On the moment map on symplectic manifolds

Leonardo Biliotti

Abstract

We consider a connected symplectic manifold M acted on properly and
in a Hamiltonian fashion by a connected Lie group G. If G is compact, then
we characterize the symplectic manifolds whose squared moment map is
constant. We also give a sufficient condition for G to admit a symplectic
orbit. Then we study the case when G is a non-compact Lie group proving
splitting results for symplectic manifolds.

1 introduction

We shall consider symplectic manifolds (M, w) acted on by a connected Lie group
G of symplectomorphism. We shall also assume that the G-action on M is proper
and Hamiltonian, i.e. there exists a moment map y : M — g*, where g is
the Lie algebra of G. In [1] it was proved the existence of a G-invariant almost
complex structure | such that w(J-, J-) = w(-,-) and w(-,J-) = g is a Riemannian
metric. Therefore, throughout the following we will denote by | and g the G-
invariant almost complex structure and the corresponding Riemannian metric on
M respectively.

In general, the matter of existence/uniqueness of u is delicate. However,
whenever g is semisimple the moment map exists and is unique ([7]). If (M, w) is
a compact Kdhler manifold and G is a connected compact Lie group of holomor-
phic isometries, then the existence problem is solved ([9]): a moment map exists
if and only if G acts trivially on the Albanese torus Alb(M).

If G is compact, it is standard to fix an Ad(G)-invariant scalar product (-, -)
and identify g with g* by means of (-, -), regarding u as a g-valued map. It is
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also natural to study the squared moment map || # ||? and its critical set. This
function has been intensively studied in [10], obtaining strong information on the
topology of M.

Our first main result characterizes completely the symplectic manifolds whose
squared moment map is constant.

Theorem 1.1. Let (M, w) be a connected symplectic manifold and let G be a compact
connected Lie group acting effectively and in a Hamiltonian fashion on M with moment
map u : M — g. The following are equivalent:

1. G is semisimple and M is symplectomorphically and G-equivariantly isometric
with respect to g, to a product of a flag manifold and an almost complex manifold
which is acted on trivially by G.

2. the squared moment map f =|| u ||? is constant;

3. M is mapped by the moment map u to a single coadjoint orbit;

4. all principal G-orbits are almost complex submanifolds of (M, ]);
5. all G-orbits are almost complex submanifolds of (M, ]).

In order to prove the above theorem, we need the following result, which
might have an independent interest.

Proposition 1.2. Let (M, w) be a symplectic manifold and let G be a compact con-
nected Lie group acting in a Hamiltonian fashion on M with moment map . Assume
that x € M realizes a local maximum of the squared moment map f =|| u ||>. Then
the orbit G - x is symplectic. Moreover, there exists a neighborhood Y, of x such that
G- (Yonpu Y (pu(x))) is a symplectic submanifold which is G-equivariantly symplecto-
morphic to the product of a flag manifold and a symplectic manifold which is acted on

trivially by G. If we assume that x € M realizes the maximum of f =| u ||* or any
z € u~Y(u(x)) realizes a local maximum of f =|| u ||, then the following statements
hold true:

1. u=Y(u(x)) is a symplectic submanifold of M;

2. G- u Y (u(x)) is a symplectic submanifold of M which is G—equivariantly sym-
plectomorphic to (Gx x y‘l(y(x)),w‘c_ +w o)
* p ()
These results generalize ones given in [6] and [2].
One may prove Proposition 1.2 assuming that Ad(G) is compact. This means
that G is covered by a compact Lie group and a vector group which lies in the
center (see [5]). Nevertheless, if G acts properly on M, then the existence of a
symplectic G-orbit implies that G must be compact. Indeed, if G- x = G/Gy is
symplectic, then, from Proposition 2.1, G§ = GZ(X)' We recall that if G is a group,

then G denotes the connected component of G containing the identity e. Since
Z(G) C G; (x)/ Z(G) must be compact. Therefore G must be compact as well.

Then we study the case when G is a non-compact Lie group acting properly
and in a Hamiltonian fashion on M. Our main result is the following theorem.
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Theorem 1.3. Let (M,w) be a symplectic manifold and let G be a connected non-
compact Lie group acting effectively, properly and in a Hamiltonian fashion on M with
moment map u. Assume also that for every a € g* the coadjoint orbit G - « is locally
closed. The following are equivalent:

1. all G-orbits are symplectic;
2. all principal G-orbits are symplectic;
3. M is mapped by the moment map y to a single coadjoint orbit;

4. let x be a reqular point of M. Then G - x is a symplectic orbit, u='(u(x)) is a
symplectic submanifold on which Gy acts trivially and the following G-equivariant
application

¢: G xx 7 (u(x) — M, ¢([gx,2]) =gz,
is surjective and satisfies

*w=w + w .
¢ R A P

If G is a reductive Lie group acting effectively on M, then in (4) it turns out that G has
to be semisimple and ¢ is a G-equivariant symplectomorphism. Moreover, if we assume
that N(Gy)/Gy is a finite group whenever x € M is a reqular point, then our result
holds in the almost-Kihler setting. Indeed, in (4) the map ¢ turns out to be an isometry
with respect to ¢ while in (1) and (2) all G-orbits and all principal G-orbits are almost
complex submanifolds of (M, ]) respectively.

Observe that the condition for a coadjoint orbit to be locally closed is auto-
matic for reductive groups and for their semidirect products with vector spaces.
There exists an example of a solvable Lie group due to Mautner [17, p.512], with
non-locally closed coadjoint orbits. These assumptions are needed to apply the
symplectic slice theorem (see [1,7, 14, 16]), and the symplectic stratification of the
reduced space given in [1].

Finally, as an immediate corollary of Theorem 1.1 and Theorem 1.3, we give
the following splitting result.

Let G be a non-compact semisimple Lie group. The Killing form B on g is
a non-degenerate Ad(G)-invariant bilinear form. Therefore, we may identify g
with g* by means of —B, regarding u as a g-valued map. The squared moment
map can be defined as the smooth function f(x) = —B(u(x), u(x)) =| u(x) ||*
Let g = ¢ ® p a Cartan decomposition of g ([8]). Then f is positive on ¢ and
negative on p.

An element X € g is called elliptic if ad(X) € End(g®) is diagonalizable and
all eigenvalues are purely imaginary; the orbit Ad(G) - X is called elliptic orbit.
See [12, 13] for more details about elliptic orbits.

Corollary 1.4. Let M be a symplectic manifold acted on by a connected non-compact
semisimple Lie group G, properly and in a Hamiltonian fashion with moment map .
Assume that u(M) C {X € g : X iselliptic} and f =|| u ||?* is constant. Then all
G-orbits are symplectic and M is G-equivariantly symplectomorphic to a product of a



110 L. Biliotti

flag manifold and a symplectic manifold which is acted on trivially by G. Moreover, if
N(Gy)/ Gy is a finite group whenever x € M is a regular point, then the symplectomor-
phism turns out to be an isometry with respect to g and all G-orbits are almost complex
submanifolds of (M, ]).

2 Proof of the main results

Let M be a connected differentiable manifold equipped with a non-degenerate
closed 2—form w. The pair (M, w) is called a symplectic manifold. Here we con-
sider a finite-dimensional connected Lie group acting smoothly and properly on
M so that g*w = w for all ¢ € G, i.e. G acts as a group of canonical or symplectic
diffeomorphismes.

The G-action is called Hamiltonian, and we said that G acts in a Hamiltonian
fashion on M or M is G-Hamiltonian, if there exists a map y : M — g*, called
the moment map, satisfying the following;:

1. For each X € g, let

e 1X: M — R, u*(p) = u(p)(X), be the component of u along X, and

e X" be the vector field on M generated by the one parameter subgroup
{exp(tX) : t e R} C G.

Then
d]/lX - ix#w,

i.e., X is a Hamiltonian function for the vector field X*.

2. uis G-equivariant, i.e. u(gp) = Ad*(g)(1(p)), where Ad™ is the coadjoint
representation on g*.

Let x € M and dj : kM — T),(,)g" being the differential of y at x. Then

Kerdp, = (TyG - x)*v := {v € oM : w(v,w) =0, Yw € T,G - x}

and the pullback by the restricted moment map y : G-x — Ad*(G) - u(x) of
the symplectic form on the coadjoint orbit through p(x), it equals the restriction
of the ambient symplectic form w to the orbit G - x:

W\ = W @Az (6)p(x)| o v 1)
see [1] p. 211, where wpg(G).;(x) is the Kirillov-Konstant-Souriau (KKS) sym-
plectic form on the coadjoint orbit of y(x) in g*. This implies the following well-
known fact ([7]).

Proposition 2.1. The orbit of G through x € M is symplectic if and only if the stabilizer
group of x is an open subgroup of the stabilizer of u(x) hence if and only if the restricted
moment map y : G-x — Ad*(G) - u(x) is a covering map. In particular if G is
compact or semisimple, then the restricted moment map is a diffeomorphism.
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Proof. The first affirmation follows immediately from (1). If G is compact or
semisimple, then G, is connected so Gx = G(y). Therefore the restricted mo-
ment map is a diffeomorphism. n

Proof of Proposition 1.2. Let p = p(x) and let G, be the isotropy group at x. It fol-
lows from the symplectic slice theorem, see [1, 7, 14, 16], there exists a G-invariant
neighborhood of G - x in M which is equivariantly symplectomorphic to a neigh-
borhood Y, of the zero section of (Y = G X, (q® V), T) and the moment map is
given by
u(lg,m,0]) = Ad()(B +m + pv(v)),

where q is a Gy-module in the Gy-equivariant splitting g = gg©s = gx ©q @
s and py is the moment map of the Gy-action on the symplectic subspace V
of ((TyG - x)*«,wy). Note that V is isomorphic to the quotient (TG - x)*«/
(TxG - x)** N TG - x.

From now on, we denote by wy = (wy)|,. Shrinking Y, if necessary, we may

also suppose that [e,0,0] is the maximum of the smooth function f =|| u ||*> on
YO-

We now show that q = {0}, i.e. G - x is symplectic.

Let m € g — {0}. Then for every A € R we have

fle,Am,0) =|[ B |I> +A% || m ||> +A(m, B) <|| B |I%,

SO
A2 || m |]> +A(m, B) <0,

which is a contradiction. Hence G - x is symplectic and by Proposition 2.1
Gx - G‘B.

Let Y’ =Y, n #~1(B). Then Gy = G, for every y € YF, ie G- y is symplectic,
and a G—orbit through an element of Yf intersects 1~ !(B) in at most one point.

Indeed, if both x € Y? and kx lie in 1~ 1(B), then, by the G-equivariance of u, we
have u(kx) = B = ku(x) = kB, proving k € G,. Therefore the map

<]):G-x><Yf—>G-Yé3

is well-defined and bijective.
By Proposition 13 in [1, p.216], shrinking Y, if necessary, we have

G-u'(B)NYo = {[g, 0] €Yo : py(v) =0}
Let Y(C) = {m € Y: (Gy) = (Gy)}. Itis easy to check that
Y(G) = G xg VO = G/Gy x Vs, )
where V6 = {x € V : G, = Gy}, and y(YO(G")) = G - B. Therefore

Y,nG-u1(B) = Y% and Y = v, N VEr. 3)
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This implies that both Yf and G - Yf are symplectic submanifolds of M. Indeed,
TyYé8 = V% which is a symplectic subspace, and the tangent space at y of G - Yf
splits as

B & yP
TyG'YO :TyG'y @ TyYO,

since TyY(ﬁ8 C (TyG - y)*« = Kerdp, and G - y is symplectic.
Now,

+ (wy)

= 4
T|G/Gx><GxVGx cU’Gx ’VGx, (4)

see Corollary 14 in [1, p. 217]. Hence, from (1), (2), (3) and (4), we obtain that ¢ is
a symplectomorphism.

Now assume that x € M realizes the maximum of f orany z € u~1(u(x)) isa
local maximum of f. Let f = u(x). Using the same arguments as before, we may
prove that G - z is symplectic, G, = G, = Gg for every z € u~!(B) and a G-orbit
intersects ¢~ 1(B) in at most one point. Therefore the following application

¢p:G-xxpu ' (B) — G-u'(B), p(gx,z) =gz

is well-defined, G-equivariant and bijective.
We claim that ¢ is a symplectomorphism. The set = *(GB) N M(C*) is a mani-
fold of constant rank and the quotient

(Mp)(©) := (G- = (B) N M(Y)) /G,
is a symplectic manifold, see Corollary 14 in [1]. Since u~!(8) C M®, we have
G- '(B) =G ()N M),

i.e. G- u~1(B) is a submanifold. Notice that f is a regular value of the restricted
moment map

wiG-pTl(p) — G-p.
This implies that x~1(B) is a submanifold of M and for every z € u~1(B), the
tangent space of G - u~ () splits as

Lo
T.G-z © T ' (B) = oG- ' (B). ()

Since T,y '(B) = VO and G - z is symplectic, one may conclude that both
G- u~1(B) and u~1(B) are symplectic submanifolds of M. Therefore, from (1) and
(5) we obtain that ¢ is a G-equivariant symplectomorphism and the proposition
is proved. n

Proof of Theorem 1.1. ((1) <= (2)). (1)=(2) is trivial.

(2)=(1). Assume that the squared moment map is constant. Let x € M. As
in the proof of Proposition 1.2, we can show that G - x is symplectic and G, =
G (x)- Therefore all G-orbits are symplectic and G must be semisimple. Indeed,
coadjoint orbits are of the form G/C(T), where C(T) is the centralizer of the torus
T,so0 Z(G) C Gy forevery x € M, i.e. Z(G) acts trivially on M. Hence Z(G) must
be trivial since the G-action is effective.
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Now, we show that the manifold M is mapped by the moment map to a single
coadjoint orbit ((2)=-(3)).

Let G - x be a principal orbit. Since Gy acts trivially on the slice, from the local
normal form for the moment map, in a G-invariant neighborhood of G - x the

moment map is given by
u(lg,0]) = Ad(g)(B)-

This proves that there exists a G-invariant neighborhood of G - x which is mapped
to a single coadjoint orbit. It is well-known that M(G+) is an open dense subset
of M and M(%) /G is connected ([15]). Since u is G-equivariant, it induces a
continuous application

7: M) /G — g/G,

which is locally constant. Hence 77(M(%x) /G) is constant so 77(M/G) is. Thus M
is mapped by u to a single coadjoint orbit; in particular M = G - u~(B). Note
that this argument proves (4)=(3).

Let x € M. As in the proof of Proposition 1.2, from (1), (3), (4) and (5), the
following application

¢:G-xxpu Hu(x) — M, (gx,z) — gz,

is the desired G-equivariant symplectomorphism.
Lety € u~!(p(x)). Then T,u~t(u(x)) = T,M®*. Namely, G, = G, centralizes
a torus so N(Gy) /Gy is finite. On the other hand

MC = N(Gy) /Gy x p~ " (u(x)),

so ¢~ (p(x)) is an almost complex totally geodesic submanifold of M. Now, we
show that all G-orbits are almost complex ((2)=-(5)).

Let V € T,u~!(u(x)) and let X* be a tangent vector of T,G - y generated by
the one parameter subgroup {exp(tX) : t € R} C G. Then

0= dpuy(V)(X) = w(X", V) = g(J(X*), V) = g(X*, ](V)), (6)

meaning that T,G -y = Ty~ (u(x))*. Hence G - y is complex.
Finally we prove that ¢ is an isometry. Since ¢ is G-equivariant and G acts
by isometries on M, it is enough to prove that d¢, ) is an isometry for every

z € u~Y(u(x)). Note that the tangent space of M splits as

TM = T.G 2 & Tup~(u(x)), 7)

for every z € 1~ !(u(x)). Hence it is enough to prove that the Killing vector fields
generated by the one parameter subgroups of G have constant norm, measured
along p~* (p(x)).

Let ¢ € gand let X be a vector field tangent to =1 ((x)). Therefore [¢*, X] = 0
since ¢ is a G-equivariant diffeomorphism. Now, given 77* be such that J(5*) =
&*, by the closeness of w we have

0 =dw(X, ", &) = Xg(&*, &),
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proving that &* has constant norm, measured along ! (p(x)).

Now, (2)=(3), (2)=(5) and (4)=-(3) follow from the above discussion while
(3)=(2) and (5)=-(4) are easy to check.

((3)=(5)). We follow the notation introduced in the proof of the Proposition
1.2.

Let G - x be a G-orbit and let Y’ be a neighborhood of the zero section of
(Y = G xg, (q® V), 1) which is G-equivariant symplectomorphic to a neigh-
borhood of G - x. The moment map p in Y’ is given by

p(lg,m,v]) = Ad(g)(B +m + v (v)).

From Proposition 13 in [1], shrinking Y” if necessary, we have
w YG-B)NY ={[g,mv]:m=0and uy(v) = 0}.

Since M is mapped by the moment map y to a single coadjoint orbit G - B, we
conclude that ¢ = {0}, i.e. G- x is symplectic. Moreover, one may check that
any G-orbit is a principal orbit. Hence, as we have proved in (2) =(3), = (B)
is an almost complex submanifold of (M, J) from which one may deduce that all
G-orbits are almost complex as well. n

Proof of Theorem 1.3. (1)=(2)=(3)=-(1) follow using the same arguments in the
proof of the Theorem 1.1 while (4)=-(3) is easy to check.

((83)=(4)). Let x € M be a regular point and let B = p(x). As in the proof of
the Theorem 1.1, one may check that M = G - u~!(B) and any G-orbit is symplec-
tic. This b implies that B is a regular value of the application y : M — G- B.
Therefore 11~ !(B) is a closed submanifold whose tangent space is given by

T,u~"(B) = Kerdp, = (T,G - y) ™

and the tangent space of M splits as

Lo
T,M=T,G-y & Tyu ' (B). (8)

for every y € u~!(B). In particular x~1(B) is symplectic.
Now, we show that Gy acts trivially on ().
Note that Gy = G = G, for every y € u~1(B), due the fact that G -y is
symplectic, Gy C Gg since p is G-equivariant, and u~1(B) is connected since
both G and M = G - u~!(B) are. We now claim that G, acts trivially on x~1(B).
Indeed, suppose that we may find a sequence x, — x in u~!(B) and a sequence
gn € Gy, —Gx C Gp such that g,x, = x,. Since the G-action is proper we may
assume that g, — g, which lies in Gy. In particular the sequence g, converges
to go in Gg, since it is a closed Lie group. Now, Gy is an open subset of Gg, since
GY = Gg ; therefore there exists n, such that g, € Gy for n > n, which is an absurd.
Thus, there exists an open subset U’ of x in = !(B) such that G, C G,, Vz € U'.
On the other hand, from the slice theorem, see [15], there exists a neighborhood
U of the regular point x such that (G;) = (Gy) Vz € U. Shrinking U’ if necessary,
we may assume that U’ C U. Therefore, keep in mind that G, = G for every
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y € u~1(B), we have that G, = G, for every y € U'. Since G, is compact we
conclude that Gy acts trivially on #~!(B). Hence the application

¢:G-xxpu () — M, ¢(8Gy,z) =gz

is well-defined, smooth and G-equivariant. Moreover, from (1) and (8) we get
that

e ) ®

Since Z(G) C GZ ) = G, G must be semisimple whenever G is a reductive Lie
group and ¢ turns out to be a symplectomorphism since, from Proposition 2.1, a
G-orbit intersects 2~ 1(B) in at most one point.

Now assume that N(Gy)/ Gy is a finite group whenever x is a regular point. As
in the proof of Theorem 1.1, one may show that =1 (8) N M®~ is almost complex,
G -y is almost complex for every y € u~1(B) N M+ and finally

N — . . -1 Gx (Gx) _

B =0, G 0% (N NME) — M%), g((gx,2]) = gz,

is G-equivariant and it satisfies (9). Therefore it is a local diffeomorphism. Now,
following the proof of Theorem 1.1 we have that ¢ is an isometry with respect to
g. Since M(G*) is an open dense subset of M, we obtain that ¢ is an isometry with
respect to g, the submanifold u~!(B) is almost complex, so all G-orbits are since
the symplectic splitting (8) turns out to be g-orthogonal, concluding our proof. =

Proof of Corollary 1.4
Let g = £ @ p be a Cartan decomposition of the Lie algebra of G. Since any
elliptic element is conjugate to an element of £, we have that the squared moment

map f =|| u ||? is positive. Therefore, as in the proof of Theorem 1.2, one may
check that all G-orbits are symplectic. The last statement follows now immedi-
ately from Theorem 1.3. m
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