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Abstract

The class of PLS-spaces covers most of the natural spaces of analysis,
e. g. the space of real analytic functions, spaces of distributions. We inves-
tigate the property of PLS-spaces called dual interpolation estimate and show
that in many important and classical cases this property is inherited by ten-
sor products of two PLS-spaces. We establish the inheritance if at least one
of the spaces is a nuclear Fréchet space or a PLN-space. The latter includes
the important, classical case when one of the spaces is the dual of a nuclear
Fréchet space.

1 Introduction

The aim of this paper is to investigate when the dual interpolation estimate is in-
herited by tensor products of PLS-spaces. Basic definitions (e.g. PLS-space, dual
interpolation estimate) and properties are collected in Section 2 while Section 3
contains all the main results. We prove the inheritance if e.g. at least one of the
spaces is nuclear Fréchet – Th. 6 or at least one of them is a PLN-space – Th. 9. Ac-
cording to [14, 21.8.4] not every nuclear Fréchet space can be given a PLN-space
structure therefore one has to distinguish these two cases.
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The property we are going to consider has its origin in the so called (DN) −
(Ω) type conditions for Fréchet spaces. They were extensively explored by Vogt
starting with the paper [30]. These conditions have proved to be very useful in
several contexts. They appear in the characterization of subspaces and quotients
of power series spaces (see [29], [32] and [25]). If X is a stable power series space
of finite type then the conditions (DN)− (Ω) characterize all those Fréchet spaces
Y for which L(X, Y) = LB(X, Y) and L(Y, X) = LB(Y, X), i.e. every continuous
and linear operator is bounded in the sense that it maps some zero neighbour-
hood into a bounded set (see [28, Ths. 2.1, 4.2]). If X belongs to the same class
of Fréchet spaces then the properties of type (DN) and (Ω) characterize those
Fréchet spaces Y for which the pairs (X, Y) and (Y, X) are tame (see [20]). Tame-
ness is (see [12, Th. 2.3]) related to the problem of Pełczyński (see [19]) whether
every complemented subspace of a nuclear Fréchet space with basis has a basis it-
self. (DN)− (Ω) type conditions have also much to do with the splitting of short
exact sequences of Fréchet spaces (see e.g. [21], [17, Th. 30.1]). The condition
we are going to investigate found an interesting application in the proof of the
non-existence of basis in the space of real analytic functions A(Ω) (see [10]). The
dual interpolation estimate also plays an important role in the theory of splitting
of short exact sequences of PLS-spaces (see [24], [3]). This property appears also
in the context of surjectivity of operators on spaces of vector valued distributions
and real analytic parameter dependence of solutions of differential equations (see
[4], [2] and [6] for a comprehensive survey of this topic).

2 Preliminaries

Let us recall that PLS-spaces are (see [10], [11]) the projective limits of a sequence
of duals of Fréchet-Schwartz spaces. This means that every PLS-space X can be
viewed as

X = projN∈N
indn∈NXN,n,

where all the XN,n are Banach spaces and all the linking maps

ιN,n+1
N,n : XN,n → XN,n+1 are compact. If, in addition, all these linking maps are

nuclear then X is called a PLN-space. We also define XN := indn∈NXN,n and
by ιN : X → XN we denote the canonical projection. Moreover BN,n will be the
closed unit ball of XN,n. Let us also recall (see [3]) that a PLS-space X is said to
have the dual interpolation estimate for small θ if

∀ N ∃ M ∀ K ∃ n ∀ m ∃ θ0 ∈ (0, 1) ∀θ ≤ θ0 ∃ k, C > 0 ∀ x′ ∈ X′
N :

||x′ ◦ ιM
N ||∗M,m ≤ C(||x′ ◦ ιKN ||∗K,k)

1−θ(||x′||∗N,n)
θ .

(1)

If we take θ ≥ θ0 then X has the dual interpolation estimate for big θ and if we
take θ ∈ (0, 1) then X has the dual interpolation estimate for all θ. The examples of
PLS-spaces with this property are collected in the following result.

Proposition 1 ([2], [3], [4]).

(i) A Fréchet-Schwartz space has the dual interpolation estimate for big θ iff it has (Ω).

It has the dual interpolation estimate for small (equivalently, all) θ iff it has (Ω).



On a property of PLS-spaces inherited by their tensor products 157

(ii) An LS-space has the dual interpolation estimate for small θ iff its strong dual has
(DN). It has the dual interpolation estimate for big (equivalently, all) θ iff its
strong dual has (DN).

(iii) The space of distributions D′(Ω) or the space of Beurling ultradistributions D′
ω(Ω)

has the the dual interpolation estimate for all θ.

(iv) The space of real analytic functions A(Ω), Ω ⊂ R
n has the the dual interpolation

estimate for small θ.

(v) The PLS-type power series space Λr,s(α, β) has the dual interpolation estimate for
big θ iff s = ∞ or it is a Fréchet space. It has the dual interpolation estimate for
small θ iff it is an LS-space.

This property unifies four other conditions previously defined: (PΩ),

(PΩ) – see [4] and (PA), (PA) – see [2]. The relation between these conditions is
expressed in the result below.

Proposition 2 ([3]). A PLS-space X has the dual interpolation: for small θ iff it has both

(PA) and (PΩ); for big θ iff it has both (PA) and (PΩ); for all θ iff it has both (PA)

and (PΩ).

Let us now give a very convenient reformulation of the dual interpolation
estimate which will be extensively used further.

Lemma 3. A PLS-space X has the dual interpolation estimate if and only if the following
condition holds:

∀ N ∃ M ∀ K ∃ n ∀ m, γ > 0 ∃ k, C > 0 ∀ r > 0 :

ιM
N BM,m ⊂ C

(

rγιKNBK,k +
1

r
BN,n

)

.
(2)

If we take ∃ γ0 > 0 ∀ γ ≤ γ0 then we get the dual interpolation estimate for small θ and
if we take ∃ γ0 > 0 ∀ γ ≥ γ0 then we get the dual interpolation estimate for big θ.

Proof. Necessity. The right hand side of the inequality in (1) is equal (up to
some constant, universal for all x′ ∈ X′

N) to the minimum of the function

fx′(r) := rγ||x||∗K,k +
1

r
||x||∗N,n,

where θ = γ
γ+1 . By [2, Lemma 3.5(b)] we get (2).

Sufficiency. For every x ∈ BM,m we get a ∈ BK,k, b ∈ BN,n such that

ιM
N x = CrγιKNa +

C

r
b.

For arbitrary x′ ∈ X′
N we have

|x′ ◦ ιM
N x| ≤ Crγ|x′ ◦ ιKNa|+ 1

r
|x′b| ≤ C fx′(r).

By the choice of x we obtain (1).
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If X and Y are PLS-spaces then it becomes essential (in view of the defini-
tion of the dual interpolation estimate) to check whether the tensor products
XεY, X⊗̃εY, X⊗̃πYare PLS-spaces or not. If (XN)N , (YN)N are projective spec-
tra of LS-spaces of X and Y, respectively then by [1, Remark 4.2] (XN⊗̃πYN)

′
b is a

Fréchet-Schwartz space for all N ∈ N. Therefore (XN⊗̃πYN)
′′ is an LS-space for

all N. By [14, 15.6.5, 15.6.8(c)] (XN⊗̃πYN) is reflexive therefore

X⊗̃πY = projN(XN⊗̃πYN)

is a PLS-space. If one of the spaces X, Y is ultrabornological then by [9, Prop. 4.3,
Remark 4.4] XεY is a PLS-space and by [11, Prop. 1.2] so is its closed subspace
X⊗̃εY. In that case

XεY = projNindnL(X′
N,n, YN,n).

By [3, Cor. 1.2(c)] the dual interpolation estimate implies ultrabornolo-
gicity therefore all the three tensor products are PLS-spaces and if one of the
spaces X, Y is nuclear then by [14, 18.1.8(2), 21.2.1, 21.2.2] all the three tensor
products coincide.

For unexplained facts and notation from functional analysis we refer the reader
to [17]. For more informations on (PLS)-spaces see [7] and references therein.

3 Main results

Let X and Y be two Fréchet-Schwartz spaces. In [27, Th. 3.5] it is shown that
the dual interpolation estimate for big θ is inherited by their projective tensor
product. If X′ and Y′ have the dual interpolation estimate for all θ and either X or
Y has the approximation property then by [27, Th. 2.5] also X′⊗̃πY′ has the dual
interpolation estimate for all θ. In the following theorem we generalize the latter
statement to arbitrary LS-spaces.

Theorem 4. The dual interpolation estimate for all θ is inherited by the projective tensor
product of two Fréchet-Schwartz as well as of two LS-spaces.

Proof. We will show the result for LS-spaces. The case of Fréchet-Schwartz
spaces follows analogously if, instead of a fundamental sequence of bounded
sets, we take a fundamental sequence of zero neighbourhoods. Let X and Y be
two LS-spaces, i.e. duals of Fréchet-Schwartz spaces with the fundamental se-
quences of bounded sets (An)n,
(Bn)n, respectively. By the discussion at the end of Section 2 X⊗̃πY is an LS-space

and by [15, 41.4(7)] Γ(An ⊗ Bn) is a fundamental sequence of bounded sets (here
Γ stands for the absolutely convex hull). According to Prop. 1(ii) we assume that

∃ n ∀ m, γ > 0 ∃ k, C > 0 ∀ r > 0 :

Am ⊂C
(

rγ Ak +
1

r
An

)

,

Bm ⊂C
(

rγBk +
1

r
Bn

)

.

(3)
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For arbitrary δ > 0, s ∈ (0, 1] we take γ := 2δ + 1, r :=
√

s. Tensorizing the
above inclusions and using the fact that n ≤ k, r2γ ≤ rγ−1 one gets

Am ⊗ Bm ⊂ C2
(

r2γ Ak ⊗ Bk + 2rγ−1Ak ⊗ Bk +
1

r2
An ⊗ Bn

)

⊂

⊂ 2C2
(

rγ−1Ak ⊗ Bk +
1

r2
An ⊗ Bn

)

= 2C2
(

sδAk ⊗ Bk +
1

s
An ⊗ Bn

)

.

For s > 1 we easily get

Am ⊗ Bm ⊂ Ak ⊗ Bk ⊂ sδAk ⊗ Bk +
1

s
An ⊗ Bn.

We have shown that

∀ s > 0 : Γ(Am ⊗ Bm) ⊂ 2C2sδΓ(Ak ⊗ Bk) +
1

s
Γ(An ⊗ Bn).

But these are bounded sets in a Schwartz space therefore compact, which gives

sδΓ(Ak ⊗ Bk) +
1

s
Γ(An ⊗ Bn) = sδΓ(Ak ⊗ Bk) +

1

s
Γ(An ⊗ Bn)

and by Prop. 1(ii) we are done.
In [16, Prop. 2.1] it is proved that if two Köthe coechelon spaces have the

dual interpolation estimate for all θ then their injective tensor product has this
property too. We generalize this result.

Theorem 5. The dual interpolation estimate for all θ is inherited by the injective tensor
product of two Fréchet-Schwartz as well as of two LS-spaces.

Proof. We will show it in the case of two Fréchet-Schwartz spaces. For their
duals the proof is the same if, instead of a fundamental sequence of zero neigh-
bourhoods, we take a fundamental sequence of bounded sets. Let X and Y be two
Fréchet-Schwartz spaces with the bases of zero neighbourhoods (Un)n, (Vn)n, re-
spectively. By [15, 44.2(5)], [14, 16.4.3] and [17, prop. 24.18] X⊗̃εY is a Fréchet-
Schwartz space and by [15, 44.2(3)] ((U◦

n ⊗ V◦
n )

◦)n is a basis of zero neighbour-
hoods (the polar of U◦

n ⊗ V◦
n taken in X⊗̃εY). According to Prop. 1(i) and [24,

Remark after Th. 1.1] we assume that

∀ n ∃ m ∀ k, γ > 0 ∃ C > 0 ∀ r > 0 :

Um ⊂C
(

rUk +
1

rγ
Un

)

,

Vm ⊂C
(

rVk +
1

rγ
Vn

)

.

(4)

Taking polars in the above inclusions, tensorizing them and again taking po-
lars one gets

(U◦
m ⊗ V◦

m)
◦ ⊂ C2

(

(

rUk +
1

rγ
Un

)◦ ⊗
(

rVk +
1

rγ
Vn

)◦)◦
⊂

4C2
(

(rUk)
◦ ⊗ (rVk)

◦ ∩ (rUk)
◦ ⊗ (r−γVn)

◦ ∩ (r−γUn)
◦

⊗ (rVk)
◦ ∩ (r−γUn)

◦ ⊗ (r−γVn)
◦
)◦

.
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Now for arbitrary δ > 0, s > 1 we take γ := 2δ + 1, r :=
√

s. Then r2γ
> rγ−1

and together with n ≤ k we obtain

(U◦
m ⊗ V◦

m)
◦ ⊂ 4C2

(

r−2(U◦
k ⊗ V◦

k ) ∩ rγ−1(U◦
n ⊗ V◦

n )
)◦

⊂

⊂ 4C2
(

s−1Γ(U◦
k ⊗ V◦

k ) ∩ sδΓ(U◦
n ⊗ V◦

n )
)◦

.

By [23, Ch. IV, 1.5, Cor. 2] this gives

(U◦
m ⊗ V◦

m)
◦ ⊂ 4C2Γ(s(U◦

k ⊗ V◦
k )

◦ ∪ s−δ(U◦
n ⊗ V◦

n )
◦) ⊂

⊂ 4C2s(U◦
k ⊗ V◦

k )
◦ + s−δ(U◦

n ⊗ V◦
n )

◦.

But the sets being considered are zero neighbourhoods therefore we get

(U◦
m ⊗ V◦

m)
◦ ⊂ (4C2 + 1)

(

s(U◦
k ⊗ V◦

k )
◦ +

1

sδ
(U◦

n ⊗ V◦
n )

◦
)

.

Obviously for s ∈ (0, 1) one has

(U◦
m ⊗ V◦

m)
◦ ⊂ (U◦

m ⊗ V◦
m)

◦ ⊂ (4C2 + 1)
1

sδ
(U◦

n ⊗ V◦
n )

◦

which proves

∀ s > 0 : (U◦
m ⊗ V◦

m)
◦ ⊂ (4C2 + 1)

(

s(U◦
k ⊗ V◦

k )
◦ +

1

sδ
(U◦

n ⊗ V◦
n )

◦
)

and by Prop. 1(i) and [24, Remark after Th. 1.1] finishes the proof.
Now we proceed to the case when one of the spaces is a nuclear Fréchet space

or its dual and the other one is an arbitrary PLS-space. The proofs are based on
the idea of Vogt used in [26].

Theorem 6. Let X be a nuclear Fréchet space and Y an arbitrary PLS-space. If they
both have the dual interpolation estimate for all (big, small) θ then their completed tensor
product has the same sort of the dual interpolation estimate.

Proof. We will show the above statement in the case of all θ. The other two are
proved in the same way. Let X and Y have the following representations:

X := projNXN , Y := projNindnYN,n.

Let moreover B(Y′
N,n, XN) denote the closed unit ball in L(Y′

N,n, XN) and UN,n the

closed unit ball in YN,n. By ρM
N : XM → XN , ιM

N : YM → YN (M ≥ N) we mean
the linking maps in X and Y, respectively. We may assume that all the spaces
XN are Hilbert and all the maps ρM

N are nuclear. Moreover we may assume that

for all N, n ∈ N the operator ιN+1
N acts from YN+1,n into YN,n. By [13, Th. 1.3]

we may assume that all the spaces YN,n are reflexive. We know that X⊗̃Y =
projNindnL(Y′

N,n, XN) and by Lemma 3 we have to prove that
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∀ N ∃ M ∀ K ∃ n ∀ m, γ > 0 ∃ k, C > 0 ∀ r > 0 :

ρM
N B(Y′

M,m, XM)(ιM
N )′ ⊂ C

(

rγρK
NB(Y′

K,k, XK)(ι
K
N)

′ +
1

r
B(Y′

N,n, XN)
)

.
(5)

This inclusion is understood in the following sense: for every operator
T ∈ B(Y′

M,m, XM) there exist operators S ∈ CrγB(Y′
K,k, XK) and

R ∈ C
r B(Y′

N,n, XN) such that for all y′ ∈ Y′
N we have

ρM
N ◦ T(y′ ◦ ιM

N ) = ρK
N ◦ S(y′ ◦ ιKN) + R(y′).

Since X and Y have the dual interpolation estimate we obtain (with the quanti-
fiers in mind)

||x′ ◦ ρM
N+2||∗M ≤ C(||x′ ◦ ρK+2

N+2||∗K+2)
1−θ(||x′||∗N+2)

θ ∀ x′ ∈ X′
N+2,

||y′ ◦ ιM
N ||∗M,m ≤ C(||y′ ◦ ιKN||∗K,k)

1−θ(||y′||∗N,n)
θ ∀ y′ ∈ Y′

N .

Multiplying these inequalities and proceeding as in Lemma 3 we get for γ = θ
1−θ

and all r > 0
||x′ ◦ ρM

N+2||∗M||y′ ◦ ιM
N ||∗M,m ≤

≤ C2
(

rγ||x′ ◦ ρK+2
N+2||∗K+2||y′ ◦ ιKN ||∗K,k +

1

r
||x′||∗N+2||y′||∗N,n

)

.

By polarization as in [31, Lemma 2.1] this gives

||x′ ◦ ρM
N+2||∗MUM,m ⊂ C2

(

rγ||x′ ◦ ρK+2
N+2||∗K+2UK,k +

1

r
||x′||∗N+2UN,n

)

. (6)

Since the operator ρK+1
N+1 is nuclear by the Spectral Theorem [5, Th. 4.1] we find

its representation

ρK+1
N+1x =

+∞

∑
j=1

aj〈x, ej〉K+1 f j,

where (aj)j is a sequence of positive numbers, (ej)j is an orthonormal sequence
in XK+1 and ( f j)j is an orthonormal basis in XN+1. Let x∗j be the j-th evaluation

functional with respect to ( f j)j, i.e.

x∗j (x) := 〈x, f j〉N+1 ∀ x ∈ XN+1.

For an arbitrary operator A ∈ B(Y′
M,m, XM) we define elements

φj := x∗j ◦ ρM
N+1 ◦ A ∈ Y′′

M,m = YM,m ∀ j ∈ N.

As can be easily calculated, ||φj||M,m ≤ ||x∗j ◦ ρM
N+1||∗M. Therefore

φj ∈ ||x∗j ◦ ρM
N+1||∗MUM,m for all j ∈ N. Applying (6) to the elements x∗j ◦ ρN+2

N+1 ∈
X′

N+2 we obtain

ξ j ∈ C2rγ||x′ ◦ ρK+2
N+1||∗K+2UK,k,
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ηj ∈
C2

r
||x∗j ◦ ρN+2

N+1||∗N+2UN,n

such that

ιM
N φj = ιKNξ j + ηj ∀ j ∈ N. (7)

Now we define linear operators

B : Y′
K,k → XK, By′ :=

+∞

∑
j=1

1

aj
y′(ξ j)ρ

K+1
K ej,

D : Y′
N,n → XN , Dy′ :=

+∞

∑
j=1

y′(ηj)ρ
N+1
N f j.

In fact they are continuous. To see this we need some calculations. We start with
the operator B. First of all

ρK+1
K ej 6= 0 ∀ j ∈ N. (8)

If not then

aj f j = ρK+1
N+1ej = ρK

N+1ρK+1
K ej = 0 – a contradiction.

If for some j ∈ N : (ρK+2
K+1)

′ej = 0 then for all x ∈ XK+2 we have

x∗j (ρ
K+2
N+1x) = 〈ρK+2

N+1x, f j〉N+1 = aj〈ρK+2
K+1x, ej〉K+1 = 0.

This gives ||x∗j ◦ ρK+2
N+1||∗K+2 = 0 and implies ξ j = 0 therefore we may assume that

(ρK+2
K+1)

′ej 6= 0 ∀ j ∈ N. (9)

By (8) and (9) we define, for all j ∈ N, positive numbers

λK
j := ||(ρK+2

K+1)
′ej||K+2||ρK+1

K ej||K,

γK
j :=

(

||(ρK+2
K+1)

′ej||K+2

)−1
.

Now for any j ∈ N, x ∈ XK+2 we obtain

γK
j |〈ρK+2

K+1x, ej〉K+1| ≤ ||x||K+2

Using the definition of x∗j and ρK+1
N+1 we get

1

aj
γK

j |x∗j (ρK+2
N+1x)| = γK

j |〈ρK+2
K+1x, ej〉K+1| ≤ ||x||K+2.

This gives

sup
j

1

aj
γK

j ||x∗j ◦ ρK+2
N+1||∗K+2 ≤ 1. (10)
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Let us now focus on the operator D. If for some j ∈ N we have ρN+1
N f j = 0

then this particular summand doesn’t influence the estimation of the norm of D.
Therefore we may assume that

ρN+1
N f j 6= 0 ∀ j ∈ N. (11)

Moreover

(ρN+2
N+1)

′ f j 6= 0 ∀ j ∈ N. (12)

If not then

aj = 〈ρK+1
N+1ej, f j〉N+1 = 〈ρN+2

N+1ρK+1
N+2ej, f j〉N+1 = 0 – a contradiction.

By (11) and (12) we define, for all j ∈ N, positive numbers

λN
j := ||(ρN+2

N+1)
′ f j||N+2||ρN+1

N f j||N ,

γK
j :=

(

||(ρN+2
N+1)

′ f j||N+2

)−1
.

Similarly as above we obtain

γN
j |x∗j (ρN+2

N+1x)| ≤ ||x||N+2

which gives

sup
j

γN
j ||x∗j ◦ ρN+2

N+1||∗N+2 ≤ 1. (13)

Since every nuclear operator between Hilbert spaces is Hilbert-Schmidt we
obtain for ν := N, gj := f j and ν := K, gj := ej the following inequalities:

∑
j

λν
j = ∑

j

||(ρν+2
ν+1)

′gj||ν+2||ρν+1
ν gj||ν ≤ σ(ρν+2

ν+1)σ(ρ
ν+1
ν ) =: C(ν) < +∞,

where σ(·) denotes the Hilbert-Schmidt norm. Finally, recalling the choice of
ξ j, ηj and using (10), (13) and the above estimation we calculate the norms of the
operators B and D:

||By′||K ≤ ∑
j

1

aj
|y′(ξ j)|||ρK+1

K ej||K = ∑
j

1

aj
|y′(ξ j)|γK

j λK
j ≤

≤ ∑
j

λK
j sup

i

1

aj
γK

j ||ξ j||K,k||y′||∗K,k ≤

≤ C(K) sup
j

1

aj
γK

j C2rγ||x∗j ◦ ρK+2
N+1||∗K+2||y′||K,k ≤

≤ C2C(K)rγ||y′||K,k;

||Dy′||N ≤ ∑
j

|y′(ηj)|||ρN+1
N f j||N = ∑

j

|y′(ηj)γ
N
j λN

j ≤
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≤ C(N) sup
j

γN
j ||ηj||N,n||y′||∗N,n ≤ C(N)C2 1

r
||y′||∗N,n.

Of course, the above estimations are valid for all r > 0. It remains to show that

ρM
N ◦ A(y′ ◦ ιM

N ) = ρK
N ◦ B(y′ ◦ ιKN) + D(y′) ∀ y′ ∈ Y′

N .

Using (7) one has

ρK
N ◦ B(y′ ◦ ιKN) + D(y′) = ∑

j

y′(ιKNξ j)ρ
N+1
N

( 1

aj
ρK+1

N+1ej

)

+∑
j

y′(ηj)ρ
N+1
N f j =

= ∑
j

y′(ιKNξ j + ηj)ρ
N+1
N f j = ∑

j

y′(ιM
N φj)ρ

N+1
N f j =

ρN+1
N

(

∑
j

x∗j ◦ ρM
N+1 ◦ A(y′ ◦ ιM

N ) f j

)

= ρN+1
N

(

∑
j

〈ρM
N+1 ◦ A(y′ ◦ ιM

N ), f j〉N+1 f j

)

=

= ρN+1
N ◦ ρM

N+1 ◦ A(y′ ◦ ιM
N ) = ρM

N ◦ A(y′ ◦ ιM
N ).

This gives (5) with the constant C1 := C2(C(N)+C(K)) and finishes the proof.
In the previous results one of the spaces was an arbitrary PLS-space while the

other one had a simpler structure of an LS-space or FS-space and was nuclear.
Now we will show the case when still one of the PLS-spaces is arbitrary but the
other one is the so called Köthe type PLS-space (see [7] for the definition).

Theorem 7. Let X be an arbitrary PLS-space.
(1) If X and Λ1(A) have the dual interpolation estimate for all (big, small) θ then their
projective tensor product has the same sort of the dual interpolation estimate.
(2) If X and Λ∞(A) have the dual interpolation estimate for all (big, small) θ then their
injective tensor product has the same sort of the dual interpolation estimate.

Proof. We will show the case for all θ. The other two are analogous. By

X = projNindnXN,n,

Λ1(A) = projNindnl1(aj,N,n),

Λ∞(A) = projNindnl∞(aj,N,n)

we denote the PLS representations of the considered spaces and by
ιM
N : XM → XN the linking maps.

(1): By [14, 15.4.2] and [15, 41.4(7)] we have

X⊗̃πΛ1(A) = projNindn(XN,n⊗̃π l1(aj,N,n)).

By [22, Ex. 2.6] this gives

X⊗̃πΛ1(A) = projNindnl1(aj,N,n)(XN,n),

where the latter is the space of sequences (xj)j ⊂ XN,n such that

+∞

∑
j=1

||xj||N,naj,N,n < +∞.
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The linking maps arise naturally from the linking maps of X therefore we omit
them. If X and Λ1(A) have the dual interpolation estimate for all θ then

∀ N ∃ M ∀ K ∃ n ∀ m, θ ∈ (0, 1) ∃ k, C > 0 ∀ x′ ∈ X′
N , j ∈ N :

||x′ ◦ ιM
N ||∗M,m ≤ C(||x′ ◦ ιKN ||∗K,k)

1−θ(||x′||∗N,n)
θ ,

1

aj,M,m
≤ C

( 1

aj,K,k

)1−θ( 1

aj,N,n

)θ
.

(14)

If φ is a functional on the N-th projective limit step of X⊗̃πΛ1(A) then it is
uniquely determined by a sequence of functionals (x∗j )j ∈ X′

N such that

∀ n ∈ N : sup
j

1

aj,N,n
||x∗j ||N,n < +∞.

Multiplying the inequalities in (14) we easily get

sup
j

1

aj,M,m
||x∗j ◦ ιM

N ||M,m ≤

≤ C2
(

sup
j

1

aj,K,k
||x∗j ◦ ιKN ||K,k

)1−θ(

sup
j

1

aj,N,n
||x∗j ||N,n

)θ
.

In other words,

||φ||∗M,m ≤ C2
(

||φ||∗K,k

)1−θ(||φ||∗N,n

)θ
.

(2): By compactness of the maps l∞(aj,N,n)→֒l∞(aj,N,n+1) we may assume that

Λ∞(A) = projNindnc0(aj,N,n).

The following equalities are consequences of [14, 15.4.2] and [1, Remark 4.2]:

X⊗̃εΛ
∞(A) = projN(indnXN,n⊗̃εindnc0(aj,N,n)) =

= projN((indnXN,n)
′⊗̃π(indnc0(aj,N,n))

′)′ =

= projN(projnX′
N,n⊗̃πprojnl1(a

−1
j,N,n))

′ =

= projN(projn(X
′
N,n⊗̃πl1(a

−1
j,N,n))

′ =

= projN(projnl1(a
−1
j,N,n)(X

′
N,n))

′ =

= projNindnl∞(aj,N,n)(X
′′
N,n) =

= projNindnc0(aj,N,n)(XN,n).

Arguing as in (1) we see that the conclusion follows form the fact that the elemen-
tary tensors satisfy the dual interpolation estimate.

The last problem we focus on is the case of one space being PLN. We recall
(see [6]) that a PLS-space X is deeply reduced if any (each) of its strongly reduced
representing spectra of LS-spaces (XN , ιM

N ) satisfies the following condition:

∀ N ∃ M ∀ K ∃ n ∀ m ∃ k :

ιM
N XM,m ⊂ ιKNXK,k

XN,k ∩ XN,n
XN,k .
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Proposition 8. Dual interpolation estimate in any of its forms implies deep reducedness.

Proof. Recall that by Lemma 3 X satisfies the dual interpolation estimate if

∀ N ∃ M ∀ K ∃ n ∀ m, γ > 0 ∃ k, C > 0 ∀ r > 0 :

ιM
N BM,m ⊂ C

(

rγιKNBK,k +
1

r
BN,n

)

.

By the Grothendieck’s Factorization Theorem [17, Th. 24.33] we find k0 ∈ N

so that ιKN : XK,k → XN,k0
. Therefore ιKNBK,k is bounded in XN,k0

which gives a
positive constant D such that

ιKNBK,k ⊂ DBN,k0
.

For arbitrary l ∈ N we find rl > 0 so that CDr
γ
l <

1
l . We obtain

ιM
N BM,m ⊂ CDr

γ
0 BN,k0

+
C

r0
BN,n ⊂ XN,n +

1

l
BN,k0

.

This inclusion holds for all l ∈ N therefore

ιM
N BM,m ⊂

⋂

l∈N

(

XN,n +
1

l
BN,k0

)

= XN,n
XN,k0 .

Obviously XN,n embeds into XN,k therefore

BN,n ⊂ DBN,k

for some positive constant D. Now for arbitrary l ∈ N we take rl > 0 so that
CD
rl

<
1
l and proceeding analogously we obtain

ιM
N BM,m ⊂ ιKNXK,k

XN,k
.

The following result strengthens [6, Cor. 5.9, Cor. 5.10].

Theorem 9. Let X and Y be two PLS-spaces with the dual interpolation estimate for all
(big, small) θ. If X is a PLN-space then their completed tensor product has the same sort
of the dual interpolation estimate. In particular this is so if one of the spaces is LN.

Proof. We start with the dual interpolation estimate for X and Y separately.
This means that

∀ N ∃ M ∀ K ∃ n ∀ m, θ ∈ (0, 1) ∃ k, C > 0 :

||x ◦ ιM
N ||∗M,m ≤ C(||x ◦ ιKN ||∗K,k)

1−θ(||x||∗N,n)
θ ∀ x ∈ X′

N ,

||y ◦ ιM
N ||∗M,m ≤ C(||y ◦ ιKN||∗K,k)

1−θ(||y||∗N,n)
θ ∀ y ∈ Y′

N .

Multiplying these inequalities and using polarization techniques we obtain for
all r > 0
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||x ◦ ιM
N ||∗M,mιM

N BM,m ⊂ C
(

rγ||x ◦ ιKN||∗K,kιKNBK,k +
1

r
||x||∗N,nBN,n

)

, (15)

where γ := θ
1−θ . Originally this inclusion holds for all x ∈ X′

N but X is deeply
reduced therefore by [6, Prop. 5.3] it is true for all

x ∈ X′
N,k

X′
N,n∩X′

K,k . The next step is to obtain, for some positive constant D, the
inclusion

ιM
N B(X′

M,m, YM,m) ⊂ D
(

rγιKNB(X′
K,k+1, YK,k) +

1

r
B(X′

N,n+1, YN,n)
)

(16)

This is done exactly like in the proof of [6, Th. 5.2(b)] (compare also with the
proof of [8, Th. 3.1]) but for the convenience of the reader we give a short sketch
of it. We define spaces

H := X′
N,k+1

X′
N,n+1∩X′

K,k+1 ⊂ X′
N,k

X′
N,n∩X′

K,k ,

H1 :=
(

ker ιKN |XK,k+1

)⊥
,

H0 := X′
N,n+1, U := X′

K,n

and by
π0 : H0 → X′

N,n, π1 : H1 → X′
K,k

we denote the natural Hilbert-Schmidt injections. Moreover,
r : H →֒X′

M,m is the standard continuous injection. By [8, Lemma 2.2] (compare
also [18]) we obtain, for any ε > 0, a set I, positive weights v, w : I → R and
(1 + ε)-isomorphisms

T : H → l2(I), V : H0 → l2(I, v), W : H1 → l2(I, w).

For an arbitrary operator R ∈ B(X′
M,m, YM,m) we define

φi := R(rT−1(ei)) ∈ ||rT−1ei||∗M,mBM,m.

Using (15) we find elements

ξ j ∈ Crγ||π1 j1T−1ej||∗K,kBK,k, ηj ∈
C

r
||π0 j0T−1ej||∗N,nBN,n,

such that

ιM
N φj = ιKNξ j + ηj ∀ j ∈ I. (17)

Now we define operators

W̃ : H1 → YK,k, W̃x := ∑
j

1

w2
j

〈Wx, ej〉l2(I,w)ξ j,

Ṽ : H0 → YN,n, Ṽx := ∑
j

1

v2
j

〈Vx, ej〉l2(I,v)ηj
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and show their continuity by estimating their norms:

||W̃|| 6 Crγ(1 + ε)2ν2(π1), ||Ṽ|| 6 C

r
(1 + ε)2ν2(π0).

By (17) we show that

ιM
N ◦ R = ιKN ◦ W̃ ◦ j1 + Ṽ ◦ j0

for all x ∈ X′
N . This gives (16) and by Lemma 3 proves the assertion.
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dia Math. 38 (1970), pp. 467–483.
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