈ X and

η

({
z ∈ X :

∫ 1

0
|( f ◦ γ)(z, t)|p dt = H(z)

})
= 1.

We may estimate

∫

(X\E)×[0,1]
| f ◦ γ|p dL2N =

∫

X\E

∫ 1

0
|( f ◦ γ)(z, t)|p dtdσ(z) ≤

∫

X\E
Hdσ < ∞.

Observe that E
p
Ω
( f ) ⊂ X since f is a continuous function on Ω \ X. If z ∈ X \ E

then there exists m0 such that z ∈ Dm for m ≥ m0 and H(z) ≤ 1 + ∑
m0
m=1 1 <

∞. In particular E
p
Ω
( f ) ⊂ E. Moreover if z ∈ E then H(z) = ∞ and therefore

η(E \ E
p
Ω
( f )) = 0.
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