Second order non-linear strong differential subordinations

Georgia Irina Oros Gheorghe Oros

Abstract

The concept of differential subordination was introduced in [4] by S.S. Miller and P.T. Mocanu and the concept of strong differential subordination was introduced in [1], [2], [3] by J.A. Antonino and S. Romaguera. In [7] we have studied the strong differential subordinations in the general case and in [8] we have studied the first order linear strong differential subordinations. In [6] we have studied the second order linear strong differential subordinations. In this paper we study the second order non-linear strong differential subordinations. Our results may be applied to deduce sufficient conditions for univalence in the unit disc, such as starlikeness, convexity, alpha-convexity, close-to-convexity respectively.

1 Introduction

Let $\mathcal{H} = \mathcal{H}(U)$ denote the class of functions analytic in U. For n a positive integer and $a \in \mathbb{C}$, let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}; f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in U \}.$$

Let *A* be the class of functions *f* of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots, \quad z \in U,$$

which are analytic in the unit disk.

Received by the editors January 2008.

Communicated by Y. Félix.

2000 Mathematics Subject Classification: 30C45, 34A30.

Key words and phrases: analytic function, differential subordination, strong differential subordination.

In addition, we need the classes of convex, alpha-convex, close-to-convex and starlike (univalent) functions given respectively by

$$K = \left\{ f \in A; \operatorname{Re} \left(\frac{zf''(z)}{f'(z)} + 1 \right) > 0, z \in U \right\},$$

$$M_{\alpha} = \left\{ f \in A, \frac{f(z)f'(z)}{z} \neq 0, \right\}$$

$$\operatorname{Re} \left(1 - \alpha \right) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0, z \in U \right\}$$

$$C = \left\{ f \in A, \operatorname{Re} f'(z) > 0, z \in U \right\},$$

and

$$S^* = \{ f \in A, \text{ Re } zf'(z)/f(z) > 0 \}.$$

In order to prove our main results we use the following definitions and lemmas.

Definition 1. [1], [2], [3] Let $\mathcal{H}(z,\xi)$ be analytic in $U \times \overline{U}$ and let f(z) analytic and univalent in U. The function $H(z,\xi)$ is strongly subordinate to f(z), written $H(z,\xi) \prec \prec f(z)$, if for each $\xi \in \overline{U}$, the function of z, $H(z,\xi)$ is subordinate to f(z).

Remark 1. (i) Since f(z) is analytic and univalent, Definition 1 is equivalent to:

$$H(0,\xi) = f(0)$$
 and $H(U \times \overline{U}) \subset f(U)$.

(ii) If $H(z, \xi) \equiv H(z)$ then the strong subordination becomes the usual subordination.

Definition 2. [4], [5, p.21] We denote by Q the set of functions q that are analytic and injective in $\overline{U} \setminus E(q)$, where

$$E(q) = \left\{ \zeta \in \partial U; \lim_{z \to \zeta} q(z) = \infty \right\}$$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(q)$.

The subclass of Q for which f(0) = a is denoted by Q(a).

Lemma A. [5, Lemma 2.2.d, p.24] Let $q \in Q(a)$, with q(0) = a and $p(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots$ be analytic in U, with $p(z) \not\equiv a$ and $n \ge 1$. If p is not subordinate to q, then there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q)$, and an $m \ge n \ge 1$ for which $p(U_{r_0}) \subset q(U)$,

$$(i) p(z_0) = q(\zeta_0)$$

(ii) $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$, and

(iii) Re
$$\frac{z_0 p''(z_0)}{p'(z_0)} + 1 \ge m$$
Re $\left[\frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)} + 1\right]$.

Definition 3. [7, Definition 4] Let Ω be a set in \mathbb{C} , $q \in Q$ and n be a positive integer. The class of admissible functions $\psi_n[\Omega, q]$ consists of those functions ψ : $\mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ that satisfy the admissibility condition:

$$(A) \psi(r,s,t;z,\xi) \not\in \Omega$$

whenever $r = q(\zeta)$, $s = m\zeta q'(\zeta)$,

$$\operatorname{Re} \frac{t}{s} + 1 \ge m\operatorname{Re} \left[\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1 \right], \quad z \in U, \ \zeta \in \partial U \setminus E(q)$$

and $m \ge n$.

Remark 2. For the function q(z) = Mz, M > 0, $z \in U$, the condition of admissibility (A) becomes

$$(A') \psi(Me^{i\theta}, Ke^{i\theta}, L; z, \xi) \not\in \Omega$$

whenever $K \ge nM$, Re $[Le^{-i\theta}] \ge (n-1)K$, $z \in U$, $\xi \in \overline{U}$ and $\theta \in \mathbb{R}$.

For the function $q(z) = \frac{1+z}{1-z}$, $z \in U$, the condition of admissibility (A) becomes

$$(A'')$$
 $\psi(\rho i, \sigma, \mu + \nu i; z, \xi) \notin \Omega$

whenever $\rho, \sigma, \mu, \nu \in \mathbb{R}$, $\sigma \leq -\frac{n}{2}[1+\rho^2]$, $\sigma + \mu \leq 0$, $z \in U$, $\xi \in \overline{U}$, and $n \geq 1$.

2 Main results

Definition 4. A strong differential subordination of the form

$$A(z,\xi)z^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) + E(z,\xi) \prec \prec h(z)$$

where A, B, C, D, E: $U \times \overline{U} \to \mathbb{C}$, $A(z,\xi)z^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) + E(z,\xi)$ is a function of z, analytic for all $\xi \in \overline{U}$ and function h is analytic and univalent in U, is called second order non-linear strong differential subordination.

Remark 3. If $D(z,\xi) \equiv 0$ then we obtain a second order linear strong differential subordination studied in [6].

Remark 4. For $A(z,\xi) = D(z,\xi) = 0$ the second order non-linear strong differential subordination reduces to the first order linear differential subordination studied in [8].

Theorem 1. *Let* A, B, C, D, $E: U \times \overline{U} \to \mathbb{C}$ *with*

(1)
$$A(z,\xi) = A > 0$$
, $E(z,\xi) \equiv 0$, Re $B(z,\xi) > 0$,

$$A(n-1)n + n\text{Re } B(z,\xi) + \text{Re } C(z,\xi) \ge 1 + M|D(z,\xi)|, \quad M > 0,$$

and $Az^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z)$ a function of z analytic for all $\xi \in \overline{U}$.

If $p \in \mathcal{H}[0,n]$ and the second order non-linear strong differential subordination

(2)
$$Az^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) \prec \prec Mz$$

holds, then

$$p(z) \prec Mz$$
, $z \in U$, $M > 0$.

Proof. Let $\psi : \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$. For r = p(z), s = zp'(z), $t = z^2p''(z)$, let

(3)
$$\psi(r,s,t;z,\xi) = At + B(z,\xi)s + C(z,\xi)r + D(z,\xi)r^2.$$

Then (2) becomes

$$\psi(r,s,t;z,\xi) \prec \prec Mz, \quad z \in U, \ \xi \in \overline{U}.$$

If we let h(z) = Mz, $z \in U$, M > 0 then h(U) = U(0, M) and (4) is equivalent to

(5)
$$\psi(r,s,t;z,\xi) \in U(0,M), \quad z \in U, \, \xi \in \overline{U}.$$

Suppose that p is not subordinate to function h. Then, by Lemma A, we have that there exist $z_0 \in U$, $z_0 = r_0 e^{i\theta_0}$, $\theta_0 \in \mathbb{R}$ and $\zeta_0 \in \partial U$ such that $p(z_0) = h(\zeta_0) = Me^{i\theta_0}$, $z_0p'(z_0) = m\zeta_0h'(\zeta_0) = Ke^{i\theta_0}$, $z_0^2p''(z_0) = \zeta_0^2h''(\zeta_0) = L$ with $K \ge nM$, Re $[Le^{-i\theta_0}] \ge (n-1)K$ where $z \in U$, $\theta_0 \in \mathbb{R}$.

By replacing r with $p(z_0)$, s with $z_0p'(z_0)$, t with $z_0^2p''(z_0)$ in (3) and using the conditions given by (1) we obtain

(6)
$$|\psi(p(z_{0}), z_{0}p'(z_{0}), z_{0}^{2}p''(z_{0}); z_{0}, \xi)| =$$

$$= |Az_{0}^{2}p''(z_{0}) + B(z_{0}, \xi)z_{0}p'(z_{0}) + C(z_{0}, \xi)p(z_{0}) + D(z_{0}, \xi)p^{2}(z_{0})|$$

$$= |AL + B(z_{0}, \xi)Ke^{i\theta_{0}} + C(z_{0}, \xi)Me^{i\theta_{0}} + D(z_{0}, \xi)M^{2}e^{2i\theta_{0}}|$$

$$= |ALe^{-i\theta_{0}} + B(z_{0}, \xi)K + C(z_{0}, \xi)M + D(z_{0}, \xi)M^{2}e^{i\theta_{0}}|$$

$$\geq |ALe^{-i\theta_{0}} + B(z_{0}, \xi)L + C(z_{0}, \xi)M| - M^{2}|D(z_{0}, \xi)|$$

$$\geq Re \left[ALe^{-i\theta_{0}} + B(z_{0}, \xi)K + C(z_{0}, \xi)M\right] - M^{2}|D(z_{0}, \xi)|$$

$$\geq ARe \left[Le^{-i\theta_{0}} + KRe \left(B(z_{0}, \xi) + MRe \left(C(z_{0}, \xi) - M^{2}|D(z_{0}, \xi)|\right)\right]$$

$$\geq A(n-1)nM + nMRe \left(B(z_{0}, \xi) + MRe \left(C(z_{0}, \xi) - M^{2}|D(z_{0}, \xi)|\right)$$

$$\geq M[A(n-1)n + nRe \left(B(z_{0}, \xi) + Re \left(C(z_{0}, \xi)\right)\right] - M^{2}|D(z_{0}, \xi)| \geq M.$$

Since (6) contradicts (5), the assumption made is false and hence, $p(z) \prec Mz$, $z \in U, M > 0$.

Example 1. Let

$$A(z,\xi) = 2$$
, $B(z,\xi) = z + \xi + 3 - 2i$, $C(z,\xi) = 2z + \xi + 5 - i$, $D(z,\xi) = z + \xi + 2$, $E(z,\xi) = 0$, $n = 1$, $M = \frac{1}{4}$, $z \in U$, $\xi \in \overline{U}$.

Since $z \in U$, $\xi \in \overline{U}$, we have

$$\operatorname{Re} B(z,\xi) \geq 0$$
, $\operatorname{Re} D(z,\xi) \geq 0$, $\operatorname{Re} B(z,\xi) + \operatorname{Re} C(z,\xi) \geq 1 + \frac{|D(z,\xi)|}{4}$.

From Theorem 1, we obtain:

If

$$[2z^2p''(z) + (z+\xi+3-2i)zp'(z) + (2z+\xi+5-i)p(z) + (z+\xi+2)p^2(z)]$$

is a function of z, analytic for all $\xi \in \overline{U}$ and

$$[2z^{2}p''(z) + (z + \xi + 3 - 2i)zp'(z) + (2z + \xi + 5 - i)p(z) + (z + \xi + 2)p^{2}(z)] \prec \prec z, \quad z \in U, \quad \xi \in \overline{U},$$

then

$$p(z) \prec z$$
, $z \in U$.

Theorem 2. *Let* A, B, C, D, $E: U \times \overline{U} \to \mathbb{C}$ *with*

(7)
$$A(z,\xi) = A > 0$$
, Re $B(z,\xi) \ge A$, Re $D(z,\xi) \ge 0$,
$$C(0,\xi) + D(0,\xi) + E(0,\xi) = 1, \quad \frac{n}{2} [\text{Re } B(z,\xi) - A] \ge \text{Re } E(z,\xi),$$

$$Im C(z,\xi) \le$$

$$\leq \sqrt{[n\operatorname{Re} B(z,\xi)-nA+2\operatorname{Re} D(z,\xi)][n\operatorname{Re} B(z,\xi)-nA-2\operatorname{Re} E(z,\xi)]},$$

 $z \in U$, $\xi \in \overline{U}$.

Let $Az^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) + E(z,\xi)$ be an analytic function of z for all $\xi \in \overline{U}$.

If $p \in \mathcal{H}[1,n]$ and the following second order strong differential subordination holds

(8)
$$Az^{2}p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^{2}(z) + E(z,\xi) \prec \frac{1+z}{1-z}, \quad z \in U, \ \xi \in \overline{U},$$

then

$$p(z) \prec \frac{1+z}{1-z}, \quad z \in U.$$

Proof. Let $\psi: \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ and for r = p(z), s = zp'(z), $t = z^2p''(z)$ we have

(9)
$$\psi(r,s,t;z,\xi) = At^2 + B(z,\xi)s + C(z,\xi)r + D(z,\xi)r^2 + E(z,\xi),$$
$$z \in U, \xi \in \overline{U}.$$

Then (8) becomes

(10)
$$\psi(r,s,t;z,\xi) \prec \prec \frac{1+z}{1-z}, \quad z \in U, \ \xi \in \overline{U}.$$

If we let $q(z)=\frac{1+z}{1-z}, z\in U$ then $h(U)=\{w\in\mathbb{C}; \operatorname{Re} w>0\}$, the strong differential subordination (10) implies

(11)
$$\psi(r,s,t;z,\xi) \in h(U), \quad z \in U, \, \xi \in \overline{U}$$

176 G. I. Oros – G. Oros

and (11) implies

(12)
$$\operatorname{Re} \psi(r,s,t;z,\xi) > 0, \quad z \in U, \ \xi \in \overline{U}.$$

Suppose that p is not subordinate to the function $q(z) = \frac{1+z}{1-z}$, $z \in U$. Then, by Lemma A, we have that there exist points $z_0 \in U$, $z_0 = r_0 e^{i\theta_0}$, $\theta_0 \in \mathbb{R}$ and $\zeta_0 \in \partial U$ such that $p(z_0) = q(\zeta_0) = \rho i$, $\rho \in \mathbb{R}$, $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0) = \sigma$, $\sigma \in \mathbb{R}$, $z_0^2 p''(z_0) = \zeta_0^2 q''(\zeta_0) = \mu + i\nu$, $\mu, \nu \in \mathbb{R}$ with $\sigma \leq -\frac{n}{2}(1+\rho^2)$ and $\sigma + \mu \leq 0$, m > n > 1.

By replacing $r = p(z_0)$, $s = z_0 p'(z_0)$, $t = z_0^2 p''(z_0)$ in (9) and using the conditions given by (7), we obtain

(13)
$$\operatorname{Re} \psi(p(z_{0}), z_{0}p'(z_{0}), z_{0}^{2}p''(z_{0}); z_{0}, \xi) =$$

$$= \operatorname{Re} \left[A(\mu + i\nu) + B(z_{0}, \xi)\sigma + C(z_{0}, \xi)\rho i - \rho^{2}D(z_{0}, \xi) + E(z_{0}, \xi) \right]$$

$$= A\mu + \sigma \operatorname{Re} B(z_{0}, \xi) - \rho \operatorname{Im} C(z_{0}, \xi) - \rho^{2}\operatorname{Re} D(z_{0}, \xi) + \operatorname{Re} E(z_{0}, \xi)$$

$$\leq -A\sigma + \sigma \operatorname{Re} B(z_{0}, \xi) - \rho \operatorname{Im} C(z_{0}, \xi) - \rho^{2}\operatorname{Re} D(z_{0}, \xi) + \operatorname{Re} E(z_{0}, \xi)$$

$$\leq \sigma \left[\operatorname{Re} B(z_{0}, \xi) - A \right] - \rho \operatorname{Im} C(z_{0}, \xi) - \rho^{2}\operatorname{Re} D(z_{0}, \xi) + \operatorname{Re} E(z_{0}, \xi)$$

$$\leq -\frac{n}{2}(1 + \rho^{2}) \left[\operatorname{Re} B(z_{0}, \xi) - A \right] - \rho \operatorname{Im} C(z_{0}, \xi) - \rho^{2}\operatorname{Re} D(z_{0}, \xi) + \operatorname{Re} E(z_{0}, \xi)$$

$$\leq -\rho^{2} \left[\frac{n}{2}\operatorname{Re} B(z_{0}, \xi) - \frac{n}{2}A + \operatorname{Re} D(z_{0}, \xi) \right]$$

$$-\rho \operatorname{Im} C(z_{0}, \xi) - \frac{n}{2} \left[\operatorname{Re} B(z_{0}, \xi) - A \right] + \operatorname{Re} E(z_{0}, \xi) \leq 0.$$

Since (13) contradicts (12), the assumption made is false and hence

$$p(z) \prec \frac{1+z}{1-z}, \quad z \in U.$$

Remark 5. Theorem 2 can be rewritten as follows:

Corollary 1. *Let* A, B, C, D, E : $U \times \overline{U} \rightarrow \mathbb{C}$, $n \in \mathbb{N}$,

$$Az^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) + E(z,\xi)$$

a function of z, analytic for all $\xi \in \overline{U}$ with

$$A(z,\xi) = A > 0$$
, Re $B(z,\xi) \ge A$, Re $D(z,\xi) \ge 0$, $C(0,\xi) + D(0,\xi) + E(0,\xi) = 1$, $\frac{n}{2}[\text{Re }B(z,\xi) - A] \ge \text{Re }E(z,\xi)$,

$$\operatorname{Im} C(z,\xi) \leq$$

$$\leq \sqrt{[n\mathrm{Re}\ B(z,\xi)-nA+2\mathrm{Re}\ D(z,\xi)][n\mathrm{Re}\ B(z,\xi)-nA-2\mathrm{Re}\ E(z,\xi)]},$$
 $z\in U,\ \xi\in\overline{U}.$

If $p \in \mathcal{H}[1, n]$ *and satisfies the inequality*

Re
$$[Az^2p''(z) + B(z,\xi)zp'(z) + C(z,\xi)p(z) + D(z,\xi)p^2(z) + E(z,\xi)] > 0$$
, $z \in U$, $\xi \in \overline{U}$

then

Re
$$p(z) > 0$$
, $z \in U$.

Remark 6. Note that the result contained in Theorem 2 can be applied to obtain sufficient conditions for univalence on the unit disc, such as starlikeness, convexity, alpha-convexity, close-to-convexity. Indeed, it suffices to consider

$$p(z) = \frac{zf'(z)}{f(z)}, \quad p(z) = 1 + \frac{zf''(z)}{f'(z)},$$

$$p(z) = (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left[1 + \frac{zf''(z)}{f'(z)} \right],$$

and $p(z) = f'(z), z \in U$ respectively.

Example 2.
$$A(z,\xi) = 2$$
, $B(z,\xi) = z + \xi + 6 - 2i$,

$$C(z,\xi) = -z - \xi + 1 - 10i, \quad D(z,\xi) = 2z + \xi + 3 + 10i,$$

$$E(z,\xi) = z - 3, \quad n = 2.$$

Since $z \in U$, $\xi \in \overline{U}$, we have

$$\operatorname{Re} B(z,\xi) \geq 2$$
, $\operatorname{Re} D(z,\xi) \geq 0$,

$$C(0,\xi) + D(0,\xi) + E(0,\xi) = 1$$
, Re $B(z,\xi) \ge 2 + \text{Re } E(z,\xi)$,

$$\operatorname{Im} C(z,\xi) \leq$$

$$\leq \sqrt{[2\text{Re } B(z,\xi) - 4 + 2\text{Re } D(z,\xi)][2\text{Re } B(z,\xi) - 4 - 2\text{Re } E(z,\xi)]}.$$

From Theorem 2, we obtain:

If

$$[2z^{2}p''(z) + (z + \xi + 6 - 2i)zp'(z) + (-z - \xi + 1 - 10i)p(z) + (2z + \xi + 3 + 10i)p^{2}(z) + z - 3]$$

is a function of z, analytic for all $\xi \in \overline{U}$ and

$$[2z^2p''(z) + (z + \xi + 6 - 2i)zp'(z) + (-z - \xi + 1 - 10i)p(z)$$

$$+(2z+\xi+3+10i)p^{2}(z)+z-3] \prec \prec \frac{1+z}{1-z}, \quad z \in U, \ \xi \in \overline{U}$$

then

$$p(z) \prec \frac{1+z}{1-z}, \quad z \in U.$$

References

[1] José A. Antonino and Salvador Romaguera, *Strong differential subordination to Briot-Bouquet differential equations*, Journal of Differential Equations 114(1994), 101-105.

- [2] José A. Antonino, *Strong differential subordination and applications to univalency conditions*, J. Korean Math. Soc., **43**(2006), no.2, 311-322.
- [3] José A. Antonino, Strong differential subordination to a class of first order differential equations (to appear).
- [4] S.S. Miller and P.T. Mocanu, *Differential subordinations and univalent functions*, Michigan Math. J., **28**(1981), no.2, 157-172.
- [5] S.S. Miller and P.T. Mocanu, *Differential subordinations. Theory and applications*, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
- [6] Georgia Irina Oros, Sufficient conditions for univalence obtained by using second order linear strong differential subordinations, accepted for publication in Turkish Journal of Mathematics.
- [7] Georgia Irina Oros and Gheorghe Oros, *Strong differential subordination*, to appear in Turkish Journal of Mathematics, 32(2008).
- [8] Georgia Irina Oros and Gheorghe Oros, First order strong linear differential subordinations, General Mathematics vol. 15, No. 2-3 (2007), p. 98-107.

Department of Mathematics University of Oradea Str. Universității, No.1 410087 Oradea, Romania

E-mail: georgia_oros_ro@yahoo.co.uk