Radon inversion problem for holomorphic
functions on strictly pseudoconvex domains

Piotr Kot

Abstract

Let p > 0 and let QO C C“ be a bounded, strictly pseudoconvex domain
with boundary of class C2. We consider a family of directions in the form of
a continuous function 7 : 9Q x [0,1] 3 (z,t) — 7(z,t) € Q satisfying some
natural properties. Then for a given lower semicontinuous, strictly positive
function H on 0Q) we construct a holomorphic function f € O(Q) such that
H(z) = fol |f(7y(z,t))|" dt for y-almost all z € Q) where 7 is a given proba-
bility measure on 0Q).

1 Introduction

In this paper we intend to investigate the so-called Radon inversion problem, i.e.
the problem of reconstructing a function on the basis of known integrals of this
function over some subset of submanifolds of its domain.

For a given domain () C C" and p > 0 we consider a family of holomorphic
functions on (), integrable along the family of real directions in the form of a
continuous function 7y : 9Q) X [0,1) 3 (z,t) — 7(z,t) € Q. In particular we can
define the Radon operator by

R:0(0) x 303 (£,8) + R, 8)= [ |for@ )/ a

and formulate the Radon inversion problem in the following way:

Received by the editors February 2009 - In revised form in May 2009.

Communicated by F. Brackx.

2000 Mathematics Subject Classification : 32A05,32A35.

Key words and phrases : Radon inversion problem, Dirichlet problem, exceptional sets.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 623—-640



624 P. Kot

Let us assume that H is a lower semicontinuous function on 9Q). Is it possible
to construct a function f € O(Q) such that R(f, ) = H(¢) for ¢ € 002?

Let us observe that the above problem is similar to the construction of the
inner function (see [1, 13, 14, 15]). It is known that a non-constant holomorphic
function f € O(Q)) with non-tangential limit in all boundary points equal to 1,
does not exist. In fact, all the inner functions constructed in the papers [1, 13, 14,
15] have non-tangential limits well defined only in almost all boundary points (in
terms of a proper surface measure). In the Radon inversion problem the role of
the non-tangential limit is played bythe value %R(f, ¢) which is well defined in all
boundary points .

We will solve the probability version of the Radon inversion problem. In par-
ticular (see Theorem 4.1) for a given probability measure 77 on (2, we construct
a holomorphic function f such that R(f,{) = H(E) for n-almost all { € 9Q.
However, the full version still remains an open problem.

As an application we give a description of so called exceptional sets (Theo-
rem 4.8)

ED(f) = {& € 90 : R(f, &) = oo} . (1.1)

For more information about exceptional sets we refer the reader to e.g. [2, 3,4, 5,
6,9, 10, 11].

We also solve the Dirichlet problem for plurisubharmonic and real analytic
functions (Theorem 4.4).

1.1 Geometric notions.

In this paper we assume, in general, that () C C? is a bounded, strictly convex
domain with boundary of class C? and a defining function p. Only the last section
will be devoted to strictly pseudoconvex domains. We consider the natural scalar
product (o,0). As usual, by B(¢;r) we denote the open ball with center ¢ and
radius 7, ie. B(&r) := {z € C?: ||¢ — z|| < r} . Note that there exists 7r; > 0 such
that £24(B(&, 7)) = mgr® for ¢ € C? and r > 0, where £24 is the 2d-dimensional
Lebesgue measure. Assume that 0 € Q) C B(0, R) for some R > 0.

A subset A C C*is called a-separated if ||z; — z,|| >  for all distinct elements
z1 and zp of A. Itis clear that for « > 0 each a-separated subset of () is finite.

If g : C? — C s a function of class C? then we denote gz = (g—zgl(c:,‘) 93 (C))

,...,%
and

1 & 9% 1 & 0% _ 4. g _

Hy (P, w) := Ejkgl Gz )k Ejkgl a2z, ) i +ij:1 oz, (P Wi

Definition 1.1. Let X be a compact subset of d(). We say that a continuous func-
tion y : X x [0,1] 2 (z,f) — 7(z,t) € Q defines a set of real directions on Q) if 7y
has the following properties:

1. y(X x[0,1)) C Q.

2. (X x {1}) C 902
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3. %—;’(o, o) is a continuous function on X x [0, 1].

4. There exist constants ¢q,cp > 0 such thatcy ||z — ¢ < [|7(z,1) — (& 1) <
c2||z—¢| forz, ¢ € X.

5. 7(g, o) is tangential to 0Q) at y(&, 1) i.e. Re <%—Z(§, 1),p7(§’1)> > (0for¢ € X.

2 Preliminary calculations
We need the following result.

Lemma 2.1. There exist constants c1,cp > 0 such that for z, ¢ € 9Q) one has:

c1llz=¢|I* <Re(Z —zp7) <calz— 2" 1)
Proof. It suffices to use the same arguments as in the proof [12, Lemma 2.1]. =

In order to control the values of the functions constructed we need some in-
formation about a-separated sets.

Lemma 2.2. Suppose that A = {1, ..,Cs} is a 2at-separated subset of 9Q). For z € 0Q)
let
Ap(z) ={d e Arakt <|z—-¢| <a(k+1)t}.

Then the set Ay (z) has at most (k + 2)?? elements. The set A has at most 1 element and
sgmax{l,(ﬁ) }

Proof. Putting p(z,&) = ||z — ¢||, it suffices to use the same arguments as in the
proof [12, Lemma 2.2]. ]

Lemma 2.3. If A C 9dQ) is at-separated, then for each B > « there exists an integer
K = K(a, B) such that A can be partitioned into K disjoint Bt-separated sets.

Proof. see [12, Lemma 2.3] m

3 Basic results for strictly convex domains

Let p > 0. Assume that () is a bounded strictly convex domain, X is a compact
subset of Q) and 7 : X x [0,1] — Q) defines a set of real directions on Q).
In particular there exist constants co > ¢; > 0 such that

crllz —wll < flv(z 1) —r(w, D] <2z —w| (3.1)

for z,w € X. Due to Lemma 2.1 there exist constants c3,c4 > 0 such that for
z,¢ € Q)

—csllz—glI> <Re(z—§pg) < —callz— €| (3.2)
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Lemma 3.1. Denoting

Fuct@) = (ke (2 1,5 )) o (% (= =262 0.z

where g = supz.x {1,Re <%—;’(§,1),pa,(,;,1)>}, if0 < by <1 < by then there exist
«, B1, B2, No, o > 0 such that for m > Ny, z,¢ € X one has the following properties:

Lif z—¢| < ro then bePIF=EI” —emme < [AIF, coq(z,n)|Pdt <
bye—mballz=C | 4 p—ma,

2.0 (0<t<1—rg)V(|lz—¢l| > ro) then }Fm,,; Ofy(z,t)]p <e MK,
Proof. There exists a constant 1 > rg > 0 such that

1 9 d
0< pRe( @D Py ) < Re( 5 0man ) < g-Re (S )
(3.3)
fort € [1 —rp,1] and z,{ € X so that ||z — &|| < rp. Moreover there exists & > 0
such that

Re (7(z,t) = 1(&1),Pyzn) ) < —2a

for (z,¢,t) € {(x,y,s) e X x X x[0,1] : |[x—y|| >ro Vs <1—rp}.
Let Ny be such that
PRI mqe—thx
for m > Np. In particular |F,z 0 v(z,t)|7 < mge 2" < ¢=™* for m > Ny and
(0<t<1—ro)V(l|lz—Zll = o).
Now assume that ||z — || < rp. Due to (3.1), (3.2) and (3.3) we may estimate
for By := c5c3, B2 := cfcg and m > Np:

1 1
/ Fuzo(zt)|Pdt > / |Fpzoy(zt)|" dt
0 1—1’0
> blem<7(2,1)_7(§,1), 7(5/1)> . blem<7(z’1_r0)_7(6'1)'97(6,1»
> el @)1 @UIP _ pmma s pmmpil=EIP _ pmma

and

1 1
/ |Encov(zt)|ldt < / |Fzov(z t)|V dt +e ™
0 1—1’0
< eV EDENBED) e < poemmBallZ=EIP | pmme
|

Lemma 3.2. Assume that ) is a bounded domain, X is a compact subset of Q and
v+ X x [0,1] — Qis a continuous function such that (X x [0,1)) C Q. Let f be
a continuous complex function on () and &,6 € (0,1). If {gm},,en 5 @ sequence of
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continuous complex functions on Q) such that limy, o gm(z) = 0 for z € Q, then there
exists my € IN such that

1 1 1
L 1G+emorGolat = —et [CIforznl dt+o [ lgmon(zn) at

1 1 1
| G +emorGhlPat < e+ [Ifor@nlPat+o7 [ gwor(z I d
Lu(zt)

form > mp, z € X.

Proof. Let M := sup, g [f(z)| and r € (3,1) be such that % < §. We may

consider a continuous function ¥ : X xDD > (z,A) = [;[fo(z t) + Al dt.
There exists a € (0, {/7) such that [¥(z,0) — ¥(z,A)| < {forz € X, and |A| < a.
As limy,—y00 gm(z) = 0 for z € Q, there exists mg such that |g, 0 y(z,t)| < a for
m > my, 0 <t <randz € X. In particular for m > mg and z € X we can
estimate:

T e T
/OLm(z,t)dt > _Z+/o Foy(z )P dt

7 r
> _§+/0 ]fo'y(z,t)|Pdt+(5p/0 \gm o y(z,1)|" dt

and

r e r
/OLm(z,t)dt < Z+/0 foy(z )P dt
r r
< s+ [AforGnlPat+o7 [gwon ) at
If t € Aypmz = {te[rnl]:|(f+gm)ov(zt)] <d|gmnoy(zt)|} then
lgmoy(z,t)] < |f°7(z < 24 In particular we may estimate

1 1
/Lm(z,t)dt > /H\ (5P|gmo'y(z,t)|pdt2/ Foy(z b)|F dt +
r r,1 Al,m,z r

1 1 1 MPP
p p _ Pas — -
+o /r gm0 (2, £)|P dt /ert /r Tt

1 1
> _§+/ |fo'y(z,t)|pdt—|—5p/ gm0 v(z,t)|P dt.
r T

Ift € Ay = {tE (7, 1] = [foy(z, t)| + |gmov(zt)] > 41 ]gmoy(z,t)]}

[for(zt)]
511

1L dt < A Pd LM d
,)dt < B Lt t R —; [
[ < [ s geentanlans [T

1 1
[ IforGtldt+67 [ lgwor ) dt+
r r
1 1 o2MP
— Mpdt—/ ————dt
/r , (1=0)r

1 1
< _§+/ |f0fy(z,t)]pdt—|—5_r’/ Igmoy(zt)|"dt. =
r r

then |gm o v(z,t)| < < M. In particular

IN
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Lemma 3.3. There exist constants C > ¢ > 0 such that if T is a compact subset of Q \ X,
€ (0,1) and H is a continuous strictly positive function on X, then we can choose
Ny > 0 such that for m > Ny and each “—-separated subset A of X, the holomorphic

/i
function gy, 4 = Yzep (H(c:,‘))% F,, ¢ satisfies
1 |gma(w)| <eforweT;

2. fol \gma(v(z,1))|F dt <2H(z) forall z € X;

3. fol \Qma(y(z,t))|F dt > 8 for each z € X such that ||z —¢|| < Cm for some
¢ €A

Proof. Let us denote @ = min {1,%}. We may assume that ||[H||,, = 1. Let 0 <
6 < by <1 < by be such that

(140)" (by+6)" +35" < 2° (3.4)
(1= 6)" (bre~% - 5)“ _36t > 2 (3.5)

Now we can choose «, B1, B2, Ng, 79 > 0 from Lemma 3.1. Letc = 4\}[5_. There
1
exists C > 0 such that C > cand for k € N \ {0} we have

ﬁ2k2

b (k +2)Me~ 5 <27k,

2d
Due to Lemma 2.2 we have #A < (4R(\;/% )

Lett = SUP et sex % <w —7(¢, 1),p7(§,1) > Ast < 0, for w € T, sufficiently
large N1 and m > Nj, we may estimate

2d

1 4R+\/m 1

|gmA’ )| < z: qu’ ( C ) Umﬂpemtge
FcA

and conclude that property (1) holds.
For z € X let us denote

)= {eeas < -a < 2

Let now s > 0 be so small that ||y —¢| < s = (1 —)H( ) < H(@) <
(14 6)H(n). We may assume that Nj is large enough that s > \/— + \/—— and
e~ 18 < 5. Observe that we may estimate
aCZ/S K2 s\/m
oY (kM < Y 27k <ot

k:C(k+1)>2sy/m > [M_l]
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Now if z € X and Ap(z) = @, then, due to (3.4), Lemma 2.2 and Lemma 3.1, we
may estimate, for Ny large enough and m > N;

(/Olfgm,A(’Y(z,t))|Pdt>a < i Z (H(C)/Ol!Fm,,;(fy(z,t))}pdty

2/5
< ¥ ¥ HE" (e o)
kZlCGAk(Z)
=£]
< 2d _ aC?p,k?
< (140)'H(z)" ), W(k+2)*e 1 +
k=1
N 4R/ \ >
+2_ C +1+ (T) e_“m“

< (14 0)"H(2)" + 8"H(z)" < 36"H(z)".

Due to Lemma 2.2,if Ag(z) # @ then Ag(z) = {&o} for some &, € 0Q) where
|z — ¢l < \/_ < s. In particular

([ matrcimra) < (H@) [ 1B d) +3mHe)
< HG@) (b +e ™) + 38 H ()"
< H(2)*(1406)" (by + 6)" + 30°H(2)* < 2°H(z)"

tfor z € X, Nj large enough and m > Nj, which gives property (2).
Now let §; € A be such that ||z — &1 < \/— <'s. Due to Lemma 3.1 and (3.5)

we may estimate, for N large enough and m > N;

</01|gm,A(’Y(z,t))|pdt)a > ( (&) / |Ep, (7 Z,t))‘pdt)“_wH(z)u
> H(G)" (e % — o) — 36 H ()"

> H@'(1-0) (e h— )" —35H(z) > TN

Zﬂ

which gives property (3). |
Now we are ready to prove the following result:

Theorem 3.4. There exists a natural number K such that, if e € (0,1), T is a compact
subset of O\ X and H is a continuous, strictly positive function on X, then there exist
holomorphic entire functions fy, ..., fx such that || f;|| . < €, and one has for z € X the
following inequality

T < max [ Ifr(z )| < Hz),
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Proof. Let C > ¢ > 0 be the constants from Lemma 3.3. Due to Lemma 2.3 there
exists a natural number K such that each ﬁ-separated subset of X can be par-

s . .. C . ¢
titioned into K disjoint W—separated sets. Let A be a maximal W—separated

subset of X. It can be partitioned into Ay, ..., Ax disjoint %-separated sets. Now

due to Lemma 3.3 there exists m and holomorphic, entire functions f; := g, A

such that Hf]HT <eand

L [ |fi(v(z 1)|P dt < H(z) forall z € X;

2. fol |fi(v(z ) )| P dt > ( ) for each z € X such that |lz—¢| < \/% for some
¢ € A]

As A is a maximal ﬁ-separated subset of X there exists, forz € X, jy € {1, ..., K}
and ¢, € Aj, such that ||z — ;|| < 7= In particular

) < /01 \fjo('y(z,t))\pdt < ],1111??,(1(/01 ]fj(’y(z,t))]pdt < H(z). n

4 Consequences of Theorem 3.4 for strictly pseudoconvex do-
mains

In this section we assume that () is a bounded, strictly pseudoconvex domain
with boundary of class C?, X is a compact subset of 90 and 7 : X x [0,1] — Q
defines a set of real directions on Q).

As a first application of Theorem 3.4 we give the following result.

Theorem 4.1. It is possible to choose a neighbourhood W of Q) and a natural number K
such that, ife € (0,1), T is a compact subset of Q \ X and H is a continuous, strictly
positive function on X, then there exist holomorphic functions fi, ..., fx on W such that
| fill ¢ < & and one has for z € X the following inequality

HE) - max [ 5200 < Hee),

Proof. By Fornaess” embedding theorem [7], there exists a neighbourhood W of

Q, a strictly convex, bounded domain Q) ¢ CN with boundary of class C? and a
holomorphic mapping ¢ : U — CV, such that  maps W biholomorphically onto
some complex submanifold (W) of CV, such that

L p(Q) cQ
2. ¥(0Q)) C 90Y;

3. p(W\ Q) c CV\ O

4. (W) intersects 9Q) transversally.
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Let X = ¢(X). Observe that

¥:Xx[0,1]3 (z) = p(y(p~(2),1) € Q

defines a set of real dlrectlons on Q. Let K be the natural number from Theorem
3.4 used for the domain Q). Now due to Theorem 3.4 there exist entire holomor—
phic functions fl, fK on CN such that H f]H 1 S < ¢, and we have for z € X the

following inequality

H(LP%l(Z))< max/ ’f] (z,1)) ’ dt<H(lP_1(Z))~

In particular the functions f; = f; o 1 have the required properties. n
(From this moment on we assume that K and W are as in Theorem 4.1.

Lemma4.2. Let g1, ..., gk be continuous complex functions on O, T be a compact subset
of O\ X, e > 0and u be a strictly positive, continuous function on X. Then there exist
functions f1, ..., fx holomorphic on W such that

1 |fi(z)| <eforzeT;

2. u(z) —e < ZK 1f0 |(fi + &) (0 ( Z,t))]Pdt—Z]I'<21fol ’gj(’y(z,t))}Pdt < u(z)
forz € X.

Proof. Letf = 1— 2, 1—6% = 170 and ¢(z) = Yo 1f0 |gi(7(z,1))|" dt. Let us
define a sequence of continuous functlons Hj such that, for z € (), we have

0= Ho(z) < ... < Hj(z) < Hj41(z) < .. < lim Hj(z) = g(z) + u(z).

]—)00

Now we construct sequences { fi, k} e K of holomorphic functions on W
such that, if v,,(z) == Y 4 fo (87 + X0 fix) (v(z,t))|" dt then

(@ }f]k(z)’ < ;—k forz € T;

®) 0 < Hulz) —ou(z) < 250 (159)" " (Hi(z) — Hia(2) for z € X and
m & IN.

If m = 1 then it is sufficient to select f11 = f,1 = ... = le = 0. Now assume
Lo K ,on W such that

that we have constructed holomorphic functions { f] }] e

(a)-(b) hold. Let us denote

1—6y .
2em = — . ZIE%fQ(Hm—l(Z) — Up-1(2))

Gu(z) = Hpn(z) —em —vp_1(2).

Due to Lemma 3.2 and Theorem 4.1 there exist fi ,, ..., fk,m, holomorphic func-
tions on W, such that property (a) holds and:
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¢ 0<Gul(z) = L1677 [y [fim(v(z1)|" dt < 0Gu(2);
o n(2) 2 —em +0u-1(2) + T 07 [y [fim(v(z )| d;

o 0(z) < em+0m-1(2) + 677 [5 | fim(v(z1)|7 dt.

Now we may estimate
K 1
Hu(z) > em+0p1(z)+07" Z/O Fim(1(z0)|7 dt > v (2).
j=1

Moreover

K
Hu(z) < en+0n1(2) +67 Y [ [fn(r(z0)|" dt +6Gu ()
j=1

IN

Um(2z) + 2em + ((07F — 6F)6P +0)Gu(2)

om(2) + %(Hm_l(z) o (2)) + <% + 9) G (2).

IN

In particular

1+6 1+ 36

(Hn-1(2) = om1(2)) + —= (Hy(2) — Hyr 1(2))

2y (1%,“ (Hi(2) — Hia(2)).

k=1

Hy(z) —om(z) <

Let M := sup, 5 (u(z) + g(z)). There exists mg such that m <1+9> M < {and

Hpu(z) — Hypyo1(2) < g = % for m > mg and z € X. In particular for z € X
we may estimate

Zert:(%)m—k(Hk(z)—Hk_l(z)) < m(?) M + 2Zm (1+9)2m—k80

k=1 k= my

€
< .=
_4+4_2

Now we may conclude that there exists m € IN sufficiently large, such that, for
z € X, we have

mo 140\
on(®) > Ha(a) = 12 (50 ) (Hh(E) ~ Hia (2) 2 (z) + 806 -
k=1
Observe that the functions f; = )}, fj« have the properties (1)-(2). |
Now we can prove our second application.

Theorem 4.3. Let ¢ > 0, u be a lower semi-continuous, strictly positive function on X
and T be a compact subset of Q) \ X. Then there exist holomorphic functions fi, ..., fx on

Q such that || fi| <€andZK 1f0 fi(v(z,1))|" dt = u(z) forz € X.



Radon inversion problem for holomorphic functions 633

Proof. Let {T;}. . be a sequence of compact sets such that T; is contained in the
jSjeN ! p j

interior of Tj for each j and Ujen Tj = Q.
There exists a sequence H,, of continuous functions on dQ) such that 0 =
Ho(z) < Hi(z) < Ha(z) < ... <limje Hj(z) = u(2).

Due to Lemma 4.2 there exists a sequence { fi,
tions on W such that

k} reN K of holomorphic func-

L |fix(z)| <27*eforz € TLUT;

2. Hulz) 27" < TX, [J |50, fix(v(z1))|" dt < Hu(z) forz € X.

Now it suffices to define f; = }i” | f;x and to observe that the functions fi, ..., fk
have the required properties.

Now we can solve the Dirichlet problem for plurisubharmonic functions.

Theorem 4.4. Let Q) be a bounded, strictly pseudoconvex domain with boundary of class
C? such that [0,1)Q C Q. Assume that [0,1]z is transversal to 9Q at z € 9Q). Let
u be a continuous, strictly positive function on 0C). Then there exist holomorphic func-

tions fi, ..., fx such that v(z) = Z}(_:1 fol |fi(tz) ‘2 dt is a plurisubharmonic, real analytic
function on Q) and continuous on Q). Moreover u(z) = v(z) for z € 0Q).

Proof. Observe that 7y : 9Q) x [0,1] 5 (z,t) — zt € Q) is a set of real directions on
Q. Let us define a sequence of continuous functions H; such that 0 = Hy(z) and

Hj(z) — Hj_1(z) = 27/u(z). Observe that lim;_, H;(z) = u(z). Let {Tj}jeN be a
sequence of compact subsets of () such that Tj is contained in the interior of T},

for each j.

..K

Let6 =1 — 4K and 1 —6* = 4 9. Now we construct sequences { fi, of

k } kelN
holomorphic functions on W such that

@ |fix(z)] <27Fforz € Ty.

(b) 0 < Hy(z) — vz (%) ) forz € 90 and m € N.
m—

© |vmi1(z) —om(z)| <m (#) supwemu(w) forz € Qand m € N.

where v, (z) := Z]K:1 fol |50 fik(tz) }2 dt and vy = 0. If m = 1 then it is sufficient
to choose f11 = fo1 = ... = fx1 = 0. Now assume that we have constructed

holomorphic functions { f]k};;llK _, on W such that (a)-(c) holds. Let us denote

28, = inf (Hy_1(z) —v-1(2))
Gm(z) = Hp(z) —em —vp_1(2).

As [0,1)Q C Q, due to Lemma 3.2 and Theorem 4.1, there exist f1 1, ..., fKm/
holomorphic functions on W, such that property (a) holds and:
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o 0< Gul(z) = XK, 072 [ |fim(tz)|*dt < 0Gy(z) for z € dQ;

o Uy(2) > —em +0p_1(z) + Z]K:l 52 fol ‘f]-,m(tz)‘zdt forz € Q;

o U (2) <em+om1(z) + L, 672 fol \f]-,m(tz)\zdt forz € Q.
Now we may estimate, for z € 9(),

2 Ko 2
Hu(z) > em+0m1(z) +62Y) /0 Fim(t2)[2dt > 0, (2).
=1

Moreover for z € d() we have

Hu(z) < sm+om_1(z)+(s—2f/l | fim(t2)| dt + 6G(2)
=170

< op(z) + 28 4 (672 = 02)6% 4 0) G (2)
< onl@) + L (Hua (2) — va (2)) + (1;—9 " 9) Gun(2).
In particular we obtain property (b):
Hn(z) ~ on(z) < 3 (Ha1(2) = oy a(2) T (Hn(2) — Hy 1 (2)
< (m-1) (ﬁ—e)m_lu@ P 1008 (ﬁ—g)m_lu@.

Moreover for z € Q we have

1
os1(2) = 0 (2)] < Bn(2) = e+ 57 [ [fim(t2)] .
Due to (b) we may estimate, for z € 0(),

hin(z) < em+ Gu(z) < Hu(z) —vm-1(z) < (Hm — Hu1 + Hy—1 — 0-1)(2)
m—2 m—2
< 27Mu(z)+ (m—1) <#) u(z) <m (#) u(z).

As hyy, is a continuous and plurisubharmonic function, for z € Q) we obtain prop-
erty (o):
|Um+1(2) —om(2)] < hu(z) <m —— sup u(w).
wed()
Let us now define holomorphic functions f; = };;2; fjx on Q. Observe that v, —
v = Z]Ile fol apt fix(tz) ]2 dt uniformly on Q. In particular v is a continuous

function on Q, plurisubharmonic and real analytic on Q. Moreover u(z) = v(z)
for z € 0Q). n

Before we give the construction of a holomorphic function with given inte-
grals on almost all real directions, we need some additional results.



Radon inversion problem for holomorphic functions 635

Lemma 4.5. Let € € (0,1), 57 be a probability measure on X. Let U be an open subset
of X such that 7(U) > 0. Moreover let T be a compact subset of QO \ X, g be a complex
continuous function on Q) and H be a continuous, strictly positive function on X. Then
there exists a holomorphic function f on W and an open subset V of U such that

Llflr<e

2. —e < [L(F+8) (v )| dt — [} |g(v(z, )| dt < H(z) forz € X;

Y(F+g) (v )P dt— [ |g(y(z8)|P dt forz € V;
4.V C Uand (V) =n(v) > 4.

Proof. Let M := sup, ;o H(z ) There exists a,€ € (0,1) such that for z € X we

have H(z) > aH(z )—|—2€ > 2 () —2€ > () and —e < —2¢. Leté € (0,1) be
such that (1 — 6*)M < € and ((5 F—1)M < e

Due to Theorem 4.1 and Lemma 3.2 there exist fi, ..., fx, holomorphic func-
tions on W, such that

L flly <&

2. B < maxi_y x [i|fi(r(z0)|F dt < aH(z);

3. [y i+ (@ 0)|" dt > =&+ [5 |g(v(z ))|P dt + 7 [y |fi((z,1)|" dt;

4 [+ )Pt <e+ [ |g(v(z )P dt+ 577 [ | fi(v(z 1)|7 dt.

There exists jo € {1,..,K} and an open subset Vy of U such that

I lfirz )P dt = maxizy,_x [y |fi(v(z £)|"dt for z € Vo and (Vo) > L.
Let f = fj,. Now for z € Vj we obtain

3. H(z)

aH

/yf (2,1) |Pdt</ (F + ) (7(z,1)|P dt
+z-:“—/0 2(v(z, 1) [P dt + (1 — 67)M.

In particular

A8 10 e < [+ )Pt~ [ slr(z ) ar

In a similar way we obtain for z € X

e -2 < [N+ QO di- [ sty

Moreover for z € X we have
1 1
WHE) > Qe [+ )

&~ [MIstr(z )Pt~ (7P~ 1)M.
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In particular

1 1
HE) > aHE) + 2 2 [ (F+9)0G ) dt = [ gtz n)7 at

There exists a set S closed in X and such that S C Vg, #(S) > %—fl) Let us

denote S" := {z € X :infycy ||z —w|| <r}. Now there exists 7o > 0 such that
ST C Vpfor0 < r < rp. As (0,79) is an uncountable set there exists r; € (0,7)
such that ¢(9S"") = 0. Now it is sufficient to choose V' = S". In particular

Vi Vi u
p(V) = w(V) > {5t :
Lemma 4.6. Let e,a € (0,1), 17 be a probability measure on X and T be a compact
subset of O\ X. If H is a continuous strictly positive function on X and g is a complex

continuous function on Q) then there exists an open subset V of X and a holomorphic
function f on W such that:

L |f(z)| <eforzeT
2. —e < o lg+ H(r(z )P dt — [y 18(v(z 1)) dt < H(z) for z € 90;
3. [y g+ H)(v(z )P dt > aH(z) + [y 18(v(z,t))|P dt forz € V;

4. qy(V)=n(V)>1—¢

Proof. First we prove that for m € IN and U an open subset of X, there exists an
open subset V of d() and a holomorphic function f on W such that:

@ |f(z)| <eforzeT;
(b) —e < [y g+ (v(z )| dt — [y [g(v(z,1)|" dt < H(z) for z € X;
© fo I8+ H)(v(z )" dt > (1 — gﬂ) H(z) + [y |g(1(z )| dt forz € V;

(d VcUandy(V)=n(V) > (Ig(ﬁgm

Due to Lemma 4.5 there exist { f; },,cn @ sequence of holomorphic functions on
W, and a sequence {V },,cn Of open subsets of X such that for m € IN'\ {0}

o |fu(z)| < smforzeT;
o —57 < Upt1(2) —om(z) < Hu(z) forz € X;

o Uyi1(2) — vm(z) > tHu(z) forz € Vy;

® Vi1 C Vi C Vo =Uand 7(Vin) = 17(Vin) > W(Igﬁil)'

where v,,(z) = [ } (g +Z05 f) (1= 1) } P dt, Hy = Hand Hyy 41 (2) = H(z) —

Om11(2) + 0m(z).
Let f =Y/' | fr and V = V,,,. It is sufficient to prove the properties (b)-(c).
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Observe that

m—1 m—1
Hu—Hi =) (H1 —H) = = ) (01 — %) = —0m + 01
=1 k=1

In particular —¢ < vy, 41(z) —v1(z) < Hy(z) = H(z). Now itis sufficient to prove
that for z € V,,, we have

o1 (2) — o1 (2) > <1 - g) H(z). (41

For m = 1 inequality (4.1) is true. Now we assume that (4.1) holds for some
m € IN. We then obtain for z € V1

Ums2(2) = 01(2) = Upms2(2) = Vmy1(2) + Omi1(z) — 01(2)
> Hm%(z) + Up1(z) —v1(z) >

(- B - (- 57

which proves (4.1) and gives the construction of an open subset V of d() and a
holomorphic function f on W such that (a)-(d) holds.
Let {e};., be a sequence of strictly positive numbers and m be a natural

number sufficiently large so that (1 - é—Z) H(z) — Y2 e >aH(z) forz € X and

Y ieq € < &. Now using (a)-(d) we can construct a sequence {Vj},.n of open
subsets of X and a sequence { f }cp; of holomorphic functions on W such that

@) |fx(z)| < e forzeT;

(f) —¢&r < wri1(z) —wi(z) < Hy(z) forz € X;
(g) wip(z) > (1 — %) Hy(z) + wi(z) forz € Vi;

— = — 1= n(v))
() Vi € E\UZ Vi and (Vi) = (Vi) > —g
P
where wy(z) = || \ (e+Z1f) (16 t))‘ dt, Hy = H and Hy.1(2) = Hy(z) —
Wm+1(2) + wm(z). Observe that Hy, — H| = —wy, + wy.

1-y 1y v,
As Z;?‘;l 17(V]) < 1 it holds that limy_,, (2121711;7"(1])

exists n € IN sufficiently large so that 1 —¢e < }i17(Vj). Let us now define
V= U;Z:l Viand f = Z;Z:l fi-

First we prove the properties (1),(4): 7(V) = Y1 7(V;) > 1 —eand |f(z)] <
Yiq¢ <eforzeT.

As w1 = Hy — H 4 wy, property (2) is also obvious: —& < —}7 ¢ <
wp11(z) —wy(z) < H(z) for z € X.

= 0. In particular there
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Now letz € V. There exists k € {1, ...,n} such thatz € V;. As H, = H — w +
w1, we obtain property (3):

n

wnt1(z) —wi(z) = Y (wj31(2) — wj(2)) + wi(z) — wi(2) + Wi (2) — wi(z)
=k 11
o 4m
> _]-_%1 g+ wk(z) — ( ) + (1 — 5_m) Hk(Z)
m 4m
> —];Hs] (@(z) =@ @)+ (1- 5 ) HE)
> —Zs] ( ;L:)H(z)zaH(z). m

Now we are ready to prove the following result.

Theorem 4.7. Let ¢ > 0, 17 be a probability measure on X and T be a compact subset
of O\ X. If H is a lower semicontinuous, strictly positive function on X, then there
exists a function f holomorphic on Q) and continuous on O\ X, such that ||f||; < e,

fo o) (z,t)|P dt < H(z) forz € X and

T <{Z €X: /01 [(foy)(zt)|dt = H(z)}) 1

Proof. There exists a sequence of continuous, strictly positive functions {Gy } ey
such that 0 < Gj(z) < Gj;1(z) < ..limj_,e Gj(z) = H(z). Let {Ti}; be a
sequence of compact subsets of Q) such that Ty C Ty, the interior of Tj is con-
tained in the interior of Ty 1 and Uy, Tr = Q \ X. Let {&;};-; be a sequence of
strictly positive numbers such that ) p° ; &, < 1. Due to Lemma 4.6 there exists a
sequence { Vi },cn of open subsets of X and a sequence { fi } . of holomorphic
functions on W such that

@ |[fx(z)|] <geforze T, UT;

(b) wisr(z) — wi(z) < Hy(z) forz € X;

(©) wii1(z) — wi(z) > (1 —ex)Hy(z) forz € Vi;
@ 7(Vi) =n(Vi) > 1 - ¢,

where w; = 0, wp(z) = [} ‘(z;ﬂ:—ll f]-) (1(z, t))}” dt, H = Gy and Hy1(z) =

Gut1(2) — Wng1(2) + wm(z).
Observe that for z € X we have

Wiy2(2) < Hipq(2) + wpep1(2) = Grp1(2) — wi(z) < Grya (2).

Moreover for z € Vi1 we may estimate

Wii2(z) > wrp1(z) + (1 = ep1)Hiy1(2) > gpprwpr1(z) + (1 — €x41) Grg1(2)
> (1 —2e511)Gry1(2).
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Let Uy := N}, Vim and U = ;2 Uy. Observe that (Uy) > 1— Y. &, and
n(U) = limy—e0 17(Uy) = 1. If z € U then there exists k € N such that z € Uy. In
particular z € V41 for m > k and

G(z) = lim (1—261)Gus1(2) < lim w,i1(z) < lim Gu(z) = G(2).

Now we can define the function f = };7, f; which is holomorphic on Q) and
continuous on Q) \ X, and observe that we(z) < G(z) for z € X and we(z) =
G(z) for y-almost all z € X, i.e. f has the required properties. n

As an application of Theorem 4.7 we prove the following description of ex-
ceptional sets (see 1.1) E{) (f).

Theorem 4.8. Let ¢ > 0, T be a compact subset of QO \ X and 1 be a probability measure
on X . IfE C Xisasetof type Gs then there exists a holomorphic function f such that (see

LD |Ifllr <& EQ(f) € E n(E\Eq(f)) = 0and JooE) <o) [foy|PdeN < eo.

Proof. Let o be a natural measure on 9Q). Due to [8, Theorem 2.6, Proposition 2.5]
there exist sequences {D;};cpny, {Ti}iep Of compact subsets in X such that:

1. Uien Di = X\ Eand D; C Dj;; forj € N;
2. T;ND;=QforjeN;

3. E= m;i1 Ufi] Ti;

4. o(X\(EUDj) <27/

There exists a sequence of continuous functions {u, },,cp such that 0 < u;,(z) <
1, um(z) = 0if and only if z € Dy, and u,,(z) = 1if and only if z € Tj,. Let
H(z) =1+ Y, _1um(z). Observe that H is a strictly positive lower semicontin-
uous function on X and [ X\E Hdo < . Now due to Theorem 4.7 there exists
a function f, holomorphic on Q and continuous on Q \ X, such that || f||; < ¢,

fol |(f o¥)(z,t)|P dt < H(z) for z € X and

T <{Z €X: /01 [(foy)(zt)|dt = H(z)}) 1

We may estimate

1
}|foy|pd22N=/X\E/0 ((foy)(z,t)|Pdtdo(z) < | Hdo < .

/(X\E) x[0,1 X\E

Observe that Ef)(f) C X since f is a continuous function on Q\ X. If z € X\ E
then there exists mg such that z € D,, for m > mgpand H(z) < 1+ Zﬁozl 1 <
c0. In particular E} (f) C E. Moreover if z € E then H(z) = oo and therefore

n(E\EH(f)) =0. m
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