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Abstract

In this article, a single parametric class of modifications for Kovarik’s method
is proposed. It is proved that all methods in this class are quadratically con-
vergent. Numerical comparison among methods of Kovarik, Petcu-Popa [5],
and a special method in this class, chosen based on a specific value for the
parameter, shows that Kovarik and Petcu-Popa’s methods give almost sim-
ilar convergence results. However, the special method converges faster and
its iteration number is considerably lower than that of others. For Numeri-
cal experiments, there are used ten n × n test matrices with n = 5, 10, 20, 50,
whose condition numbers vary in the interval [2 , 8.1e146].

1 Introduction

Suppose that m ≤ n and A is a m × n matrix of rank r. Kovarik’s method [4] is
given by the following iterations:

A0 = A, Kk = (I − Ak AT
k )(I + Ak AT

k )−1, Ak+1 = (I + Kk)Ak, k ≥ 0. (1)

It is shown [6] that if
‖AAT‖2 < 1, (2)

then ‖Ak AT
k ‖2 < 1, for all k ≥ 1. Assumption (2) can be obtained by an appropri-

ate scaling of matrix A, say, as the following:

Anew :=
1

√

‖A‖1 ‖A‖∞ + 1
A. (3)
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Therefore, without loss of generality, we assume that A satisfies (2).
It is proved [4,6] that the sequence {Ak} defined by (1) converges to A∞ =

[

(AAT)1/2
]+

A, in which A+ is the Moore-Penrose pseudo inverse of A (see [2]),
and the rows of A∞ are ”quasi-orthogonal”. It is also proved that ‖K0‖2 < 1 and

‖A∞ − Ak‖2 ≤ ‖K0‖
2k

2 which show Kovarik’s method is quadratically convergent.
Several modifications have been proposed for Kovarik’s method, depending

upon using some approximations for (I + Ak AT
k )−1, which are generally linearly

convergent [1,5,6]. Specially, in [5] Petcu and Popa approximated (I + Ak AT
k )−1

with I − 0.5Ak AT
k and introduced the modification of

A0 = A, Kk = (I − Ak AT
k )(I − 0.5Ak AT

k ), Ak+1 = (I + Kk)Ak, k ≥ 0 (4)

for Kovarik’s method. They proved that (4) is linearly convergent and using nu-
merical tests showed that their method converges rapidly. In [1], we introduced
the single parametric class of modifications

A0 = A, Kk = (I − Ak AT
k )(I − αAk AT

k ), Ak+1 = (I + Kk)Ak, k ≥ 0 (5)

and proved that if α ∈ [0.21, 1), then all methods of class (5) are linearly conver-
gent with asymptotic error constant |2α − 1|. In particular, for α = 0.5 we get
Petcu-Popa’s method (4). In this manner, we proved that method (4) is indeed
quadratically convergent and is the only method with this property in class (5).

The current paper gives a variant of the approach given in [1]. Here, we intro-
duce again a single parametric class of modifications for Kovarik’s method and
prove that all methods in this class are quadratically convergent.

2 A Quadratically Convergent Class of Modifications for Ko-

varik’s Method

To obtain a modification for Kovarik’s method, it is necessary to consider the
convergence of (1) that leads to the convergence of the singular values sequence

σ
(k)
j , j = 1, . . . , r, of Ak given by σ

(k+1)
j = g(σ

(k)
j ), k ≥ 0, with g(t) = 2t/(1 + t2)

[1,6]. We try to approximate g(t) in the interval [−1, 1] using a polynomial. In
order to do so, consider the function f (t) = 2/(1 + t), t ∈ [0, 1], and note that
f (1) = 1. We approximate the function f (t) with a quadratic polynomial passing
through the point (1,1). Suppose that this quadratic polynomial is p(t) = a0 +
a1t + a2t2. As p(1) = 1, we have a2 = 1 − a0 − a1. Therefore, p(t) = a0 + a1t −
(1−a0−a1)t2. With this p(t), we obtain the following polynomial approximation
for the function g(t):

g(t) =
2t

1 + t2
≈ tp(t2) = t[1 + α(1 − t2)(1 − βt2)] = h(t),

in which α and β are parameters. Consequently, a class of approximations for g(t)
in [−1,1] has been obtained.Nonnegative fixed points of h(t) are t=0, 1, 1/

√

β. As
t = 1 is supposed to be the unique positive fixed point of h(t) in [0, 1], we have
β ∈ (0, 1).

Suppose that t0 > 0. If ek = tk − 1 denotes the error of the kth iteration of the
sequence tk+1 = h(tk), and if limk→∞

tk = 1, then

ek+1 = (1 − 2α + 2αβ)ek + (−3α + 7αβ)e2
k + (−α + 9αβ)e3

k + · · · .
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For the iterative process tk+1 = h(tk) to be quadratically convergent with the
asymptotic error constant |c|, the parameters α and β must be chosen such that

{

1 − 2α + 2αβ = 0
−3α + 7αβ = c,

and therefore α =7/(8 − 2c), β =(3 + c)/7. Since β ∈ (0, 1), we have c ∈ (−3, 4)
and hence

h(t) = t[1 + α(1 − t2)(1 − βt2)] = t[1 + αβ(1 − t2)( 1
β − t2)]

= t
[

1 + c+3
8−2c(1 − t2)( 7

3+c − t2)
]

.
(6)

Finally, the single parametric class of modifications

A0 = A, Kk = c+3
8−2c (I−Ak AT

k )( 7
3+c I−Ak AT

k ), Ak+1 =(I+Kk)Ak, k ≥ 0 (7)

for Kovarik’s method is obtained. In particular, Petcu-Popa’s method (4) corre-
sponds to c = 0.5. In the case of convergence, each method of class (7) is quadrat-
ically convergent. In the next section, we study convergence properties of class
of methods (7) and impose some conditions on the parameter c to be always con-
vergent.

3 Study of the Convergence

To study the convergence of the single parametric class of methods (7), we should
first examine the convergence of the sequence

xk+1 = h(xk), k ≥ 0, (8)

in which h(x) is the same function of (6). As h(x) is an odd function, we consider
its behaviour only in the interval [0, 1]. The sequence (8) starts from an initial
approximation x0 ∈ (0, 1]. If there exists x∗ = limk→∞

xk, then x∗ must be a fixed
point of h(x) so that x∗ ∈ {0, 1, 1/

√

β}.
Now, we impose some conditions on β (and equivalently on c) under which

the sequence (8) is convergent. In doing so, we find an interval [0, b] containing
[0, 1] so that h : [0, b] −→ [0, b] and the sequence (8) converges to x∗ = 1 for
each initial approximation x0 ∈ (0, b]. As we need h(b) ≤ b, we must have
1 − (1 + β)b2 + βb4 ≤ 0 and because β ∈ (0, 1), we get b ∈ (1, 1/

√

β). Notice
that for these values h(x) > x in (0, 1) and h(x) < x in (1, b). With some simple
calculations it can be shown that (see figure 1):

• Suppose that 0 < c < 4. In the interval [0, 1], the function h(x) has a max-

imum at xmax =
√

15−2c
15+5c , with h(xmax) > 1, and a minimum at xmin =

0, with h(xmin) = 0. It is strictly ascending on [0, xmax] and strictly de-
scending on [xmax, 1]. In the interval [1, 1/

√

β], h(x) has a maximum at

ymax = 1/
√

β, with h(ymax) = 1/
√

β, and a minimum at ymin = 1, with
h(ymin) = 1. Moreover, h(x) is strictly ascending on this interval.

• Suppose that −3 < c < 0. In the interval [0, 1], the function h(x) has a
maximum at umax = 1, with h(umax) = 1, and a minimum at umin = 0,
with h(umin) = 0. It is strictly ascending on this interval. In the interval
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[1, 1/
√

β], h(x) has a maximum at vmax = 1/
√

β, with h(vmax) = 1/
√

β,

and a minimum at vmin =
√

15−2c
15+5c , with h(vmin) < 1. It is strictly descend-

ing on [1, vmin] and strictly ascending on [vmin, 1/
√

β].

• Considering h(x) is an odd function, we can find similar statements on in-
tervals [−1/

√

β,−1] and [−1, 0].

• Since we want the function h(x) to be from [0, 1/
√

β] onto [0, 1/
√

β], the
parameter c must be chosen such that:

⊲ If 0 < c < 4, then we need h(xmax) < h(ymax), hence c ∈ (0, 2].

⊲ If −3 < c < 0, then we need h(umin) < h(vmin), hence c ∈ [−2, 0).

From the above considerations, we conclude that parameter c must be chosen
in the interval [−2, 2] so that h(x) is the function from [0, 1/

√

β] onto [0, 1/
√

β].
In the following theorems, we show that sequence (8) converges to x∗ = 1 for

all x0 ∈ (0, 1/
√

β) (and therefore for all x0 ∈ (0, 1]).

Theorem 1. Suppose 0 < c ≤ 2. For each x0 ∈ (0, 1/
√

β) there exists an index k0 such

that sequence (8) falls in the interval [1, 1/
√

β) for all k ≥ k0 and converges to x∗ = 1
monotonically.
Proof. As xmax < 1 and h(xmax) > 1, and h(x) is strictly ascending in [0, xmax]
there exists a z0 ∈ (0, xmax) such that h(z0) = 1. Moreover, h(x) < 1 for
x ∈ [0, z0), h(x) ≥ 1 for x ∈ (z0, 1/

√

β]. We show that there exists an index

k0 such that xk0
≥ 1. If we have x0 ∈ (z0, 1/

√

β), then x1 = h(x0) > 1 is obtained
and we can take k0 = 1. Now suppose x0 ∈ (0, z0). If we have xk < z0 for all
k, then sequence {xk} is ascending and upper bounded. Therefore, it has a limit
such that x∗ = limk→∞

xk < z0. On the other hand, we have h(x∗) = x∗. This is
a contradiction because 0 < z0 < 1 and nonnegative fixed points of h(x) are only
0, 1, 1/

√

β. Therefore, there exists k̃0 so that xk̃0
≥ z0. In this case we can take

k0 = k̃0 + 1. According to the above considerations, we have:

k < k0 =⇒ xk ∈ (0, z0), xk+1 > xk,
k = k0 =⇒ xk = 1,

k > k0 =⇒ xk ∈ (1, 1/
√

β), xk+1 < xk.

These relationships show that sequence {xk}, after some iterations, falls in
[1, 1/

√

β) and converges to x∗ = 1 monotonically.

Similarly, it can be proved that
Theorem 2. Suppose −2 ≤ c < 0. For each x0 ∈ (0, 1/

√

β) there exists an index k0

such that sequence (8) falls in the interval (0, 1] for all k ≥ k0 and converges to x∗ = 1
monotonically.

We can summarize our findings to the following theorem:
Theorem 3. If c ∈ [−2, 2] and b ∈ (0, 1/

√

β), in which β = (c + 3)/7, then x∗ = 1
is the unique nonzero fixed point of h(x) in the interval [0, b] and sequence (8) converges
to x∗ for all x0 ∈ (0, b] (and hence for all x0 ∈ (0,1]). Moreover, the order of convergence
is two.

The above theorem shows that all methods from class (7) are only convergent
for c ∈ [−2, 2] and their convergence order is two.
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4 Numerical Results

In this section, we compare methods (1), (4), and (7) numerically. The methods
are programmed using MATLAB software and tested by a PC with PIV processor
at 2.8 MHz and 1 Gb RAM (the stop criterion is ‖Ak+1 − Ak‖1 < 10−6‖Ak+1‖1).
Also, there are used ten n × n test matrices [3] with n = 5, 10, 20, 50, whose con-
dition numbers vary in the interval [2 , 8.1e146]. The matrices F, H, I, and J are
well-conditioned, whereas others are ill-conditioned.
Matrix A: Hankel matrix of type I with entries aij = (i + j)!.
Matrix B: Hankel matrix of type II with entries aij = 1/(i + j)!.
Matrix C: Lotkin matrix with entries a1j = 1 and aij = 1/(i + j − 1).
Matrix D: Hilbert matrix with entries aij = 1/(i + j − 1).
Matrix E: Pascal matrix with entries ai1 = a1j = 1 and aij = ai−1,j + ai,j−1.
Matrix F: Dingdong matrix with entries aij = 0.5/(n − i − j + 1.5).

Matrix G: Vandermonde matrix with entries aij = i j.
Matrix H: Cauchy matrix with entries aij = 1/(i − j + 0.5).
Matrix I: Absolute matrix with entries aij = |i − j|.
Matrix J: Lehmer matrix with entries aij = aji = i/j.

To determine the best value of the parameter c belonging to [−2, 2], we applied
methods of class (7), for c = −2 + 0.5δ, δ = 0, 1, . . . , 8, to above matrices and
noticed that the selection of c = 2 gives the least number of iterations in all cases.
In the sequel therefore, c = 2 is used in (7). We note that there are only n more
additions in each iteration of (7) than that of (4).

Numerical results are shown in table 1. The quantities therein denote the
number of iterations (the entries of matrix A with n = 50 are so large that they
can not be computed and therefore all methods breakdown). All our test matrices
are scaled according to (3), so that (2) holds. By taking table 1 into consideration,
we note that these methods do not considerably differ for well-conditioned ma-
trices F, H, I, and J, whereas methods (4) and (7) do not use any inverse. But
for ill-conditioned matrices, the iteration number of method (7) (with c = 2) is
considerably lower than that of others.

Conclusion

In this paper we presented a single parametric class of modifications (7) for Ko-
varik’s method. We proved that for a parameter c in (7) belonging to [−2, 2], all
of methods in the above class would be quadratically convergent.
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Table 1. Number of Iterations
n (1) (4) (7) n (1) (4) (7)
5 32 31 23 5 6 6 7

A 10 76 75 54 F 10 7 6 6
20 185 179 125 20 7 6 7
50 - - - 50 8 7 8

5 34 33 26 5 19 19 16
B 10 83 82 59 G 10 46 45 34

20 175 179 121 20 108 108 77
50 488 484 336 50 304 308 211

5 24 23 19 5 6 6 7
C 10 50 49 37 H 10 7 6 6

20 65 66 47 20 7 6 7
50 69 67 50 50 8 7 8

5 24 24 19 5 8 8 8
D 10 49 49 35 I 10 11 10 10

20 63 62 48 20 13 12 11
50 70 66 48 50 15 15 13

5 18 18 15 5 9 8 9
E 10 37 36 28 J 10 11 11 10

20 74 74 52 20 13 13 12
50 131 130 94 50 16 15 14 0  0.5 1  1.5 2  

0  

0.5

1  

1.5

2  

Figure 1. Function h(x) for c=-1.5,2

c=2

c=-1.5
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