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Abstract

We consider a connected symplectic manifold M acted on properly and
in a Hamiltonian fashion by a connected Lie group G. If G is compact, then
we characterize the symplectic manifolds whose squared moment map is
constant. We also give a sufficient condition for G to admit a symplectic
orbit. Then we study the case when G is a non-compact Lie group proving
splitting results for symplectic manifolds.

1 introduction

We shall consider symplectic manifolds (M, ω) acted on by a connected Lie group
G of symplectomorphism. We shall also assume that the G-action on M is proper
and Hamiltonian, i.e. there exists a moment map µ : M −→ g∗, where g is
the Lie algebra of G. In [1] it was proved the existence of a G-invariant almost
complex structure J such that ω(J·, J·) = ω(·, ·) and ω(·, J·) = g is a Riemannian
metric. Therefore, throughout the following we will denote by J and g the G-
invariant almost complex structure and the corresponding Riemannian metric on
M respectively.

In general, the matter of existence/uniqueness of µ is delicate. However,
whenever g is semisimple the moment map exists and is unique ([7]). If (M, ω) is
a compact Kähler manifold and G is a connected compact Lie group of holomor-
phic isometries, then the existence problem is solved ([9]): a moment map exists
if and only if G acts trivially on the Albanese torus Alb(M).

If G is compact, it is standard to fix an Ad(G)-invariant scalar product 〈·, ·〉
and identify g with g∗ by means of 〈·, ·〉, regarding µ as a g-valued map. It is
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also natural to study the squared moment map ‖ µ ‖2 and its critical set. This
function has been intensively studied in [10], obtaining strong information on the
topology of M.

Our first main result characterizes completely the symplectic manifolds whose
squared moment map is constant.

Theorem 1.1. Let (M, ω) be a connected symplectic manifold and let G be a compact
connected Lie group acting effectively and in a Hamiltonian fashion on M with moment
map µ : M −→ g. The following are equivalent:

1. G is semisimple and M is symplectomorphically and G-equivariantly isometric
with respect to g, to a product of a flag manifold and an almost complex manifold
which is acted on trivially by G.

2. the squared moment map f =‖ µ ‖2 is constant;

3. M is mapped by the moment map µ to a single coadjoint orbit;

4. all principal G-orbits are almost complex submanifolds of (M, J);

5. all G-orbits are almost complex submanifolds of (M, J).

In order to prove the above theorem, we need the following result, which
might have an independent interest.

Proposition 1.2. Let (M, ω) be a symplectic manifold and let G be a compact con-
nected Lie group acting in a Hamiltonian fashion on M with moment map µ. Assume
that x ∈ M realizes a local maximum of the squared moment map f =‖ µ ‖2. Then
the orbit G · x is symplectic. Moreover, there exists a neighborhood Yo of x such that
G ·

(

Yo ∩ µ−1(µ(x))
)

is a symplectic submanifold which is G-equivariantly symplecto-
morphic to the product of a flag manifold and a symplectic manifold which is acted on
trivially by G. If we assume that x ∈ M realizes the maximum of f =‖ µ ‖2 or any
z ∈ µ−1(µ(x)) realizes a local maximum of f =‖ µ ‖2, then the following statements
hold true:

1. µ−1(µ(x)) is a symplectic submanifold of M;

2. G · µ−1(µ(x)) is a symplectic submanifold of M which is G−equivariantly sym-
plectomorphic to (Gx × µ−1(µ(x)), ω|G·x

+ ω|
µ−1(µ(x))

).

These results generalize ones given in [6] and [2].
One may prove Proposition 1.2 assuming that Ad(G) is compact. This means

that G is covered by a compact Lie group and a vector group which lies in the
center (see [5]). Nevertheless, if G acts properly on M, then the existence of a
symplectic G-orbit implies that G must be compact. Indeed, if G · x = G/Gx is
symplectic, then, from Proposition 2.1, Go

x = Go
µ(x)

. We recall that if G is a group,

then Go denotes the connected component of G containing the identity e. Since
Z(G) ⊂ Go

µ(x)
, Z(G) must be compact. Therefore G must be compact as well.

Then we study the case when G is a non-compact Lie group acting properly
and in a Hamiltonian fashion on M. Our main result is the following theorem.
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Theorem 1.3. Let (M, ω) be a symplectic manifold and let G be a connected non-
compact Lie group acting effectively, properly and in a Hamiltonian fashion on M with
moment map µ. Assume also that for every α ∈ g∗ the coadjoint orbit G · α is locally
closed. The following are equivalent:

1. all G-orbits are symplectic;

2. all principal G-orbits are symplectic;

3. M is mapped by the moment map µ to a single coadjoint orbit;

4. let x be a regular point of M. Then G · x is a symplectic orbit, µ−1(µ(x)) is a
symplectic submanifold on which Gx acts trivially and the following G-equivariant
application

φ : G · x × µ−1(µ(x)) −→ M, φ([gx, z]) = gz,

is surjective and satisfies

φ∗ω = ω|G·x
+ ω|µ−1(µ(x))

.

If G is a reductive Lie group acting effectively on M, then in (4) it turns out that G has
to be semisimple and φ is a G-equivariant symplectomorphism. Moreover, if we assume
that N(Gx)/Gx is a finite group whenever x ∈ M is a regular point, then our result
holds in the almost-Kähler setting. Indeed, in (4) the map φ turns out to be an isometry
with respect to g while in (1) and (2) all G-orbits and all principal G-orbits are almost
complex submanifolds of (M, J) respectively.

Observe that the condition for a coadjoint orbit to be locally closed is auto-
matic for reductive groups and for their semidirect products with vector spaces.
There exists an example of a solvable Lie group due to Mautner [17, p.512], with
non-locally closed coadjoint orbits. These assumptions are needed to apply the
symplectic slice theorem (see [1, 7, 14, 16]), and the symplectic stratification of the
reduced space given in [1].

Finally, as an immediate corollary of Theorem 1.1 and Theorem 1.3, we give
the following splitting result.

Let G be a non-compact semisimple Lie group. The Killing form B on g is
a non-degenerate Ad(G)-invariant bilinear form. Therefore, we may identify g

with g∗ by means of −B, regarding µ as a g-valued map. The squared moment
map can be defined as the smooth function f (x) = −B(µ(x), µ(x)) =‖ µ(x) ‖2.
Let g = k ⊕ p a Cartan decomposition of g ([8]). Then f is positive on k and
negative on p.

An element X ∈ g is called elliptic if ad(X) ∈ End(gC) is diagonalizable and
all eigenvalues are purely imaginary; the orbit Ad(G) · X is called elliptic orbit.
See [12, 13] for more details about elliptic orbits.

Corollary 1.4. Let M be a symplectic manifold acted on by a connected non-compact
semisimple Lie group G, properly and in a Hamiltonian fashion with moment map µ.
Assume that µ(M) ⊂ {X ∈ g : X is elliptic} and f =‖ µ ‖2 is constant. Then all
G-orbits are symplectic and M is G-equivariantly symplectomorphic to a product of a
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flag manifold and a symplectic manifold which is acted on trivially by G. Moreover, if
N(Gx)/Gx is a finite group whenever x ∈ M is a regular point, then the symplectomor-
phism turns out to be an isometry with respect to g and all G-orbits are almost complex
submanifolds of (M, J).

2 Proof of the main results

Let M be a connected differentiable manifold equipped with a non-degenerate
closed 2−form ω. The pair (M, ω) is called a symplectic manifold. Here we con-
sider a finite-dimensional connected Lie group acting smoothly and properly on
M so that g∗ω = ω for all g ∈ G, i.e. G acts as a group of canonical or symplectic
diffeomorphisms.

The G-action is called Hamiltonian, and we said that G acts in a Hamiltonian
fashion on M or M is G-Hamiltonian, if there exists a map µ : M −→ g∗, called
the moment map, satisfying the following:

1. For each X ∈ g, let

• µX : M −→ R, µX(p) = µ(p)(X), be the component of µ along X, and

• X# be the vector field on M generated by the one parameter subgroup
{exp(tX) : t ∈ R} ⊆ G.

Then
dµX = iX# ω,

i.e., µX is a Hamiltonian function for the vector field X#.

2. µ is G-equivariant, i.e. µ(gp) = Ad∗(g)(µ(p)), where Ad∗ is the coadjoint
representation on g∗.

Let x ∈ M and dµx : Tx M −→ Tµ(x)g
∗ being the differential of µ at x. Then

Kerdµx = (TxG · x)⊥ω := {v ∈ Tx M : ω(v, w) = 0, ∀w ∈ TxG · x}

and the pullback by the restricted moment map µ : G · x −→ Ad∗(G) · µ(x) of
the symplectic form on the coadjoint orbit through µ(x), it equals the restriction
of the ambient symplectic form ω to the orbit G · x:

ω|G·x
= µ∗(ωAd∗(G)·µ(x))|G·x

, (1)

see [1] p. 211, where ωAd∗(G)·µ(x) is the Kirillov-Konstant-Souriau (KKS) sym-

plectic form on the coadjoint orbit of µ(x) in g∗. This implies the following well-
known fact ([7]).

Proposition 2.1. The orbit of G through x ∈ M is symplectic if and only if the stabilizer
group of x is an open subgroup of the stabilizer of µ(x) hence if and only if the restricted
moment map µ : G · x −→ Ad∗(G) · µ(x) is a covering map. In particular if G is
compact or semisimple, then the restricted moment map is a diffeomorphism.
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Proof. The first affirmation follows immediately from (1). If G is compact or
semisimple, then Gµ(x) is connected so Gx = Gµ(x). Therefore the restricted mo-
ment map is a diffeomorphism.

Proof of Proposition 1.2. Let β = µ(x) and let Gx be the isotropy group at x. It fol-
lows from the symplectic slice theorem, see [1, 7, 14, 16], there exists a G-invariant
neighborhood of G · x in M which is equivariantly symplectomorphic to a neigh-
borhood Yo of the zero section of (Y = G ×Gx (q ⊕ V), τ) and the moment map is
given by

µ([g, m, v]) = Ad(g)(β + m + µV(v)),

where q is a Gx-module in the Gx-equivariant splitting g = gβ ⊕ s = gx ⊕ q ⊕
s and µV is the moment map of the Gx-action on the symplectic subspace V
of ((TxG · x)⊥ω , ωx). Note that V is isomorphic to the quotient (TxG · x)⊥ω /
(TxG · x)⊥ω ∩ TxG · x.

From now on, we denote by ωV = (ωx)|V . Shrinking Yo if necessary, we may

also suppose that [e, 0, 0] is the maximum of the smooth function f =‖ µ ‖2 on
Yo.

We now show that q = {0}, i.e. G · x is symplectic.
Let m ∈ q− {0}. Then for every λ ∈ R we have

f (e, λm, 0) =‖ β ‖2 +λ2 ‖ m ‖2 +λ〈m, β〉 ≤‖ β ‖2,

so

λ2 ‖ m ‖2 +λ〈m, β〉 ≤ 0,

which is a contradiction. Hence G · x is symplectic and by Proposition 2.1
Gx = Gβ.

Let Y
β
o = Yo ∩ µ−1(β). Then Gy = Gx for every y ∈ Y

β
o , i.e. G · y is symplectic,

and a G−orbit through an element of Y
β
o intersects µ−1(β) in at most one point.

Indeed, if both x ∈ Y
β
o and kx lie in µ−1(β), then, by the G-equivariance of µ, we

have µ(kx) = β = kµ(x) = kβ, proving k ∈ Gx. Therefore the map

φ : G · x × Y
β
o −→ G ·Y

β
o

is well-defined and bijective.
By Proposition 13 in [1, p.216], shrinking Yo if necessary, we have

G · µ−1(β) ∩ Yo = {[g, v] ∈ Yo : µV(v) = 0}.

Let Y(Gx) = {m ∈ Y : (Gm) = (Gx)}. It is easy to check that

Y(Gx) = G ×Gx
VGx ∼= G/Gx × VGx , (2)

where VGx = {x ∈ V : Gm = Gx}, and µ(Y
(Gx)
o ) = G · β. Therefore

Yo ∩ G · µ−1(β) = Y
(Gx)
o and Y

β
o = Yo ∩ VGx . (3)
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This implies that both Y
β
o and G · Y

β
o are symplectic submanifolds of M. Indeed,

TyY
β
o = VGx which is a symplectic subspace, and the tangent space at y of G · Y

β
o

splits as

TyG · Y
β
o = TyG · y

⊥ω

⊕ TyY
β
o ,

since TyY
β
o ⊂ (TyG · y)⊥ω = Kerdµy and G · y is symplectic.

Now,
τ|G/Gx×GxVGx

= ω|G·x
+ (ωV)|VGx

, (4)

see Corollary 14 in [1, p. 217]. Hence, from (1), (2), (3) and (4), we obtain that φ is
a symplectomorphism.

Now assume that x ∈ M realizes the maximum of f or any z ∈ µ−1(µ(x)) is a
local maximum of f . Let β = µ(x). Using the same arguments as before, we may
prove that G · z is symplectic, Gz = Gx = Gβ for every z ∈ µ−1(β) and a G-orbit

intersects µ−1(β) in at most one point. Therefore the following application

φ : G · x × µ−1(β) −→ G · µ−1(β), φ(gx, z) = gz

is well-defined, G-equivariant and bijective.

We claim that φ is a symplectomorphism. The set µ−1(Gβ) ∩ M(Gx) is a mani-
fold of constant rank and the quotient

(Mβ)
(Gx) := (G · µ−1(β) ∩ M(Gx))/G,

is a symplectic manifold, see Corollary 14 in [1]. Since µ−1(β) ⊂ MGx , we have

G · µ−1(β) = G · µ−1(β) ∩ M(Gx),

i.e. G · µ−1(β) is a submanifold. Notice that β is a regular value of the restricted
moment map

µ : G · µ−1(β) −→ G · β.

This implies that µ−1(β) is a submanifold of M and for every z ∈ µ−1(β), the
tangent space of G · µ−1(β) splits as

TzG · z
⊥ω

⊕ Tzµ−1(β) = TzG · µ−1(β). (5)

Since Tzµ−1(β) = VGx and G · z is symplectic, one may conclude that both
G · µ−1(β) and µ−1(β) are symplectic submanifolds of M. Therefore, from (1) and
(5) we obtain that φ is a G-equivariant symplectomorphism and the proposition
is proved.

Proof of Theorem 1.1. ((1) ⇐⇒ (2)). (1)⇒(2) is trivial.
(2)⇒(1). Assume that the squared moment map is constant. Let x ∈ M. As

in the proof of Proposition 1.2, we can show that G · x is symplectic and Gx =
Gµ(x). Therefore all G-orbits are symplectic and G must be semisimple. Indeed,

coadjoint orbits are of the form G/C(T), where C(T) is the centralizer of the torus
T, so Z(G) ⊂ Gx for every x ∈ M, i.e. Z(G) acts trivially on M. Hence Z(G) must
be trivial since the G-action is effective.
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Now, we show that the manifold M is mapped by the moment map to a single
coadjoint orbit ((2)⇒(3)).

Let G · x be a principal orbit. Since Gx acts trivially on the slice, from the local
normal form for the moment map, in a G-invariant neighborhood of G · x the
moment map is given by

µ([g, v]) = Ad(g)(β).

This proves that there exists a G-invariant neighborhood of G · x which is mapped

to a single coadjoint orbit. It is well-known that M(Gx) is an open dense subset

of M and M(Gx)/G is connected ([15]). Since µ is G-equivariant, it induces a
continuous application

µ : M(Gx)/G −→ g/G,

which is locally constant. Hence µ(M(Gx)/G) is constant so µ(M/G) is. Thus M
is mapped by µ to a single coadjoint orbit; in particular M = G · µ−1(β). Note
that this argument proves (4)⇒(3).

Let x ∈ M. As in the proof of Proposition 1.2, from (1), (3), (4) and (5), the
following application

φ : G · x × µ−1(µ(x)) −→ M, (gx, z) −→ gz,

is the desired G-equivariant symplectomorphism.
Let y ∈ µ−1(µ(x)). Then Tyµ−1(µ(x)) = TyMGx . Namely, Gy = Gx centralizes

a torus so N(Gx)/Gx is finite. On the other hand

MGx = N(Gx)/Gx × µ−1(µ(x)),

so µ−1(µ(x)) is an almost complex totally geodesic submanifold of M. Now, we
show that all G-orbits are almost complex ((2)⇒(5)).

Let V ∈ Tyµ−1(µ(x)) and let X# be a tangent vector of TyG · y generated by
the one parameter subgroup {exp(tX) : t ∈ R} ⊆ G. Then

0 = dµy(V)(X) = ω(X#, V) = g(J(X#), V) = g(X#, J(V)), (6)

meaning that TyG · y = Tyµ−1(µ(x))⊥ . Hence G · y is complex.
Finally we prove that φ is an isometry. Since φ is G-equivariant and G acts

by isometries on M, it is enough to prove that dφ(x,z) is an isometry for every

z ∈ µ−1(µ(x)). Note that the tangent space of M splits as

TzM = TzG · z
⊥
⊕ Tzµ−1(µ(x)), (7)

for every z ∈ µ−1(µ(x)). Hence it is enough to prove that the Killing vector fields
generated by the one parameter subgroups of G have constant norm, measured
along µ−1(µ(x)).

Let ξ ∈ g and let X be a vector field tangent to µ−1(µ(x)). Therefore [ξ#, X] = 0
since φ is a G-equivariant diffeomorphism. Now, given η# be such that J(η#) =
ξ#, by the closeness of ω we have

0 = dω(X, η#, ξ#) = Xg(ξ# , ξ#),
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proving that ξ# has constant norm, measured along µ−1(µ(x)).
Now, (2)⇒(3), (2)⇒(5) and (4)⇒(3) follow from the above discussion while

(3)⇒(2) and (5)⇒(4) are easy to check.
((3)⇒(5)). We follow the notation introduced in the proof of the Proposition

1.2.
Let G · x be a G-orbit and let Y′ be a neighborhood of the zero section of

(Y = G ×Gx (q ⊕ V), τ) which is G-equivariant symplectomorphic to a neigh-
borhood of G · x. The moment map µ in Y′ is given by

µ([g, m, v]) = Ad(g)(β + m + µV(v)).

From Proposition 13 in [1], shrinking Y′ if necessary, we have

µ−1(G · β) ∩ Y′ = {[g, m, v] : m = 0 and µV(v) = 0}.

Since M is mapped by the moment map µ to a single coadjoint orbit G · β, we
conclude that q = {0}, i.e. G · x is symplectic. Moreover, one may check that
any G-orbit is a principal orbit. Hence, as we have proved in (2) ⇒(3), µ−1(β)
is an almost complex submanifold of (M, J) from which one may deduce that all
G-orbits are almost complex as well.

Proof of Theorem 1.3. (1)⇒(2)⇒(3)⇒(1) follow using the same arguments in the
proof of the Theorem 1.1 while (4)⇒(3) is easy to check.

((3)⇒(4)). Let x ∈ M be a regular point and let β = µ(x). As in the proof of
the Theorem 1.1, one may check that M = G · µ−1(β) and any G-orbit is symplec-
tic. This b implies that β is a regular value of the application µ : M −→ G · β.
Therefore µ−1(β) is a closed submanifold whose tangent space is given by

Tyµ−1(β) = Kerdµy = (TyG · y)⊥ω

and the tangent space of M splits as

TyM = TyG · y
⊥ω

⊕ Tyµ−1(β). (8)

for every y ∈ µ−1(β). In particular µ−1(β) is symplectic.
Now, we show that Gx acts trivially on µ−1(β).
Note that Go

y = Go
x = Go

β, for every y ∈ µ−1(β), due the fact that G · y is

symplectic, Gy ⊂ Gβ since µ is G-equivariant, and µ−1(β) is connected since

both G and M = G · µ−1(β) are. We now claim that Gx acts trivially on µ−1(β).
Indeed, suppose that we may find a sequence xn → x in µ−1(β) and a sequence
gn ∈ Gxn − Gx ⊆ Gβ such that gnxn = xn. Since the G-action is proper we may
assume that gn → go which lies in Gx. In particular the sequence gn converges
to go in Gβ, since it is a closed Lie group. Now, Gx is an open subset of Gβ, since
Go

x = Go
β; therefore there exists no such that gn ∈ Gx for n ≥ no which is an absurd.

Thus, there exists an open subset U′ of x in µ−1(β) such that Gz ⊂ Gx, ∀z ∈ U′.
On the other hand, from the slice theorem, see [15], there exists a neighborhood
U of the regular point x such that (Gz) = (Gx) ∀z ∈ U. Shrinking U′ if necessary,
we may assume that U′ ⊂ U. Therefore, keep in mind that Go

y = Go
x for every
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y ∈ µ−1(β), we have that Gx = Gy for every y ∈ U′. Since Gx is compact we

conclude that Gx acts trivially on µ−1(β). Hence the application

φ : G · x × µ−1(β) −→ M, φ(gGx, z) = gz

is well-defined, smooth and G-equivariant. Moreover, from (1) and (8) we get
that

φ∗ω = ω|G·x
+ ω|µ−1(µ(x))

(9)

Since Z(G) ⊆ Go
µ(x)

= Go
x, G must be semisimple whenever G is a reductive Lie

group and φ turns out to be a symplectomorphism since, from Proposition 2.1, a
G-orbit intersects µ−1(β) in at most one point.

Now assume that N(Gx)/Gx is a finite group whenever x is a regular point. As
in the proof of Theorem 1.1, one may show that µ−1(β) ∩ MGx is almost complex,
G · y is almost complex for every y ∈ µ−1(β) ∩ MGx and finally

φ = φ|
G·x×(µ−1(β)∩MGx)

: G · x × (µ−1(β) ∩ MGx) −→ M(Gx), φ([gx, z]) = gz,

is G-equivariant and it satisfies (9). Therefore it is a local diffeomorphism. Now,
following the proof of Theorem 1.1 we have that φ is an isometry with respect to

g. Since M(Gx) is an open dense subset of M, we obtain that φ is an isometry with
respect to g, the submanifold µ−1(β) is almost complex, so all G-orbits are since
the symplectic splitting (8) turns out to be g-orthogonal, concluding our proof.

Proof of Corollary 1.4
Let g = k ⊕ p be a Cartan decomposition of the Lie algebra of G. Since any

elliptic element is conjugate to an element of k, we have that the squared moment
map f =‖ µ ‖2 is positive. Therefore, as in the proof of Theorem 1.2, one may
check that all G-orbits are symplectic. The last statement follows now immedi-
ately from Theorem 1.3.
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