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Abstract

In the present work, we investigate the simultaneous and converse ap-
proximation by trigonometric polynomials of the functions in the Orlicz spaces
with weights satisfying so called Muckenhoupt’s Ap condition.

1 Introduction

A function Φ is called Young function if Φ is even, continuous, nonnegative in R,
increasing on (0, ∞) such that

Φ (0) = 0, lim
x→∞

Φ (x) = ∞.

A nonnegative function M : [0, ∞)→ [0, ∞) is said to be quasiconvex if there exist
a convex Young function Φ and a constant c1 ≥ 1 such that

Φ (x) ≤ M (x) ≤ Φ (c1x) , ∀x ≥ 0.

A Young function Φ is said to be satisfy ∆2 condition (Φ ∈ ∆2) if there is a constant
c2 > 0 such that

Φ (2x) ≤ c2Φ (x)

for all x ∈ R.
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Two Young functions Φ and Φ1 are said to be equivalent (we shall write
Φ ∼ Φ1) if there are c3, c4 > 0 such that

Φ1 (c3x) ≤ Φ (x) ≤ Φ1 (c4x) , ∀x > 0.

Let T := [−π, π]. A function ω : T → [0, ∞] will be called weight if ω is
measurable and almost everywhere (a.e.) positive.

A 2π-periodic weight function ω belongs to the Muckenhoupt class Ap, p > 1,
if

sup
J





1

|J|

∫

J

ω (x) dx









1

|J|

∫

J

ω−1/(p−1) (x) dx





p−1

≤ c5

with a finite constant c5 independent of J, where J is any subinterval of T.
Let M be a quasiconvex Young function. We denote by L̃M,ω (T) the class of

Lebesgue measurable functions f : T → C satisfying the condition

∫

T

M (| f (x)|)ω (x) dx < ∞.

The linear span of the weighted Orlicz class L̃M,ω (T), denoted by LM,ω (T), be-
comes a normed space with the Orlicz norm

‖ f‖M,ω := sup







∫

T

| f (x) g (x)| ω (x) dx :
∫

T

M̃ (|g|)ω (x) dx ≤ 1







,

where M̃ (y) := supx≥0 (xy − M (x)), y ≥ 0, is the complementary function of M.
For a quasiconvex function M we define the indice p (M) of M as

1

p (M)
:= inf {p : p > 0, Mp is quasiconvex} .

If ω ∈ Ap(M), then it can be easily seen that LM,ω (T) ⊂ L1 (T) and LM,ω (T)
becomes a Banach space with the Orlicz norm. The Banach space LM,ω (T) is
called weighted Orlicz space.

Detailed information about the classical Orlicz spaces, defined with respect to
the convex Young function M, can be found in [24]. Since every convex function
is quasiconvex, Orlicz spaces, considered in this work, are more general than the
classical one and are investigated in the books [13] and [22].

For formulation of the new results we will begin with some required informa-
tions.

Let

f (x) ∽
∞

∑
k=−∞

ckeikx =
a0

2
+

∞

∑
k=1

(ak cos kx + bk sin kx) (1.1)

and

f̃ (x) ∽
∞

∑
k=1

(ak sin kx − bk cos kx)
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be the Fourier and the conjugate Fourier series of f ∈ L1 (T), respectively. In addi-
tion, we put

Sn (x, f ) :=
n

∑
k=−n

ckeikx =
a0

2
+

n

∑
k=1

(ak cos kx + bk sin kx) , n = 1, 2, . . . .

By L1
0 (T) we denote the class of L1 (T) functions f for which the constant

term c0 in (1.1) equals zero. If α > 0, then α-th integral of f ∈ L1
0 (T) is defined as

Iα (x, f ) := ∑
k∈Z∗

ck (ik)
−α eikx,

where

(ik)−α := |k|−α e(−1/2)πiα sign k and Z
∗ := {±1,±2,±3, . . .} .

For α ∈ (0, 1) let

f (α) (x) :=
d

dx
I1−α (x, f ) ,

f (α+r) (x) :=
(

f (α) (x)
)(r)

=
dr+1

dxr+1
I1−α (x, f )

if the right hand sides exist, where r ∈ Z+ := {1, 2, 3, . . .}.
Throughout this work by C (r), c, c1, c2, . . ., ci (α, . . .), cj (β, . . .), . . . we de-

note the constants, which can be different in different places, such that they are
absolute or depend only on the parameters given in their brackets.

Let x, t ∈ R, r ∈ R
+ := (0, ∞) and let

∆r
t f (x) :=

∞

∑
k=0

(−1)k [Cr
k] f (x + (r − k) t) , f ∈ L1 (T) , (1.2)

where
[

Cr
k

]

:=
r(r−1)...(r−k+1)

k! for k > 1,
[

Cr
k

]

:= r for k = 1 and
[

Cr
k

]

:= 1 for
k = 0.

Since [34, p. 14]

|[Cr
k]| =

∣

∣

∣

∣

r (r − 1) . . . (r − k + 1)

k!

∣

∣

∣

∣

≤
c6 (r)

kr+1
, k ∈ Z

+

we have that

C (r) :=
∞

∑
k=0

|[Cr
k]| < ∞,

and therefore ∆r
t f (x) is defined a.e. on R. Furthermore, the series in (1.2) con-

verges absolutely a.e. and ∆r
t f (x) is measurable [37].

If r ∈ Z+, then the fractional difference ∆r
t f (x) coincides with usual forward

difference. Now we define

σr
δ f (x) :=

1

δ

δ
∫

0

|∆r
t f (x)| dt, f ∈ LM,ω (T) , ω ∈ Ap(M).
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Let M ∈ △2, Mθ is quasiconvex for some θ ∈ (0, 1) and ω ∈ Ap(M). Since the

series in (1.2) converges absolutely a.e., we have σr
δ f (x) < ∞ a.e. and using the

boundedness of the Hardy-Littlewood Maximal function [13, Th. 6.4.4, p.250] in
LM,ω (T), ω ∈ Ap(M), we get

‖σr
δ f (x)‖M,ω ≤ c7 (M, r) ‖ f‖M,ω < ∞. (1.3)

Hence, if r ∈ R
+ and ω ∈ Ap(M) we can define the r-th mean modulus of

smoothness of a function f ∈ LM,ω (T) as

Ωr ( f , h)M,ω := sup
|δ|≤h

‖σr
δ f (x)‖M,ω . (1.4)

If r ∈ Z+, M(x) := xp/p, 1 < p < ∞ and ω ∈ Ap then Ωr ( f , h)M,ω coincides
with Ky’s mean modulus of smoothness, defined in [26].

Remark 1. Let LM,ω (T) be a weighted Orlicz space with M ∈ △2 and ω ∈ Ap(M). If

Mθ is quasiconvex for some θ ∈ (0, 1), then r-th mean modulus of smoothness
Ωr ( f , h)M,ω, r ∈ R+, has the following properties:

(i) Ωr ( f , h)M,ω is non-negative and non-decreasing function of h ≥ 0.
(ii) Ωr ( f1 + f2, ·)M,ω ≤ Ωr ( f1, ·)M,ω + Ωr ( f2, ·)M,ω.
(iii) lim

h→0
Ωr ( f , h)M,ω = 0.

Let

En ( f )M,ω := inf
T∈Tn

‖ f − T‖M,ω , f ∈ LM,ω (T) , n = 0, 1, 2, . . . ,

where Tn is the class of trigonometric polynomials of degree not greater than n.
A polynomial Tn (x, f ) := Tn (x) of degree n is said to be a near best approxi-

mant of f if

‖ f − Tn‖M,ω ≤ c8 (M) En ( f )M,ω , n = 0, 1, 2, . . . .

Let Wα
M,ω (T), α > 0, be the class of functions f ∈ LM,ω (T) such that f (α) ∈

LM,ω (T). Wα
M,ω (T), α > 0, becomes a Banach space with the norm

‖ f‖Wα
M,ω(T) := ‖ f‖M,ω +

∥

∥

∥
f (α)

∥

∥

∥

M,ω
.

In this work we investigate the simultaneous and inverse theorems of approx-
imation theory in the weighted Orlicz spaces LM,ω (T).

Simultaneous approximation problems in nonweighted Orlicz spaces, defined
with respect to the convex Young function M, was studied in [12]. In the weighted
case, where the weighted Orlicz spaces are defined as the subclass of the measur-
able functions on T satisfying the condition

∫

T

M (| f (x)| ω (x)) dx < ∞,
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some direct and inverse theorems of approximation theory were obtained in [17].
Some generalizations of these results to the weighted Lebesgue and Orlicz

spaces defined on the curves of complex plane, were proved in [19], [21], [14],
[15], [18], [16], [2] and [1].

Since Orlicz spaces considered by us in this work are more general than the
Orlicz space studied in the above mentioned works, the results obtained in this
paper are new also in the nonweighted cases.

The similar problems in the weighted Lebesgue spaces Lp (T, ω), under dif-
ferent conditions on the weight function ω, were investigated in the works [11],
[25], [6], [30], [29], [31], [8], [10] and also in the books [39], [7], [9], [32].

Our new results are the following.

Theorem 1. Let Mθ be quasiconvex for some θ ∈ (0, 1), M ∈ ∆2, ω ∈ Ap(M) and

f ∈ Wα
M,ω (T), α ∈ R

+
0 := [0, ∞). If Tn ∈ Tn is a near best approximant of f , then

∥

∥

∥
f (α) − T

(α)
n

∥

∥

∥

M,ω
≤ cEn

(

f (α)
)

M,ω
, n = 0, 1, 2, . . . (1.5)

with a constant c = c(M, α) > 0.

This simultaneous approximation theorem in case of α ∈ Z+ for Lebesgue
spaces Lp (T), 1 ≤ p ≤ ∞, was proved in [5]. In the classical Orlicz spaces LM (T)
some results about simultaneous trigonometric and algebraic approximation of

type (1.5), where En

(

f (α)
)

M,1
is replaced by the modulus of smoothness of f (α),

α ∈ Z+, were obtained in [33] and [12].

Theorem 2. If Mθ is quasiconvex for some θ ∈ (0, 1), M ∈ ∆2, ω ∈ Ap(M) and

f ∈ Wr
M,ω (T), r ∈ R+, then

Ωr ( f , h)M,ω ≤ chr
∥

∥

∥
f (r)

∥

∥

∥

M,ω
, 0 < h ≤ π

with a constant c = c(M, r) > 0.

In the case of r ∈ Z
+, for the usual non weighted modulus of smoothness

defined in the Lebesgue spaces Lp (T), 1 ≤ p ≤ ∞, this inequality was proved in
[28] and for the general case r ∈ R+ was obtained by Butzer, Dyckhoff, Görlich
and Stens in [4] (See also Taberski [37]). In case of r ∈ Z+, ω ∈ Ap, 1 < p < ∞,
this inequality in the weighted Lebesgue spaces Lp (T,ω) was proved in [26]. For
the classical Orlicz spaces similar result in nonweighted and weighted cases were
obtained in [33] and [17] (see also [3]).

The following converse theorem holds:

Theorem 3. Let LM,ω (T) be a weighted Orlicz space with M ∈ △2 and ω ∈ Ap(M).

If Mθ is quasiconvex for some θ ∈ (0, 1) and f ∈ LM,ω (T), then for a given r ∈ R+

Ωr ( f , π/ (n + 1))M,ω ≤
c

(n + 1)r

n

∑
ν=0

(ν + 1)r−1 Eν ( f )M,ω , n = 0, 1, 2, . . .

with a constant c = c(M, r) > 0.
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In the space Lp (T), 1 ≤ p ≤ ∞, this inequality was proved in [37]. In case of
r ∈ Z+ this theorem in the spaces Lp (T,ω), 1 < p < ∞, ω ∈ Ap, was proved by

Ky in [26]. For the positive and even integer r this theorem in the spaces Lp (T,ω),
1 < p < ∞, ω ∈ Ap, by using Butzer-Wehrens’s type modulus of smoothness was
obtained in [11]. In case of r ∈ Z+ for weighted Orlicz spaces LM (T,ω), ω ∈ Ap,
similar results were obtained in [17] and [3].

Theorem 4. Let Mθ be quasiconvex for some θ ∈ (0, 1), M ∈ ∆2 and ω ∈ Ap(M). If

∞

∑
ν=1

να−1Eν ( f )M,ω < ∞

for some α ∈ (0, ∞), then f ∈ Wα
M,ω (T) and

En

(

f (α)
)

M,ω
≤ c

{

(n + 1)α En ( f )M,ω +
∞

∑
ν=n+1

να−1Eν ( f )M,ω

}

(1.6)

with a constant c = c(M, α) > 0.

In the space Lp (T), 1 ≤ p ≤ ∞, this inequality for α ∈ Z+ was proved in
[35]. When α ∈ R+ in the classical Orlicz spaces LM (T), similar inequality was
proved in [20]. In case of α ∈ Z+, in Lp (T,ω), 1 < p < ∞, ω ∈ Ap, an inequality
of type (1.6) was recently proved in [23].

Corollary 1. Let Mθ be quasiconvex for some θ ∈ (0, 1), M ∈ ∆2, ω ∈ Ap(M) and
r > 0. If

∞

∑
ν=1

να−1Eν ( f )M,ω < ∞

for some α ∈ (0, ∞), then f ∈ Wα
M,ω (T) and for n = 0, 1, 2, . . .

Ωr

(

f (α),
π

n + 1

)

M,ω

≤ c

{

1

(n + 1)r

n

∑
ν=0

(ν + 1)α+r−1 Eν ( f )M,ω +

∞

∑
ν=n+1

να−1Eν ( f )M,ω

}

with a constant c = c(M, α, r) > 0.

In cases of α, r ∈ Z
+ and α, r ∈ R

+, this corollary in the spaces Lp (T), 1 ≤
p ≤ ∞, was proved in [38] (See also [35]) and in [36], respectively. In the case of
α ∈ R+ and r ∈ Z+, in the classical Orlicz spaces LM (T) the similar result was
obtained [20]. For the weighted Lebesgue spaces Lp (T,ω), 1 < p < ∞, when
ω ∈ Ap and α, r ∈ Z+, similar type inequality was obtained in [23].
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2 Auxiliary Facts

We begin with

Lemma 1. Let M ∈ △2, ω ∈ Ap(M) and r ∈ R+. If Mθ is quasiconvex for some

θ ∈ (0, 1) and Tn ∈ Tn, n ≥ 1, then there exists a constant c > 0 depends only on r and
M such that

Ωr (Tn, h)M,ω ≤ chr
∥

∥

∥
T
(r)
n

∥

∥

∥

M,ω
, 0 < h ≤ π/n.

Proof. Since

∆r
t Tn

(

x −
r

2
t
)

= ∑
ν∈Z∗

n

(

2i sin
t

2
ν

)r

cνeiνx,

∆
[r]
t T

(r−[r])
n

(

x −
[r]

2
t

)

= ∑
ν∈Z∗

n

(

2i sin
t

2
ν

)[r]

(iν)r−[r] cνeiνx

with Z∗
n := {∓1,∓2, . . . ,∓n}, [r] ≡ integer part of r, putting

ϕ (z) :=

(

2i sin
t

2
z

)[r]

(iz)r−[r] , g (z) :=

(

2

z
sin

t

2
z

)r−[r]

, − n ≤ z ≤ n,

g (0) := tr−[r],

we get

∆
[r]
t T

(r−[r])
n

(

x −
[r]

2
t

)

= ∑
ν∈Z∗

n

ϕ (ν) cνeiνx, ∆r
t Tn

(

x −
r

2
t
)

= ∑
ν∈Z∗

n

ϕ (ν) g (ν) cνeiνx.

Taking into account the fact that [37]

g (z) =
∞

∑
k=−∞

dkeikπz/n

uniformly in [−n, n], with d0 > 0, (−1)k+1 dk ≥ 0, d−k = dk (k = 1, 2, . . .), we
have

∆r
t Tn (·) =

∞

∑
k=−∞

dk∆
[r]
t T

(r−[r])
n

(

·+
kπ

n
+

r − [r]

2
t

)

.

Consequently we get

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

|∆r
t Tn (·)| dt

∥

∥

∥

∥

∥

∥

M,ω

=

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

∣

∣

∣

∣

∣

∞

∑
k=−∞

dk∆
[r]
t T

(r−[r])
n

(

·+
kπ

n
+

r − [r]

2
t

)

∣

∣

∣

∣

∣

dt

∥

∥

∥

∥

∥

∥

M,ω

≤
∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

∣

∣

∣

∣

∆
[r]
t T

(r−[r])
n

(

·+
kπ

n
+

r − [r]

2
t

)∣

∣

∣

∣

dt

∥

∥

∥

∥

∥

∥

M,ω
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and since [39, p.103]

∆
[r]
t T

(r−[r])
n (·) =

t
∫

0

· · ·

t
∫

0

T
(r)
n

(

·+ t1 + . . . + t[r]

)

dt1 . . . dt[r]

we find

Ωr (Tn, h)M,ω ≤ sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

∣

∣

∣

∣

∆
[r]
t T

(r−[r])
n

(

·+
kπ

n
+

r − [r]

2
t

)∣

∣

∣

∣

dt

∥

∥

∥

∥

∥

∥

M,ω

= sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

∣

∣

∣

∣

∣

∣

t
∫

0

· · ·

t
∫

0

T
(r)
n

(

·+
kπ

n
+

r − [r]

2
t + t1 + . . . + t[r]

)

dt1 . . . dt[r]

∣

∣

∣

∣

∣

∣

dt

∥

∥

∥

∥

∥

∥

M,ω

≤ h[r] sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

1

δ[r]

δ
∫

0

· · ·

δ
∫

0

∣

∣

∣

∣

T
(r)
n

(

·+
kπ

n
+

r − [r]

2
t + t1 + . . . + t[r]

)∣

∣

∣

∣

×

×dt1 . . . dt[r]dt
∥

∥

∥

M,ω

≤ h[r] sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ[r]

δ
∫

0

· · ·

δ
∫

0







1

δ

δ
∫

0

∣

∣

∣

∣

T
(r)
n

(

·+
kπ

n
+

r − [r]

2
t + t1 + . . . + t[r]

)∣

∣

∣

∣

×

×dt} dt1 . . . dt[r]

∥

∥

∥

M,ω

≤ c9 (M, r) h[r] sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

1

δ

δ
∫

0

∣

∣

∣

∣

T
(r)
n

(

·+
kπ

n
+

r − [r]

2
t

)∣

∣

∣

∣

dt

∥

∥

∥

∥

∥

∥

M,ω

≤ c9 (M, r) h[r] sup
|δ|≤h

∞

∑
k=−∞

|dk|

∥

∥

∥

∥

∥

∥

∥

∥

1
r−[r]

2 δ

·+ kπ
n +

r−[r]
2 δ

∫

·+ kπ
n

∣

∣

∣T
(r)
n (u)

∣

∣

∣ du

∥

∥

∥

∥

∥

∥

∥

∥

M,ω

.

On the other hand [37]

∞

∑
k=−∞

|dk| < 2g (0) = 2tr−[r], 0 < t ≤ π/n

and for 0 < t < δ < h ≤ π/n we have

∞

∑
k=−∞

|dk| < 2hr−[r].

Therefore the boundedness of Hardy-Littlewood Maximal function in LM,ω (T)
implies that

Ωr (Tn, h)M,ω ≤ c10 (M, r) hr
∥

∥

∥
T
(r)
n

∥

∥

∥

M,ω
.

Further, by the similar way for 0 < −h ≤ π/n, the same inequality also holds
and the proof of Lemma 1 is completed.
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Lemma 2. Let M ∈ △2, Mθ is quasiconvex for some θ ∈ (0, 1) and ω ∈ Ap(M). If
Tn ∈ Tn and α > 0, then there exists a constant c > 0 depending only on α and M such
that

∥

∥

∥
T
(α)
n

∥

∥

∥

M,ω
≤ cnα ‖Tn‖M,ω .

Proof. Since M ∈ △2, Mθ is quasiconvex for some θ ∈ (0, 1) and ω ∈ Ap(M) we
have [3]

‖Sn f‖M,ω ≤ c11 (M) ‖ f‖M,ω ,
∥

∥ f̃
∥

∥

M,ω
≤ c12 (M) ‖ f‖M,ω .

Following the method given in [27] we obtain the required result.

Definition 1. For f ∈ LM,ω (T), δ > 0 and r = 1, 2, 3, . . ., the Peetre K-functional is
defined as

K
(

δ, f ; LM,ω (T) , Wr
M,ω (T)

)

:= inf
g∈Wr

M,ω(T)

{

‖ f − g‖M,ω + δ
∥

∥

∥
g(r)

∥

∥

∥

M,ω

}

. (2.1)

Lemma 3. Let M ∈ △2, Mθ is quasiconvex for some θ ∈ (0, 1) and ω ∈ Ap(M). If

f ∈ LM,ω (T) and r = 1, 2, 3, . . ., then
(i) the K-functional (2.1) and the modulus (1.4) are equivalent and
(ii) there exists a constant c > 0 depending only on r and M such that

En ( f )M,ω ≤ cΩr

(

f ,
1

n

)

M,ω

.

Proof. (i) can be proved by the similar way to that of Theorem 1 in [26] and later
(ii) is proved by standard way (see for example, [17]).

3 Proof of the results

Proof of Theorem 1. We set

Wn( f ) := Wn(x, f ) :=
1

n + 1

2n

∑
ν=n

Sν(x, f ), n = 0, 1, 2, . . . .

Since
Wn(·, f (α)) = W

(α)
n (·, f )

we have

∥

∥

∥
f (α)(·)− T

(α)
n (·, f )

∥

∥

∥

M,ω
≤

∥

∥

∥
f (α)(·)− Wn(·, f (α))

∥

∥

∥

M,ω
+

∥

∥

∥T
(α)
n (·, Wn( f )) − T

(α)
n (·, f )

∥

∥

∥

M,ω
+

∥

∥

∥
W

(α)
n (·, f )− T

(α)
n (·, Wn( f ))

∥

∥

∥

M,ω
=: I1 + I2 + I3.
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We denote by T∗
n (x, f ) the best approximating polynomial of degree at most n

to f in LM,ω (T, ω). In this case, from the boundedness of Wn in LM,ω (T, ω) we
have

I1 ≤
∥

∥

∥
f (α)(·)− T∗

n (·, f (α))
∥

∥

∥

M,ω
+

∥

∥

∥
T∗

n (·, f (α))− Wn(·, f (α))
∥

∥

∥

M,ω

≤ c13 (M) En

(

f (α)
)

M,ω
+
∥

∥

∥
Wn(·, T∗

n ( f (α))− f (α))
∥

∥

∥

M,ω
≤ c14 (M, α) En

(

f (α)
)

M,ω
.

From Lemma 2 we get

I2 ≤ c15 (M, α) nα ‖Tn(·, Wn( f ))− Tn(·, f )‖M,ω

and
I3 ≤ c16 (M, α) (2n)α ‖Wn(·, f )− Tn(·, Wn( f ))‖M,ω

≤ c17 (M, α) (2n)α En (Wn( f ))M,ω .

Now we have

‖Tn(·, Wn( f ))− Tn(·, f )‖M,ω ≤ ‖Tn(·, Wn( f ))− Wn(·, f )‖M,ω

+ ‖Wn(·, f )− f (·)‖M,ω + ‖ f (·)− Tn(·, f )‖M,ω

≤ c18 (M) En (Wn( f ))M,ω + c19 (M) En ( f )M,ω + c20 (M) En ( f )M,ω .

Since
En (Wn( f ))M,ω ≤ c21 (M) En ( f )M,ω ,

we get

∥

∥

∥
f (α)(·)− T

(α)
n (·, f )

∥

∥

∥

M,ω
≤ c14 (M, α) En

(

f (α)
)

M,ω
+ c22 (M) nαEn (Wn( f ))M,ω

+c23 (M) nαEn ( f )M,ω + c17 (M, α) (2n)α En (Wn( f ))M,ω

≤ c24 (M, α) En

(

f (α)
)

M,ω
+ c25 (M) nαEn ( f )M,ω .

Since [3]

En ( f )M,ω ≤
c26 (M, α)

(n + 1)α En

(

f (α)
)

M,ω
, (3.1)

we obtain
∥

∥

∥
f (α)(·)− T

(α)
n (·, f )

∥

∥

∥

M,ω
≤ c27 (M, α) En

(

f (α)
)

M,ω

and the proof is completed.

Proof of Theorem 2. Let Tn ∈ Tn be the trigonometric polynomial of best approxi-
mation of f in LM,ω (T) metric. By Remark 1(ii), Lemma 1 and (1.3) we get

Ωr ( f , h)M,ω ≤ Ωr (Tn, h)M,ω + Ωr ( f − Tn, h)M,ω

≤ c10 (M, r) hr
∥

∥

∥
T
(r)
n

∥

∥

∥

M,ω
+ c7 (M, r) En ( f )M,ω , 0 < h ≤ π/n.
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Using (3.1), Lemma 3 (ii) and

Ωl ( f , h)M,ω ≤ chl
∥

∥

∥
f (l)

∥

∥

∥

M,ω
, f ∈ W l

M,ω (T) , l = 1, 2, 3, . . . ,

which can be showed using the judgements given in [26, Theorem 1], we have

En ( f )M,ω ≤
c26 (M, r)

(n + 1)r−[r]
En

(

f (r−[r])
)

M,ω
≤

c28 (M, r)

(n + 1)r−[r]
Ω[r]

(

f (r−[r]),
2π

n + 1

)

M,ω

≤
c29 (M, r)

(n + 1)r−[r]

(

2π

n + 1

)[r] ∥
∥

∥
f (r)

∥

∥

∥

M,ω
.

On the other hand, by Theorem 1 we find
∥

∥

∥
T
(r)
n

∥

∥

∥

M,ω
≤

∥

∥

∥
T
(r)
n − f (r)

∥

∥

∥

M,ω
+

∥

∥

∥
f (r)

∥

∥

∥

M,ω

≤ c27 (M, r) En

(

f (r)
)

M,ω
+

∥

∥

∥
f (r)

∥

∥

∥

M,ω
≤ c30 (M, r)

∥

∥

∥
f (r)

∥

∥

∥

M,ω
.

Then choosing h with π/ (n + 1) < h ≤ π/n, (n = 1, 2, 3, . . .), we obtain

Ωr ( f , h)M,ω ≤ c31 (M, r) hr
∥

∥

∥
f (r)

∥

∥

∥

M,ω

and we are done.

Proof of Theorem 3. Let Tn ∈ Tn be the best approximating polynomial of f ∈
LM,ω (T), ω ∈ Ap(M) and let m ∈ Z+. Then by Remark 1(ii) and (1.3) we have

Ωr ( f , π/ (n + 1))M,ω ≤ Ωr ( f − T2m , π/ (n + 1))M,ω + Ωr (T2m , π/ (n + 1))M,ω

≤ c7 (M, r) E2m ( f )M,ω + Ωr (T2m , π/ (n + 1))M,ω .

Since

Ωr (T2m , π/ (n + 1))M,ω ≤ c54 (M, r)

(

π

n + 1

)r ∥
∥

∥
T
(r)
2m

∥

∥

∥

M,ω
, n + 1 ≥ 2m

and

T
(r)
2m (x) = T

(r)
1 (x) +

m−1

∑
ν=0

{

T
(r)
2ν+1 (x)− T

(r)
2ν (x)

}

,

we have

Ωr (T2m , π/ (n + 1))M,ω ≤

c10 (M, r)

(

π

n + 1

)r
{

∥

∥

∥
T
(r)
1

∥

∥

∥

M,ω
+

m−1

∑
ν=0

∥

∥

∥
T
(r)
2ν+1 − T

(r)
2ν

∥

∥

∥

M,ω

}

.

By Lemma 2 we find
∥

∥

∥
T
(r)
2ν+1 − T

(r)
2ν

∥

∥

∥

M,ω
≤ c32 (M, r) 2νr ‖T2ν+1 − T2ν‖M,ω ≤ c32 (M, r) 2νr+1E2ν ( f )M,ω
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and
∥

∥

∥
T
(r)
1

∥

∥

∥

M,ω
=

∥

∥

∥
T
(r)
1 − T

(r)
0

∥

∥

∥

M,ω
≤ c33 (M, r) E0 ( f )M,ω .

Hence

Ωr (T2m , π/ (n + 1))M,ω ≤

c34 (M, r)

(

π

n + 1

)r
{

E0 ( f )M,ω +
m−1

∑
ν=0

2(ν+1)rE2ν ( f )M,ω

}

.

It is easily seen that

2(ν+1)rE2ν ( f )M,ω ≤ c35 (r)
2ν

∑
µ=2ν−1+1

µr−1Eµ ( f )M,ω , ν = 1, 2, 3, . . . . (3.2)

Therefore,

Ωr (T2m , π/ (n + 1))M,ω

≤ c34 (M, r)

(

π

n + 1

)r






E0 ( f )M,ω + 2rE1 ( f )M,ω +

c35 (r)
m

∑
ν=1

2ν

∑
µ=2ν−1+1

µr−1Eµ ( f )M,ω







≤ c36 (M, r)

(

π

n + 1

)r
{

E0 ( f )M,ω +
2m

∑
µ=1

µr−1Eµ ( f )M,ω

}

≤ c36 (M, r)

(

π

n + 1

)r 2m−1

∑
ν=0

(ν + 1)r−1 Eν ( f )M,ω .

If we choose 2m ≤ n + 1 ≤ 2m+1, then

Ωr (T2m , π/ (n + 1))M,ω ≤
c36 (M, r)

(n + 1)r

n

∑
ν=0

(ν + 1)r−1 Eν ( f )M,ω ,

E2m ( f )M,ω ≤ E2m−1 ( f )M,ω ≤
c37 (M, r)

(n + 1)r

n

∑
ν=0

(ν + 1)r−1 Eν ( f )M,ω

and Theorem 3 is proved.

Proof of Theorem 4. If Tn is the best approximating trigonometric polynomial of f ,
then by Lemma 2

∥

∥

∥
T
(α)
2m+1 − T

(α)
2m

∥

∥

∥

M,ω
≤ c38 (M, α) 2(m+1)αE2m ( f )M,ω

and hence by this inequality, (3.2) and hypothesis of Theorem 4 we have

∞

∑
m=1

‖T2m+1 − T2m‖Wα
M,ω(T) =

∞

∑
m=1

‖T2m+1 − T2m‖M,ω +
∞

∑
m=1

∥

∥

∥
T
(α)

2m+1 − T
(α)
2m

∥

∥

∥

M,ω
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= c39 (M, α)
∞

∑
m=1

2(m+1)αE2m ( f )M,ω ≤ c40 (M, α)
∞

∑
m=1

2m

∑
j=2m−1+1

jα−1Ej ( f )M,ω

≤ c41 (M, α)
∞

∑
j=2

jα−1Ej ( f )M,ω < ∞.

Therefore,
∞

∑
m=1

‖T2m+1 − T2m‖Wα
M,ω(T) < ∞,

which implies that {T2m} is a Cauchy sequence in Wα
M,ω (T). Since T2m → f in

the Banach space LM,ω (T), we have f ∈ Wα
M,ω (T).

It is clear that
En

(

f (α)
)

M,ω
≤

∥

∥

∥
f (α) − Sn f (α)

∥

∥

∥

M,ω

≤
∥

∥

∥
S2m+2 f (α) − Sn f (α)

∥

∥

∥

M,ω
+

∞

∑
k=m+2

∥

∥

∥
S2k+1 f (α) − S2k f (α)

∥

∥

∥

M,ω
. (3.3)

By Lemma 2
∥

∥

∥
S2m+2 f (α) − Sn f (α)

∥

∥

∥

M,ω
≤ c42 (M, α) 2(m+2)αEn ( f )M,ω

≤ c43 (M, α) (n + 1)α En ( f )M,ω (3.4)

for 2m
< n < 2m+1.

On the other hand, by Lemma 2 and by (3.2)

∞

∑
k=m+2

∥

∥

∥
S2k+1 f (α) − S2k f (α)

∥

∥

∥

M,ω
≤ c44 (M, α)

∞

∑
k=m+2

2(k+1)αE2k ( f )M,ω

≤ c45 (M, α)
∞

∑
k=m+2

2k

∑
µ=2k−1+1

µα−1Eµ ( f )M,ω = c46 (M, α)
∞

∑
ν=2m+1+1

να−1Eν ( f )M,ω

≤ c46 (M, α)
∞

∑
ν=n+1

να−1Eν ( f )M,ω . (3.5)

Now using the relations (3.4) and (3.5) in (3.3) we obtain the required inequality.
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