On the moment map on symplectic manifolds

Leonardo Biliotti

Abstract

We consider a connected symplectic manifold M acted on properly and in a Hamiltonian fashion by a connected Lie group G. If G is compact, then we characterize the symplectic manifolds whose squared moment map is constant. We also give a sufficient condition for G to admit a symplectic orbit. Then we study the case when G is a non-compact Lie group proving splitting results for symplectic manifolds.

1 introduction

We shall consider symplectic manifolds (M, ω) acted on by a connected Lie group G of symplectomorphism. We shall also assume that the G-action on M is proper and Hamiltonian, i.e. there exists a moment map $\mu : M \longrightarrow \mathfrak{g}^*$, where \mathfrak{g} is the Lie algebra of G. In [1] it was proved the existence of a G-invariant almost complex structure J such that $\omega(J \cdot, J \cdot) = \omega(\cdot, \cdot)$ and $\omega(\cdot, J \cdot) = g$ is a Riemannian metric. Therefore, throughout the following we will denote by J and g the G-invariant almost complex structure and the corresponding Riemannian metric on M respectively.

In general, the matter of existence/uniqueness of μ is delicate. However, whenever g is semisimple the moment map exists and is unique ([7]). If (M, ω) is a compact Kähler manifold and *G* is a connected compact Lie group of holomorphic isometries, then the existence problem is solved ([9]): a moment map exists if and only if *G* acts trivially on the Albanese torus Alb(*M*).

If *G* is compact, it is standard to fix an Ad(*G*)-invariant scalar product $\langle \cdot, \cdot \rangle$ and identify \mathfrak{g} with \mathfrak{g}^* by means of $\langle \cdot, \cdot \rangle$, regarding μ as a \mathfrak{g} -valued map. It is

Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 107–116

Received by the editors October 2006.

Communicated by S. Gutt.

²⁰⁰⁰ Mathematics Subject Classification : Primary 53C55, 57S15.

Key words and phrases : moment map, symplectic and almost-Kähler manifolds.

also natural to study the squared moment map $\parallel \mu \parallel^2$ and its critical set. This function has been intensively studied in [10], obtaining strong information on the topology of *M*.

Our first main result characterizes completely the symplectic manifolds whose squared moment map is constant.

Theorem 1.1. Let (M, ω) be a connected symplectic manifold and let *G* be a compact connected Lie group acting effectively and in a Hamiltonian fashion on *M* with moment map $\mu : M \longrightarrow \mathfrak{g}$. The following are equivalent:

- 1. *G* is semisimple and *M* is symplectomorphically and *G*-equivariantly isometric with respect to *g*, to a product of a flag manifold and an almost complex manifold which is acted on trivially by *G*.
- 2. *the squared moment map* $f = || \mu ||^2$ *is constant;*
- 3. M is mapped by the moment map μ to a single coadjoint orbit;
- *4. all principal G-orbits are almost complex submanifolds of (M, J);*
- 5. all G-orbits are almost complex submanifolds of (M, J).

In order to prove the above theorem, we need the following result, which might have an independent interest.

Proposition 1.2. Let (M, ω) be a symplectic manifold and let G be a compact connected Lie group acting in a Hamiltonian fashion on M with moment map μ . Assume that $x \in M$ realizes a local maximum of the squared moment map $f = || \mu ||^2$. Then the orbit $G \cdot x$ is symplectic. Moreover, there exists a neighborhood Y_0 of x such that $G \cdot (Y_0 \cap \mu^{-1}(\mu(x)))$ is a symplectic submanifold which is G-equivariantly symplectomorphic to the product of a flag manifold and a symplectic manifold which is acted on trivially by G. If we assume that $x \in M$ realizes the maximum of $f = || \mu ||^2$ or any $z \in \mu^{-1}(\mu(x))$ realizes a local maximum of $f = || \mu ||^2$, then the following statements hold true:

- 1. $\mu^{-1}(\mu(x))$ is a symplectic submanifold of M;
- 2. $G \cdot \mu^{-1}(\mu(x))$ is a symplectic submanifold of M which is G-equivariantly symplectomorphic to $(Gx \times \mu^{-1}(\mu(x)), \omega_{|_{G \cdot x}} + \omega_{|_{\mu^{-1}(\mu(x))}})$.

These results generalize ones given in [6] and [2].

One may prove Proposition 1.2 assuming that Ad(G) is compact. This means that *G* is covered by a compact Lie group and a vector group which lies in the center (see [5]). Nevertheless, if *G* acts properly on *M*, then the existence of a symplectic *G*-orbit implies that *G* must be compact. Indeed, if $G \cdot x = G/G_x$ is symplectic, then, from Proposition 2.1, $G_x^o = G_{\mu(x)}^o$. We recall that if *G* is a group, then G^o denotes the connected component of *G* containing the identity *e*. Since $Z(G) \subset G_{\mu(x)}^o$, Z(G) must be compact. Therefore *G* must be compact as well.

Then we study the case when *G* is a non-compact Lie group acting properly and in a Hamiltonian fashion on *M*. Our main result is the following theorem.

Theorem 1.3. Let (M, ω) be a symplectic manifold and let G be a connected noncompact Lie group acting effectively, properly and in a Hamiltonian fashion on M with moment map μ . Assume also that for every $\alpha \in \mathfrak{g}^*$ the coadjoint orbit $G \cdot \alpha$ is locally closed. The following are equivalent:

- 1. all G-orbits are symplectic;
- 2. all principal G-orbits are symplectic;
- 3. *M* is mapped by the moment map μ to a single coadjoint orbit;
- 4. let x be a regular point of M. Then $G \cdot x$ is a symplectic orbit, $\mu^{-1}(\mu(x))$ is a symplectic submanifold on which G_x acts trivially and the following G-equivariant application

 $\phi: G \cdot x \times \mu^{-1}(\mu(x)) \longrightarrow M, \ \phi([gx,z]) = gz,$

is surjective and satisfies

$$\phi^*\omega = \omega_{|_{G\cdot x}} + \omega_{|_{\mu^{-1}(\mu(x))}}$$

If G is a reductive Lie group acting effectively on M, then in (4) it turns out that G has to be semisimple and ϕ is a G-equivariant symplectomorphism. Moreover, if we assume that $N(G_x)/G_x$ is a finite group whenever $x \in M$ is a regular point, then our result holds in the almost-Kähler setting. Indeed, in (4) the map ϕ turns out to be an isometry with respect to g while in (1) and (2) all G-orbits and all principal G-orbits are almost complex submanifolds of (M, J) respectively.

Observe that the condition for a coadjoint orbit to be locally closed is automatic for reductive groups and for their semidirect products with vector spaces. There exists an example of a solvable Lie group due to Mautner [17, p.512], with non-locally closed coadjoint orbits. These assumptions are needed to apply the symplectic slice theorem (see [1, 7, 14, 16]), and the symplectic stratification of the reduced space given in [1].

Finally, as an immediate corollary of Theorem 1.1 and Theorem 1.3, we give the following splitting result.

Let *G* be a non-compact semisimple Lie group. The Killing form *B* on \mathfrak{g} is a non-degenerate $\operatorname{Ad}(G)$ -invariant bilinear form. Therefore, we may identify \mathfrak{g} with \mathfrak{g}^* by means of -B, regarding μ as a \mathfrak{g} -valued map. The squared moment map can be defined as the smooth function $f(x) = -B(\mu(x), \mu(x)) = || \mu(x) ||^2$. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ a Cartan decomposition of \mathfrak{g} ([8]). Then *f* is positive on \mathfrak{k} and negative on \mathfrak{p} .

An element $X \in \mathfrak{g}$ is called *elliptic* if $\operatorname{ad}(X) \in \operatorname{End}(\mathfrak{g}^{\mathbb{C}})$ is diagonalizable and all eigenvalues are purely imaginary; the orbit $\operatorname{Ad}(G) \cdot X$ is called *elliptic orbit*. See [12, 13] for more details about elliptic orbits.

Corollary 1.4. Let M be a symplectic manifold acted on by a connected non-compact semisimple Lie group G, properly and in a Hamiltonian fashion with moment map μ . Assume that $\mu(M) \subset \{X \in \mathfrak{g} : X \text{ is elliptic}\}$ and $f = \| \mu \|^2$ is constant. Then all G-orbits are symplectic and M is G-equivariantly symplectomorphic to a product of a

flag manifold and a symplectic manifold which is acted on trivially by G. Moreover, if $N(G_x)/G_x$ is a finite group whenever $x \in M$ is a regular point, then the symplectomorphism turns out to be an isometry with respect to g and all G-orbits are almost complex submanifolds of (M, J).

2 Proof of the main results

Let *M* be a connected differentiable manifold equipped with a non-degenerate closed 2–form ω . The pair (M, ω) is called a *symplectic manifold*. Here we consider a finite-dimensional connected Lie group acting smoothly and properly on *M* so that $g^*\omega = \omega$ for all $g \in G$, i.e. *G* acts as a group of canonical or symplectic diffeomorphisms.

The *G*-action is called *Hamiltonian*, and we said that *G* acts in a Hamiltonian fashion on *M* or *M* is *G*-Hamiltonian, if there exists a map $\mu : M \longrightarrow \mathfrak{g}^*$, called the *moment map*, satisfying the following:

- 1. For each $X \in \mathfrak{g}$, let
 - $\mu^X : M \longrightarrow \mathbb{R}, \ \mu^X(p) = \mu(p)(X)$, be the component of μ along *X*, and
 - $X^{\#}$ be the vector field on *M* generated by the one parameter subgroup $\{\exp(tX) : t \in \mathbb{R}\} \subseteq G.$

Then

$$\mathrm{d}\mu^X = i_{X^{\#}}\omega,$$

i.e., μ^X is a Hamiltonian function for the vector field $X^{\#}$.

2. μ is *G*-equivariant, i.e. $\mu(gp) = \mathrm{Ad}^*(g)(\mu(p))$, where Ad^* is the coadjoint representation on \mathfrak{g}^* .

Let $x \in M$ and $d\mu_x : T_x M \longrightarrow T_{\mu(x)} \mathfrak{g}^*$ being the differential of μ at x. Then

$$Kerd\mu_x = (T_x G \cdot x)^{\perp_\omega} := \{ v \in T_x M : \omega(v, w) = 0, \ \forall w \in T_x G \cdot x \}$$

and the pullback by the restricted moment map $\mu : G \cdot x \longrightarrow Ad^*(G) \cdot \mu(x)$ of the symplectic form on the coadjoint orbit through $\mu(x)$, it equals the restriction of the ambient symplectic form ω to the orbit $G \cdot x$:

$$\omega_{|_{G,\chi}} = \mu^* (\omega_{Ad^*(G) \cdot \mu(\chi)})_{|_{G,\chi'}} \tag{1}$$

see [1] p. 211, where $\omega_{\mathrm{Ad}^*(G)\cdot\mu(x)}$ is the Kirillov-Konstant-Souriau (KKS) symplectic form on the coadjoint orbit of $\mu(x)$ in \mathfrak{g}^* . This implies the following well-known fact ([7]).

Proposition 2.1. The orbit of G through $x \in M$ is symplectic if and only if the stabilizer group of x is an open subgroup of the stabilizer of $\mu(x)$ hence if and only if the restricted moment map $\mu : G \cdot x \longrightarrow Ad^*(G) \cdot \mu(x)$ is a covering map. In particular if G is compact or semisimple, then the restricted moment map is a diffeomorphism.

Proof. The first affirmation follows immediately from (1). If *G* is compact or semisimple, then $G_{\mu(x)}$ is connected so $G_x = G_{\mu(x)}$. Therefore the restricted moment map is a diffeomorphism.

Proof of Proposition 1.2. Let $\beta = \mu(x)$ and let G_x be the isotropy group at x. It follows from the symplectic slice theorem, see [1, 7, 14, 16], there exists a G-invariant neighborhood of $G \cdot x$ in M which is equivariantly symplectomorphic to a neighborhood Y_o of the zero section of $(Y = G \times_{G_x} (\mathfrak{q} \oplus V), \tau)$ and the moment map is given by

$$\mu([g,m,v]) = \operatorname{Ad}(g)(\beta + m + \mu_V(v)),$$

where \mathfrak{q} is a G_x -module in the G_x -equivariant splitting $\mathfrak{g} = \mathfrak{g}_\beta \oplus \mathfrak{s} = \mathfrak{g}_x \oplus \mathfrak{q} \oplus \mathfrak{s}$ \mathfrak{s} and μ_V is the moment map of the G_x -action on the symplectic subspace Vof $((T_x G \cdot x)^{\perp_{\omega}}, \omega_x)$. Note that V is isomorphic to the quotient $(T_x G \cdot x)^{\perp_{\omega}}/((T_x G \cdot x)^{\perp_{\omega}} \cap T_x G \cdot x)$.

From now on, we denote by $\omega_V = (\omega_x)_{|_V}$. Shrinking Y_o if necessary, we may also suppose that [e, 0, 0] is the maximum of the smooth function $f = || \mu ||^2$ on Y_o .

We now show that $q = \{0\}$, i.e. $G \cdot x$ is symplectic. Let $m \in q - \{0\}$. Then for every $\lambda \in \mathbb{R}$ we have

$$f(e, \lambda m, 0) = \parallel \beta \parallel^2 + \lambda^2 \parallel m \parallel^2 + \lambda \langle m, \beta \rangle \leq \parallel \beta \parallel^2,$$

so

$$\lambda^2 \parallel m \parallel^2 + \lambda \langle m, \beta \rangle \leq 0,$$

which is a contradiction. Hence $G \cdot x$ is symplectic and by Proposition 2.1 $G_x = G_\beta$.

Let $Y_o^{\beta} = Y_o \cap \mu^{-1}(\beta)$. Then $G_y = G_x$ for every $y \in Y_o^{\beta}$, i.e. $G \cdot y$ is symplectic, and a *G*-orbit through an element of Y_o^{β} intersects $\mu^{-1}(\beta)$ in at most one point. Indeed, if both $x \in Y_o^{\beta}$ and kx lie in $\mu^{-1}(\beta)$, then, by the *G*-equivariance of μ , we have $\mu(kx) = \beta = k\mu(x) = k\beta$, proving $k \in G_x$. Therefore the map

$$\phi: G \cdot x \times Y_o^\beta \longrightarrow G \cdot Y_o^\beta$$

is well-defined and bijective.

By Proposition 13 in [1, p.216], shrinking Y_0 if necessary, we have

$$G \cdot \mu^{-1}(\beta) \cap Y_o = \{ [g, v] \in Y_o : \mu_V(v) = 0 \}.$$

Let $Y^{(G_x)} = \{m \in Y : (G_m) = (G_x)\}$. It is easy to check that

$$Y^{(G_x)} = G \times_{G_x} V^{G_x} \cong G/G_x \times V^{G_x},$$
(2)

where $V^{G_x} = \{x \in V : G_m = G_x\}$, and $\mu(Y_o^{(G_x)}) = G \cdot \beta$. Therefore

$$Y_o \cap G \cdot \mu^{-1}(\beta) = Y_o^{(G_x)} \text{ and } Y_o^\beta = Y_o \cap V^{G_x}.$$
(3)

This implies that both Y_o^{β} and $G \cdot Y_o^{\beta}$ are symplectic submanifolds of *M*. Indeed, $T_y Y_o^{\beta} = V^{G_x}$ which is a symplectic subspace, and the tangent space at *y* of $G \cdot Y_o^{\beta}$ splits as

$$T_{y}G\cdot Y_{o}^{\beta}=T_{y}G\cdot y\stackrel{\perp_{\omega}}{\oplus}T_{y}Y_{o}^{\beta},$$

since $T_y Y_o^\beta \subset (T_y G \cdot y)^{\perp_\omega} = Kerd\mu_y$ and $G \cdot y$ is symplectic. Now,

$$\tau_{|_{G/G_x \times_{G_x} V^{G_x}}} = \omega_{|_{G \cdot x}} + (\omega_V)_{|_{V^{G_x}}}, \tag{4}$$

see Corollary 14 in [1, p. 217]. Hence, from (1), (2), (3) and (4), we obtain that ϕ is a symplectomorphism.

Now assume that $x \in M$ realizes the maximum of f or any $z \in \mu^{-1}(\mu(x))$ is a local maximum of f. Let $\beta = \mu(x)$. Using the same arguments as before, we may prove that $G \cdot z$ is symplectic, $G_z = G_x = G_\beta$ for every $z \in \mu^{-1}(\beta)$ and a G-orbit intersects $\mu^{-1}(\beta)$ in at most one point. Therefore the following application

$$\phi: G \cdot x \times \mu^{-1}(\beta) \longrightarrow G \cdot \mu^{-1}(\beta), \ \phi(gx, z) = gz$$

is well-defined, G-equivariant and bijective.

We claim that ϕ is a symplectomorphism. The set $\mu^{-1}(G\beta) \cap M^{(G_x)}$ is a manifold of constant rank and the quotient

$$(M_{\beta})^{(G_x)} := (G \cdot \mu^{-1}(\beta) \cap M^{(G_x)})/G,$$

is a symplectic manifold, see Corollary 14 in [1]. Since $\mu^{-1}(\beta) \subset M^{G_x}$, we have

$$\mathbf{G} \cdot \mu^{-1}(\beta) = \mathbf{G} \cdot \mu^{-1}(\beta) \cap M^{(G_x)},$$

i.e. $G \cdot \mu^{-1}(\beta)$ is a submanifold. Notice that β is a regular value of the restricted moment map

$$\mu: G \cdot \mu^{-1}(\beta) \longrightarrow G \cdot \beta.$$

This implies that $\mu^{-1}(\beta)$ is a submanifold of *M* and for every $z \in \mu^{-1}(\beta)$, the tangent space of $G \cdot \mu^{-1}(\beta)$ splits as

$$T_z G \cdot z \stackrel{\perp_{\omega}}{\oplus} T_z \mu^{-1}(\beta) = T_z G \cdot \mu^{-1}(\beta).$$
(5)

Since $T_z \mu^{-1}(\beta) = V^{G_x}$ and $G \cdot z$ is symplectic, one may conclude that both $G \cdot \mu^{-1}(\beta)$ and $\mu^{-1}(\beta)$ are symplectic submanifolds of M. Therefore, from (1) and (5) we obtain that ϕ is a G-equivariant symplectomorphism and the proposition is proved.

Proof of Theorem 1.1. ((1) \iff (2)). (1) \Rightarrow (2) is trivial.

 $(2)\Rightarrow(1)$. Assume that the squared moment map is constant. Let $x \in M$. As in the proof of Proposition 1.2, we can show that $G \cdot x$ is symplectic and $G_x = G_{\mu(x)}$. Therefore all *G*-orbits are symplectic and *G* must be semisimple. Indeed, coadjoint orbits are of the form G/C(T), where C(T) is the centralizer of the torus T, so $Z(G) \subset G_x$ for every $x \in M$, i.e. Z(G) acts trivially on *M*. Hence Z(G) must be trivial since the *G*-action is effective. Now, we show that the manifold *M* is mapped by the moment map to a single coadjoint orbit $((2)\Rightarrow(3))$.

Let $G \cdot x$ be a principal orbit. Since G_x acts trivially on the slice, from the local normal form for the moment map, in a *G*-invariant neighborhood of $G \cdot x$ the moment map is given by

$$\mu([g,v]) = \operatorname{Ad}(g)(\beta).$$

This proves that there exists a *G*-invariant neighborhood of $G \cdot x$ which is mapped to a single coadjoint orbit. It is well-known that $M^{(G_x)}$ is an open dense subset of *M* and $M^{(G_x)}/G$ is connected ([15]). Since μ is *G*-equivariant, it induces a continuous application

$$\overline{\mu}: M^{(G_{\chi})}/G \longrightarrow \mathfrak{g}/G,$$

which is locally constant. Hence $\overline{\mu}(M^{(G_x)}/G)$ is constant so $\overline{\mu}(M/G)$ is. Thus M is mapped by μ to a single coadjoint orbit; in particular $M = G \cdot \mu^{-1}(\beta)$. Note that this argument proves (4) \Rightarrow (3).

Let $x \in M$. As in the proof of Proposition 1.2, from (1), (3), (4) and (5), the following application

$$\phi: G \cdot x \times \mu^{-1}(\mu(x)) \longrightarrow M, \quad (gx, z) \longrightarrow gz,$$

is the desired *G*-equivariant symplectomorphism.

Let $y \in \mu^{-1}(\mu(x))$. Then $T_y \mu^{-1}(\mu(x)) = T_y M^{G_x}$. Namely, $G_y = G_x$ centralizes a torus so $N(G_x)/G_x$ is finite. On the other hand

$$M^{G_x} = N(G_x)/G_x \times \mu^{-1}(\mu(x)),$$

so $\mu^{-1}(\mu(x))$ is an almost complex totally geodesic submanifold of *M*. Now, we show that all *G*-orbits are almost complex ((2) \Rightarrow (5)).

Let $V \in T_y \mu^{-1}(\mu(x))$ and let $X^{\#}$ be a tangent vector of $T_y G \cdot y$ generated by the one parameter subgroup $\{\exp(tX) : t \in \mathbb{R}\} \subseteq G$. Then

$$0 = d\mu_y(V)(X) = \omega(X^{\#}, V) = g(J(X^{\#}), V) = g(X^{\#}, J(V)),$$
(6)

meaning that $T_y G \cdot y = T_y \mu^{-1}(\mu(x))^{\perp}$. Hence $G \cdot y$ is complex.

Finally we prove that ϕ is an isometry. Since ϕ is *G*-equivariant and *G* acts by isometries on *M*, it is enough to prove that $d\phi_{(x,z)}$ is an isometry for every $z \in \mu^{-1}(\mu(x))$. Note that the tangent space of *M* splits as

$$T_z M = T_z G \cdot z \stackrel{\perp}{\oplus} T_z \mu^{-1}(\mu(x)), \tag{7}$$

for every $z \in \mu^{-1}(\mu(x))$. Hence it is enough to prove that the Killing vector fields generated by the one parameter subgroups of *G* have constant norm, measured along $\mu^{-1}(\mu(x))$.

Let $\xi \in \mathfrak{g}$ and let *X* be a vector field tangent to $\mu^{-1}(\mu(x))$. Therefore $[\xi^{\#}, X] = 0$ since ϕ is a *G*-equivariant diffeomorphism. Now, given $\eta^{\#}$ be such that $J(\eta^{\#}) = \xi^{\#}$, by the closeness of ω we have

$$0 = d\omega(X, \eta^{\#}, \xi^{\#}) = Xg(\xi^{\#}, \xi^{\#}),$$

proving that $\xi^{\#}$ has constant norm, measured along $\mu^{-1}(\mu(x))$.

Now, $(2) \Rightarrow (3)$, $(2) \Rightarrow (5)$ and $(4) \Rightarrow (3)$ follow from the above discussion while $(3) \Rightarrow (2)$ and $(5) \Rightarrow (4)$ are easy to check.

 $((3)\Rightarrow(5))$. We follow the notation introduced in the proof of the Proposition 1.2.

Let $G \cdot x$ be a *G*-orbit and let Y' be a neighborhood of the zero section of $(Y = G \times_{G_x} (\mathfrak{q} \oplus V), \tau)$ which is *G*-equivariant symplectomorphic to a neighborhood of $G \cdot x$. The moment map μ in Y' is given by

$$\mu([g, m, v]) = \operatorname{Ad}(g)(\beta + m + \mu_V(v)).$$

From Proposition 13 in [1], shrinking Y' if necessary, we have

$$\mu^{-1}(G \cdot \beta) \cap Y' = \{[g, m, v] : m = 0 \text{ and } \mu_V(v) = 0\}.$$

Since *M* is mapped by the moment map μ to a single coadjoint orbit $G \cdot \beta$, we conclude that $\mathfrak{q} = \{0\}$, i.e. $G \cdot x$ is symplectic. Moreover, one may check that any *G*-orbit is a principal orbit. Hence, as we have proved in (2) \Rightarrow (3), $\mu^{-1}(\beta)$ is an almost complex submanifold of (*M*, *J*) from which one may deduce that all *G*-orbits are almost complex as well.

Proof of Theorem 1.3. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ follow using the same arguments in the proof of the Theorem 1.1 while $(4) \Rightarrow (3)$ is easy to check.

 $((3)\Rightarrow(4))$. Let $x \in M$ be a regular point and let $\beta = \mu(x)$. As in the proof of the Theorem 1.1, one may check that $M = G \cdot \mu^{-1}(\beta)$ and any *G*-orbit is symplectic. This b implies that β is a regular value of the application $\mu : M \longrightarrow G \cdot \beta$. Therefore $\mu^{-1}(\beta)$ is a closed submanifold whose tangent space is given by

$$T_{y}\mu^{-1}(\beta) = Kerd\mu_{y} = (T_{y}G \cdot y)^{\perp_{\omega}}$$

and the tangent space of *M* splits as

$$T_y M = T_y G \cdot y \stackrel{\perp_{\omega}}{\oplus} T_y \mu^{-1}(\beta).$$
(8)

for every $y \in \mu^{-1}(\beta)$. In particular $\mu^{-1}(\beta)$ is symplectic.

Now, we show that G_x acts trivially on $\mu^{-1}(\beta)$.

Note that $G_y^o = G_x^o = G_\beta^o$, for every $y \in \mu^{-1}(\beta)$, due the fact that $G \cdot y$ is symplectic, $G_y \subset G_\beta$ since μ is *G*-equivariant, and $\mu^{-1}(\beta)$ is connected since both *G* and $M = G \cdot \mu^{-1}(\beta)$ are. We now claim that G_x acts trivially on $\mu^{-1}(\beta)$. Indeed, suppose that we may find a sequence $x_n \to x$ in $\mu^{-1}(\beta)$ and a sequence $g_n \in G_{x_n} - G_x \subseteq G_\beta$ such that $g_n x_n = x_n$. Since the *G*-action is proper we may assume that $g_n \to g_o$ which lies in G_x . In particular the sequence g_n converges to g_o in G_β , since it is a closed Lie group. Now, G_x is an open subset of G_β , since $G_x^o = G_\beta^o$; therefore there exists n_o such that $g_n \in G_x$ for $n \ge n_o$ which is an absurd. Thus, there exists an open subset U' of x in $\mu^{-1}(\beta)$ such that $G_z \subset G_x$, $\forall z \in U'$. On the other hand, from the slice theorem, see [15], there exists a neighborhood U of the regular point x such that $(G_z) = (G_x) \ \forall z \in U$. Shrinking U' if necessary, we may assume that $U' \subset U$. Therefore, keep in mind that $G_y^o = G_x^o$ for every $y \in \mu^{-1}(\beta)$, we have that $G_x = G_y$ for every $y \in U'$. Since G_x is compact we conclude that G_x acts trivially on $\mu^{-1}(\beta)$. Hence the application

$$\phi: G \cdot x \times \mu^{-1}(\beta) \longrightarrow M, \quad \phi(gG_x, z) = gz$$

is well-defined, smooth and *G*-equivariant. Moreover, from (1) and (8) we get that

$$\phi^* \omega = \omega_{|_{G \cdot x}} + \omega_{|_{\mu^{-1}(\mu(x))}}$$
(9)

Since $Z(G) \subseteq G^o_{\mu(x)} = G^o_x$, *G* must be semisimple whenever *G* is a reductive Lie group and ϕ turns out to be a symplectomorphism since, from Proposition 2.1, a *G*-orbit intersects $\mu^{-1}(\beta)$ in at most one point.

Now assume that $N(G_x)/G_x$ is a finite group whenever x is a regular point. As in the proof of Theorem 1.1, one may show that $\mu^{-1}(\beta) \cap M^{G_x}$ is almost complex, $G \cdot y$ is almost complex for every $y \in \mu^{-1}(\beta) \cap M^{G_x}$ and finally

$$\overline{\phi} = \phi_{|_{G \cdot x \times (\mu^{-1}(\beta) \cap M^{G_x})}} : G \cdot x \times (\mu^{-1}(\beta) \cap M^{G_x}) \longrightarrow M^{(G_x)}, \ \phi([gx, z]) = gz,$$

is *G*-equivariant and it satisfies (9). Therefore it is a local diffeomorphism. Now, following the proof of Theorem 1.1 we have that $\overline{\phi}$ is an isometry with respect to *g*. Since $M^{(G_x)}$ is an open dense subset of *M*, we obtain that ϕ is an isometry with respect to *g*, the submanifold $\mu^{-1}(\beta)$ is almost complex, so all *G*-orbits are since the symplectic splitting (8) turns out to be *g*-orthogonal, concluding our proof.

Proof of Corollary 1.4

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition of the Lie algebra of *G*. Since any elliptic element is conjugate to an element of \mathfrak{k} , we have that the squared moment map $f = \parallel \mu \parallel^2$ is positive. Therefore, as in the proof of Theorem 1.2, one may check that all *G*-orbits are symplectic. The last statement follows now immediately from Theorem 1.3.

References

- [1] L. BATES AND E. LERMAN, *Proper group actions and symplectic stratified spaces*, Pacific J. Math. 181(2) (1997), 201–229.
- [2] L. BEDULLI AND A. GORI, *A splitting result for compact symplectic manifolds*, Results Math 47(3) (2005), 194–198.
- [3] A. L. BESSE, *Einstein manifolds*, Ergeb. Math. Grenzgeb. (3)10, Springer Verlag, New York, 1987.
- [4] A. S. CANNAS, *Lectures on symplectic geometry*, Lecture Notes in Math. 1764, Springer-Verlag, Berlin, 2001.
- [5] J. CHEEGER AND D. EBIN, *Comparison theorems in Riemannian geometry*, North–Holland Publishing Co., Amsterdam, 1975.

- [6] A. GORI AND F. PODESTÀ, A note on the moment map on compact Kähler manifold, Ann. Global. Anal. Geom. 26(3) (2004), 315–318.
- [7] V. GUILLEMIN AND S. STERNBERG, *Symplectic techniques in physics*, Cambridge University Press, Cambridge, 1990.
- [8] S. HELGASON, *Differential Geometry, Lie groups, and symmetric spaces,* Academic Press, Inc., New York-London, 1978.
- [9] A. HUCKLEBERRY AND T. WURZBACHER, *Multiplicity-free complex manifolds*, Math. Ann. 286 (1990), 261–280.
- [10] F. KIRWAN, *Cohomology quotients in symplectic and algebraic geometry*, Math. Notes 31, Princeton University Press, Princeton, N.J., 1984.
- [11] S. KOBAYASHI AND N. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience Publisher, J. Wiles & Sons, New-York-London 1963.
- [12] T. KOBAYASHI, Lectures on restrictions of unitary representations of real reductive groups, RIMS Preprint 1526, University of Kyoto, 2005.
- [13] K.-H. NEEB, *Holomorphy and Convexity in Lie theory*, Expositions in Mathematics, de Gruyter, Berlin, 1999.
- [14] J. P. ORTEGA AND T. S. RATIU, A symplectic slice Theorem, Lett. Math. Phys. 58 (2002) 81–93.
- [15] R. S. PALAIS AND C. L. TERNG, *Critical point theory and submanifold geometry*, Lecture Notes in Math. 1353, Springer-Verlag, New-York, 1988.
- [16] R. SJAMAAR AND E. LERMAN, Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991) 375–422.
- [17] L. PUKANSZKY, Unitary representations of solvable groups, Ann. Sci. École Norm. Sup. 4 (1972) 475–608.

Dipartimento di Matematica, Università di Parma, Viale G. Usberti 53/A, 43100, Parma Italy email:leonardo.biliotti@unipr.it