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Abstract

We define the center variety for families of p : −q resonant polynomial
vector fields and prove the correctness of the definition. We also derive an
algorithm for computing the focus quantities of such vector fields.

1 Introduction

Consider a real analytic system of ordinary differential equations on R2 with an
isolated equilibrium at the origin, at which the eigenvalues of the linear part are
non-zero pure imaginary numbers. By an analytic change of coordinates the system
has the form ẋ = ωy + · · · , ẏ = −ωx + · · · . The classical Poincaré-Lyapunov
Center Theorem states that the origin is a center if and only if the system admits an
analytic first integral of the form Φ(x, y) = x2+y2+· · · . If the system is complexified
in a natural way, there arises an analytic system of ordinary differential equations
on C2 of the form ż = iωz + · · · , ẇ = −iωw + · · · . Existence of the integral
Φ is equivalent to existence of an analytic first integral of the complexification of
the form Ψ(z, w) = zw + · · · . It is known that, on both R2 and C2, and in the
slightly more general setting of an isolated equilibrium at the origin at which the
eigenvalues λ1, λ2 of the linear part are non-zero, all nonlinear terms in the system
are non-resonant, hence all through any specified order can be eliminated by a single
analytic coordinate change (and all of them by a formal coordinate change), unless
the eigenvalues λ1 and λ2 are rationally related (λ1/λ2 ∈ Q). These facts motivate
the generalization as in Definition 1 below of the concept of a (real) center to certain
classes of systems of ordinary differential equations on C2. In this paper we study
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one such class, the p : −q resonant polynomial vector fields, namely, systems on C2

of the form
ẋ = px −

∑

(i,j)∈S

aijx
i+1yj = P (x, y),

ẏ = −qy +
∑

(i,j)∈S

bjix
jyi+1 = Q(x, y),

(1)

where p, q ∈ N, GCD(p, q) = 1, and where S is the set

S = {(uk, vk) : uk + vk ≥ 1, k = 1, . . . , ℓ} ⊂ N−1 × N0.

Here N denotes the set of natural numbers and for any nonnegative integer n,
N−n = {−n, . . . ,−1, 0} ∪ N. The notation (1) simply emphasizes that we take
into account only non-zero coefficients of the polynomials of interest, and will sim-
plify formulas that occur later. We denote by (a, b) = (au1,v1

, au2,v2
, . . . , bu1,v1

) the
ordered vector of the coefficients of system (1), by E(a, b) = C2ℓ the parameter space
of (1), and by C[a, b] the polynomial ring in the variables aij , bji. We will study the
problem of how to determine all systems within the family (1) that have a center
at the origin in the sense of Definition 1 below, which means a determination of all
such systems that have an analytic first integral in a neighborhood of the origin.

Note that if we are presented with a system of the form (1) for which p and q
are not relatively prime, then we can always rescale the system by a suitably chosen
positive real number so that for the new system the condition GCD(p, q) = 1 holds
(even if originally p = q > 1).

It is easy to see from condition (3) below that if system (1) has a first integral
represented by the formal power series

Ψ(x, y) =
∑

i+j>0
i,j∈N0

ui,jx
iyj

that begins with terms of order at most p + q, then up to rescaling by a non-zero
constant Ψ must be of the form

Ψ(x, y) = xqyp +
∑

i+j>p+q
i,j∈N0

vi−q,j−px
iyj, (2)

where the indexing has been chosen so as to simplify formulas that we will obtain
below.

Definition 1. A system of the form (1) is said to have a center at the origin if it
admits a formal first integral of the form (2).

The condition that a function Ψ(x, y) be a first integral of (1) is the identity

D(Ψ)
def
=

∂Ψ

∂x
P (x, y) +

∂Ψ

∂y
Q(x, y) ≡ 0 , (3)

which for functions of the form (2) is
(
qxq−1yp +

∑

i+j>p+q

ivi−q,j−px
i−1yj

)(
px −

∑

(m,n)∈S

amnx
m+1yn

)

+

(
pxqyp−1 +

∑

i+j>p+q

jvi−q,j−px
iyj−1

)(
−qy +

∑

(m,n)∈S

bnmxnym+1

)
≡ 0 .

(4)
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We augment the set of coefficients in (2) with the collection

J = {v−q+s,q−s : s = 0, . . . , p + q}, (5)

where in agreement with formula (2) we set v00 = 1 and vmn = 0 for all other
elements of J , so that elements of J are the coefficients of the terms of degree p + q
in Ψ(x, y). We also set amn = bnm = 0 for (m, n) 6∈ S. With these conventions, for
(k1, k2) ∈ N−q ×N−p, the coefficient gk1,k2

of xk1+qyk2+p in (4) is zero for k1 + k2 ≤ 0
and for k1 + k2 ≥ 1 is

gk1,k2
= (pk1−qk2)vk1,k2

−
k1+k2−1∑

s1+s2=0
s1≥−q, s2≥−p

[(s1 + q)ak1−s1,k2−s2
− (s2 + p)bk1−s1,k2−s2

] vs1,s2
.

(6)
This formula can be used recursively to construct a formal first integral Ψ for system
(1), at the first stage finding all vk1,k2

for which k1 + k2 = 1, at the second all vk1,k2

for which k1 + k2 = 2, and so on. For any pair k1 and k2, if

qk1 6= pk2 , (7)

and if all coefficients vℓ1,ℓ2 are already known for ℓ1 + ℓ2 < k1 + k2, then vk1,k2
is

uniquely determined by (6) and the condition that gk1,k2
be zero. But at each of the

stages k1 + k2 = k(p + q), k ∈ N (but only at these stages, since GCD(p, q) = 1)
there occurs the one “resonance” pair (k1, k2) = (kq, kp) for which (7) does not hold,
hence for which (6) becomes

gkq,kp = −
kq+kp−1∑

s1+s2=0
s1≥−q,s2≥−p

[(s1 + q)ak1−s1,k2−s2
− (s2 + p)bk1−s1,k2−s2

] vs1,s2
, (8)

so that the process of constructing a first integral Ψ succeeds at this step only if the
expression on the right hand side of (8) is zero. In this case the value of vk1,k2

= vkq,kp

is not determined by equation (6) and may be assigned arbitrarily.
It is evident from (6) that for all indices (k1, k2) ∈ N−q × N−p, vk1,k2

is a poly-
nomial function of the coefficients of (1), that is, is an element of the set that we
have denoted C[a, b], hence by (8) so are the expressions gkq,kp for all k. We would
like to regard the polynomial gkq,kp as the kth “obstruction” to the existence of the
integral (2). It is certainly true that if at a point (a∗, b∗) of our parameter space
E(a, b), gkq,kp(a

∗, b∗) 6= 0, then the construction process fails at that step. However,
although gq,p is uniquely determined, for k > 1 gkq,kp is not, since for ℓ < k vℓq,ℓp

was arbitrary. Thus although it is true that the vanishing of gkq,kp(a
∗, b∗) for all

k ∈ N is sufficient for the existence of a formal first integral of the form (2), it is
not clear a priori that it is necessary. As our first main result we will prove in the
next section that the condition is indeed necessary, independently of the choices of
the vℓq,ℓp. Consequently, the variety in E(a, b) = C2ℓ determined by the collection
{gkq,kp : k ∈ N} is the same for all choices of these polynomials, so that the variety
identified in the following definition is well-defined.

Definition 2. Fix a set S. The polynomial gkq,kp is called the kth focus quantity of
the family (1). The ideal of focus quantities, B = 〈gq,p, g2q,2p, . . . , gjq,jp, . . .〉 ⊂ C[a, b],
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is called the Bautin ideal. The variety of the Bautin ideal, VC = V(〈gq,p, g2q,2p, . . . ,
gjq,jp, . . .〉) = {(a, b) : gjq,jp(a, b) = 0 for all j ∈ N} is called the center variety of
the family (1).

The center variety therefore corresponds exactly to those systems of the form
(1) for which there is a center at the origin of C2, in the sense of Definition 1. In
Section 3 we will present an efficient algorithm for computing the focus quantities.
A result along the same lines for 1 : −1 resonance was announced in [15], but the
proof is given here for the first time.

In the case that (1) is a system on R2 rather than C2, the polynomials gjq,jp

are still defined, but in that context are called the saddle quantities of the system.
The algorithm presented in the appendix applies equally well in this situation as an
efficient method for computing them.

We remark finally that even though it is not generally true that an integral of
the form (2) exists, the construction process described above always yields a formal
series of the form (2) for which D(Ψ) = ΨxP + ΨyQ reduces to

D(Ψ) = gq,p(x
qyp)2 + g2q,2p(x

qyp)3 + g3q,3p(x
qyp)4 + · · · . (9)

2 Normal forms and the center variety

It is well known (see e.g. [3] for details) that by means of a change of variables of
the form

x = x1 +
∑

k1+k2>1

h
(k1,k2)
1 xk1

1 yk2

1 = x1 + h1(x1, y1)

y = y1 +
∑

k1+k2>1

h
(k1,k2)
2 xk1

1 yk2

1 = y1 + h2(x1, y1)
(10)

system (1) can be transformed into a system of the form

ẋ1 = px1 + x1

∞∑

j=1

X(jq+1,jp)(xq
1y

p
1)

j = px1 + x1X(xq
1y

p
1)

ẏ1 = −qy1 + y1

∞∑

j=1

Y (jq,jp+1)(xq
1y

p
1)

j = −qy1 + y1Y (xq
1y

p
1),

(11)

a normal form of (1). The normal form (11) of system (1) is not unique, since the

so-called resonant coefficients h
(kq+1,kp)
1 , h

(kq,kp+1)
2 , k ∈ N, may be selected arbitrarily.

A change of variables (10) transforming (1) to a normal form is called distinguished

if all the resonant coefficients h
(kq+1,kp)
1 , h

(kq,kp+1)
2 , k ∈ N, are zero, and is uniquely

defined. If the transformation (10) is distinguished then the normal form (11) is
also termed distinguished, and is also uniquely defined. The following theorem is a
particular case of Theorem 3.2 in [3, p.18].

Theorem 1. Let κ = (p,−q), e1 = (1, 0), and e2 = (0, 1). Suppose there exists a
positive constant d such that for all α and β in N2

0 for which β ≤ α+em, m ∈ {1, 2},
the following inequality holds:

∣∣∣β1X
(α−β+e1) + β2Y

(α−β+e2)
∣∣∣ ≤ d|(β, κ)|

(∣∣∣X(α−β+e1)
∣∣∣+

∣∣∣Y (α−β+e2)
∣∣∣
)

. (12)
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Then the distinguished normalizing transformation (10) is analytic, that is, each of
the functions h1(x1, x1) and h2(x1, y1) is given by a convergent power series, so that
system (1) is analytically equivalent to its normal form (11).

An immediate consequence of Theorem 1 is the following more convenient crite-
rion for the convergence of the normal form (11) of system (1).

Proposition 1. Consider a system of the form (1), where p, q ∈ N, GCD(p, q) =
1. Let (10) be the distinguished normalizing transformation, producing the unique
distinguished normal form (11). Let w = xq

1y
p
1. If qX(w) + pY (w) ≡ 0 then the

distinguished normalizing transformation (10) is convergent.

We let G be the function defined by

G = qX + pY. (13)

We now show that the existence of a formal first integral is enough to guarantee
that G(w) = qX(w) + pY (w) ≡ 0, hence that the normalizing transformation that
transforms (1) to (11) is convergent. Theorems of this sort, an analogue of the
Poincaré-Lyapunov theorem, are known, but the proof given here, along lines similar
to [3], differs from others in the literature (see [4] and [14]).

Theorem 2. Consider a system of the form (1), where p, q ∈ N, GCD(p, q) = 1.
Let G be the function computed from the normal form (11) of (1), defined by (13).

1. If system (1) has a formal integral of the form (2), then G ≡ 0, hence the
normalizing transformation is convergent.

2. Conversely, if G ≡ 0 then (1) has an analytic first integral of the form (2).

Proof. Suppose (1) has a formal integral of the form (2), that is, Ψ(x, y) = xqyp +∑
i+j>p+q vi−q,j−px

iyj. If H is the normalizing transformation (10) that converts (1)
into its normal form (11), then F = Ψ ◦H is a formal integral for the normal form,
hence

∂F

∂x1
(x1, y1)

[
px1 + x1X(xq

1y
p
1)
]
+

∂F

∂y1
(x1, y1)

[
−qy1 + y1Y (xq

1y
p
1)
]
≡ 0 , (14)

which we rearrange as

px1
∂F

∂x1
(x1, y1) − qy1

∂F

∂y1
(x1, y1)

= −x1
∂F

∂x1
(x1, y1)X(xq

1y
p
1) − y1

∂F

∂y1
(x1, y1)Y (xq

1y
p
1) .

(15)

Recalling from (10) the form of the normalizing transformation, we see that F (x1, y1)
has the form

F (x1, y1) = xq
1y

p
1 +

∑

α1+α2>p+q

F (α1,α2)xα1

1 yα2

1 . (16)
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A simple computation on the left hand side of (15), and insertion of (11) into the
right, yields

∑

α1+α2>p+q

(α1p − α2q)F
(α1,α2)xα1

1 yα2

1

= −


qxq

1y
p
1 +

∑

α1+α2>p+q

α1F
(α1,α2)xα1

1 yα2

1






∞∑

j=1

X(jq+1,jp)(xq
1y

p
1)

j




−


pxq

1y
p
1 +

∑

α1+α2>p+q

α2F
(α1,α2)xα1

1 yα2

1






∞∑

j=1

Y (jq,jp+1)(xq
1y

p
1)

j


 .

(17)

We claim that F (x1, y1) is a function of xq
1y

p
1, alone, that is, that

F (x1, y1) = f(xq
1y

p
1) = xq

1y
p
1 + f2 (xq

1y
p
1)

2 + f3 (xq
1y

p
1)

3 + · · · . (18)

The claim is precisely the statement that for any term F (α1,α2)xα1

1 yα2

1 of F ,

pα1 − qα2 6= 0 ⇒ F (α1,α2) = 0 . (19)

Equation (16) shows that (19) holds for |(α1, α2)| = α1 + α2 ≤ p + q. This implies
that the right hand side of (17) has the form c2(x

q
1y

p
1)

2 + · · · for some c2, hence by
(17) implication (19) holds for α1 + α2 ≤ 2(p + q). But if that is the case, then
the right hand side of (17) must have the form c2(x

q
1y

p
1)

2 + c3(x
q
1y

p
1)

3 + · · · for some
c3, hence by (17) implication (19) must hold for α1 + α2 ≤ 3(p + q). Clearly by
mathematical induction (19) must hold in general, establishing the claim.

But if F (x1, y1) = f(xq
1y

p
1) then

x1
∂F

∂x1
(x1, y1) = qxq

1y
p
1f

′(xq
1y

p
1) and y1

∂F

∂y1
(x1, y1) = pxq

1y
p
1f

′(xq
1y

p
1)

so that, letting w = xq
1y

p
1, (15) becomes

0 ≡ −qwf ′(w)X(w)− pwf ′(w)Y (w) .

But because F is of the form (18), we see that wf ′(w) = w+ · · · . So we immediately
obtain qX(w) + pY (w) ≡ 0, proving part (1).

Direct calculations show that if G ≡ 0 then Ψ̂(x1, y1) = xq
1y

p
1 is a first integral of

(11), and by Proposition 1 the transformation to the normal form (11) is convergent.
Therefore system (1) admits an analytic first integral of the form (2), Ψ(x, y) =
xqyp + · · · .

We now prove the correctness of the definition of the center variety, that is, we
show that the variety VC is the same for all choices of the polynomials vjq,jp, j ∈ N,
that determine gkq,kp, and thus that the center variety VC is well-defined.

Theorem 3. Consider a family of systems of the form (1), with parameter space
E(a, b) = C2ℓ, where p, q ∈ N, GCD(p, q) = 1.
1. Let Ψ be a formal series of the form (2) and let gq,p(a, b), g2q,2p(a, b), . . . be

polynomials satisfying (9) with respect to the system (1). Then the system in
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family (1) corresponding to the choice of coefficients (a∗, b∗) ∈ E(a, b) has a
center at the origin if and only if gkq,kp(a

∗, b∗) = 0 for all k ∈ N.
2. Let Ψ and gqk,pk be as above and suppose there exists another function Ψ′ of the

form (2) and polynomials g′
q,p(a, b), g′

2q,2p(a, b), . . . satisfying (9) with respect to
the family (1). Then VC = V ′

C, where VC = V(〈gq,p(a, b), g2q,2p(a, b), . . .〉) and
V ′
C = V(〈g′

q,p(a, b), g′
2q,2p(a, b), . . .〉).

Proof. 1) Suppose that family (1) is as in the statement of the theorem. Let Ψ be
a formal series of the form (2) and let {gkq,kp(a, b) : k ∈ N} be polynomials in (a, b)
that satisfy (9).

If, for (a∗, b∗) ∈ E(a, b), gkq,kp(a
∗, b∗) = 0 for all k ∈ N then Ψ is a formal first

integral for the corresponding family in (1), so by Definition 1 the system has a
center at the origin of C2.

To prove the converse, we first make the following observations. Suppose that
there exists a k ∈ N and a choice (a∗, b∗) of the parameters such that gjq,jp(a

∗, b∗) =
0 for 1 ≤ j ≤ k − 1 but gkq,kp(a

∗, b∗) 6= 0. Let H(x1, y1) be the distinguished
normalizing transformation (10), producing the distinguished normal form (11), and
consider the function F = Ψ ◦ H. By construction

[
px1 + x1X(xq

1y
p
1)
]
∂F

∂x1
(x1, y1) +

[
−qy1 + y1Y (xq

1y
p
1)
]
∂F

∂y1
(x1, y1)

= gkq,kp(a
∗, b∗)[x1 + h1(x1, y1)]

kq[y1 + h2(x1, y1)]
kp + · · ·

= gkq,kp(a
∗, b∗)xkq

1 ykp
1 + · · · .

(20)

Through order k(p + q) − 1 this is precisely equation (14), so that if we repeat
verbatim the argument that follows (14), we obtain the identity (19) through order
k(p + q); that is,

F (x1, y1) = xq
1y

p
1 + f2 (xq

1y
p
1)

2 + · · ·+ fk (xq
1y

p
1)

k + U(x1, y1) = f(xq
1y

p
1) + U(x1, y1)

where U(x1, y1) begins with terms of order at least k(p + q) + 1. Thus

x1
∂F

∂x1
= qxq

1y
p
1f

′(xq
1y

p
1) + α(x1, y1) and y1

∂F

∂y1
= pxq

1y
p
1f

′(xq
1y

p
1) + β(x1, y1)

where α(x1, y1) and β(x1, y1) begin with terms of order at least k(p + q) + 1, and so
the left hand side of (20) is

p α(x1, y1) − q β(x1, y1)

+ (qX(xq
1y

p
1) + pY (xq

1y
p
1)) xq

1y
p
1 f ′(xq

1y
p
1)

+ X(xq
1y

p
1) α(x1, y1) + Y (xq

1y
p
1) β(x1, y1) .

Hence if we subtract

p α(x1, y1) − q β(x1, y1) + X(xq
1y

p
1) α(x1, y1) + Y (xq

1y
p
1) β(x1, y1) ,

which begins with terms of order at least k(p + q) + 1, from each side of (20) we
obtain

G(xq
1y

p
1) xq

1y
p
1 f ′(xq

1y
p
1) = gkq,kp(a

∗, b∗)(xq
1y

p
1)

k + · · · , (21)



878 V.G. Romanovski – D.S. Shafer

where G is the function of (13).
Now suppose, contrary to what we wish to show, that system (1) for the choice

(a, b) = (a∗, b∗) has a center at the origin of C2, so that it admits a first integral
Φ(x, y) = xqyp + · · · . Then by part (1) of Theorem 2 the function G vanishes
identically, hence the left hand side of (21) is identically zero, whereas the right
hand side is not, a contradiction.

2) If VC 6= V ′
C, then there exists (a∗, b∗) that belongs to one of the varieties VC

and V ′
C but not to the other, say (a∗, b∗) ∈ VC but (a∗, b∗) 6∈ V ′

C. The inclusion
(a∗, b∗) ∈ VC means that the system corresponding to (a∗, b∗) has a center at the
origin. Therefore by part (1) g′

kq,kp(a
∗, b∗) = 0 for all k ∈ N. This contradicts our

assumption that (a∗, b∗) 6∈ V ′
C.

3 Properties of focus quantities and their computation

The focus quantities gkq,kp are difficult to compute for large k if we use only formulas
(6) and (8), because the number of terms in these polynomials grows so fast. In this
section we identify structure in the focus quantities gkq,kp for systems of the form (1)
and give an efficient algorithm for computing the focus quantities. The algorithm is
a further development of the methods of [6, 11, 13, 16, 17].

To illustrate the ideas that are the basis of the algorithm we consider as an
example the family

ẋ = x − a20x
3 − a−13y

3,

ẏ = −3y + b3,−1x
3 + b02y

3.
(22)

Of course for k1 + k2 = 0, vk1,k2
= 0 if (k1, k2) 6= (0, 0), and v00 = 1. Computing

using formula (6) we find that: for k1 + k2 = 1: vk1,k2
= 0 for all pairs (k1, k2); for

k1 + k2 = 2: v3,−1 = −1
6
b3,−1, v20 = 3

2
a20, v11 = 0, v02 = 1

6
b02, v−13 = − 3

10
a−13,

v−24 = v−35 = 0; for k1 + k2 = 3: vk1,k2
= 0 for all pairs (k1, k2); and for k1 + k2 = 4:

v−37 = 0, v−26 = 3
100

a2
−13, v2,2 = 1

20
(5a20b02 − a−13b3,−1), and similarly for the

remaining six coefficients at this level.
We observe that all these polynomials have the following property: for any mono-

mial that appears in vk1,k2
, the sum of the product of the index of each term (as an

element of N−q × N−p) and its exponent is the index (k1, k2) of vk1,k2
. For example,

for v−26:

a2
−13 : 2 · (−1, 3) = (−2, 6)

and for v22:
a02b20 : 1 · (2, 0) + 1 · (0, 2) = (2, 2)

a−13b3,−1 : 1 · (−1, 3) + 1 · (3,−1) = (2, 2) .

To express this fact in general, we introduce the following notation. We order S in
some manner, say by degree lexicographic order, writing S = {(p1, q1), . . . , (pℓ, qℓ)}
and ordering the parameters accordingly as (ap1,q1

, · · · , apℓ,qℓ
, bqℓ,pℓ

, · · · , bq1,p1
). Any

monomial appearing in vij has the form aν1

p1,q1
· · ·aνℓ

pℓ,qℓ
bνℓ+1
qℓ,pℓ

· · · bν2ℓ
q1,p1

for some ν =
(ν1, . . . , ν2ℓ), which for simplicity we write as

[ν]
def
= aν1

p1,q1
· · ·aνℓ

pℓ,qℓ
bνℓ+1

qℓ,pℓ
· · · bν2ℓ

q1,p1
.
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We write Q[a, b] for Q[ap1,q1
, . . . , apℓ,qℓ

, bqℓ,pℓ
, . . . , bq1,p1

]. For f ∈ Q[a, b] we write
f =

∑
ν∈Supp(f) f (ν)[ν], where Supp(f) denotes those ν ∈ N2ℓ

0 such that the coefficient
of [ν] in the polynomial f is non–zero.

Let L : N2ℓ
0 → Z2 be the linear map defined by

L(ν) = (L1(ν), L2(ν))

= ν1(p1, q1) + · · ·+ νℓ(pℓ, qℓ) + νℓ+1(qℓ, pℓ) + · · ·+ ν2ℓ(q1, p1)

= (p1ν1 + · · ·+ pℓνℓ + qℓνℓ+1 + · · ·+ q1ν2ℓ,

q1ν1 + · · · + qℓνℓ + pℓνℓ+1 + · · ·+ p1ν2ℓ).

(23)

It is the formal expression for the sums displayed in the example above. The fact
that we have observed about the vij is that for each monomial [ν] appearing in vij ,
L(ν) = (i, j). This motivates the following definition.

Definition 3. For (i, j) ∈ N−q×N−p, a polynomial f ∈ Q[a, b], f =
∑

ν∈Supp(f) f (ν)[ν],
is an (i, j)–polynomial if for every ν ∈ Supp(f), L(ν) = (i, j).

Theorem 4. Consider a family of systems of the form (1), with parameter space
E(a, b) = C2ℓ, where p, q ∈ N, GCD(p, q) = 1. There exists a formal series Ψ(x, y)
of the form (2) and polynomials gq,p, g2q,2p, g3p,3q, . . . in C[a, b] such that
(a) equation (9) holds;
(b) for every pair (i, j) ∈ N−q × N−p such that i + j ≥ 0, vij ∈ Q[a, b], and vij is an

(i, j)–polynomial;
(c) for every k ≥ 1, vkq,kp = 0; and
(d) for every k ≥ 1, gkq,kp ∈ Q[a, b], and gkq,kp is a (kq, kp)–polynomial.

Proof. Let J be the set (5). The discussion leading from equation (2) to equation
(9) shows that if we set v00 = 1 and vij = 0 for the other elements of the set J , then
for k1 ≥ −q, k2 ≥ −p, if vk1,k2

are defined recursively by

vk1,k2
=





1
k1p−k2q

k1+k2−1∑

s1+s2=0
s1≥−q,s2≥−p

[(s1 + q)ak1−s1,k2−s2
− (s2 + p)bk1−s1,k2−s2

]vs1,s2
if k1p 6= k2q

0 if k1p = k2q,

(24)
where the recursion is on k1 + k2 (i.e., find all vk1,k2

for which k1 + k2 = 1, then
find all vk1,k2

for which k1 + k2 = 2, and so on), and once all vk1,k2
are known for

k1 + k2 ≤ kq + kp − 1, gkq,kp is defined by

gkq,kp = −




k1+k2−1∑

s1+s2=0
s1≥−q,s2≥−p

[(s1 + q)ak1−s1,k2−s2
− (s2 + p)bk1−s1,k2−s2

] vs1,s2


 (25)

then for every pair (i, j), vij ∈ Q[a, b], for every k, gkq,kp ∈ Q[a, b], and equation (9)
holds. (An assumption that should be recalled is that in (24) and (25) ak1−s1,k2−s2

and bk1−s1,k2−s2
are replaced by zero when (k1 − s1, k2 − s2) 6∈ S.)

By definition (c) holds. To show that vij is an (i, j)–polynomial we proceed by
induction on i + j.
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Basis step. For k1 + k2 = 0, the corresponding polynomials are those from the
set J defined in (5). Since Supp(vij) = ∅ if vij ∈ J and vij 6= v00, the condi-
tion in Definition 3 is vacuous for such vij . For v00, Supp(v00) = (0, . . . , 0), and
L(0, . . . , 0) = (0, 0).

Inductive step. Suppose that vij is an (i, j)–polynomial for all (i, j) satisfying
i + j ≤ m, and that k1 + k2 = m + 1. Consider a term vs1,s2

ak1−s1,k2−s2
in the sum

in (24). If (k1 − s1, k2 − s2) 6∈ S then ak1−s1,k2−s2
= 0, by convention, and the term

does not appear. If (k1 − s1, k2 − s2) = ı̄c ∈ S, then

vs1,s2
ak1−s1,k2−s2

=




∑

ν∈Supp(vs1,s2
)

v(ν)
s1,s2

[ν]


 [µ] =

∑

ν∈Supp(vs1,s2
)

v(ν)
s1,s2

[ν + µ] , (26)

where µ = (0, . . . , 0, 1, 0, . . . , 0), with the one in the cth position, counting from
the left. Clearly L(µ) = (k1 − s1, k2 − s2), hence by the inductive hypothesis and
additivity of L, every term in (26) satisfies

L(ν + µ) = L(ν) + L(µ) = (s1, s2) + (k1 − s1, k2 − s2) = (k1, k2) .

Similarly for any term vs1,s2
bk1−s1,k2−s2

such that (k1 − s1, k2 − s2) = ̄c, i.e., such
that (k2 − s2, k1 − s1) = ı̄c ∈ S, we obtain an expression just like (26), except that
now the 1 in µ is in the cth position counting from the right, and we easily compute
that every term in this expression satisfies L(ν + µ) = (k1, k2). Thus point (b) is
fully established.

It is clear that the same argument as in the inductive step shows that gkq,kp is a
(kq, kp)–polynomial, completing the proof of point (d).

The next theorem shows how to compute the coefficients v
(ν)
k1,k2

. The following
definition and lemma will be needed.

Let a family (1) for some set S of indices be fixed, and for any ν ∈ N2ℓ
0 define

V (ν) ∈ Q recursively, with respect to |ν| = ν1 + · · ·+ ν2ℓ, as follows:

V ((0, . . . , 0)) = 1; (27a)

for ν 6= (0, . . . , 0)
V (ν) = 0 if L1(ν)p = L2(ν)q; (27b)

and when L1(ν)p 6= L2(ν)q ,

V (ν) =
1

L1(ν)p − L2(ν)q
×




ℓ∑

j=1

Ṽ (ν1, . . . , νj − 1, . . . , ν2ℓ)(L1(ν1, . . . , νj − 1, . . . , ν2ℓ) + q)

−
2ℓ∑

j=ℓ+1

Ṽ (ν1, . . . , νj − 1, . . . , ν2ℓ)(L2(ν1, . . . , νj − 1, . . . , ν2ℓ) + p)




(27c)

where

Ṽ (η) =





V (η) if η ∈ N2ℓ
0

0 if η ∈ (N−1)
2ℓ \ N2ℓ

0

and L(ν) is defined by (23).
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Lemma 1. Suppose ν ∈ N2ℓ
0 is such that either L1(ν) < −q or L2(ν) < −p. Then

V (ν) = 0.

Proof. Since V (ν) = 0 is automatic if L1(ζ)p = L2(ζ)q, we may implicitly assume
that L1(ζ)p 6= L2(ζ)q throughout the proof. Since the coordinate change that ex-
changes x and y reverses the roles of p and q, without loss of generality we assume
that q ≤ p. The proof is by induction on |ν| = ν1 + ν2 + · · ·+ ν2ℓ.

Basis step. By definition of L,

L1(ν) ≥ −(ν1 + · · ·+ νℓ) and L2(ν) ≥ −(νℓ + · · ·+ ν2ℓ) . (28)

Thus if 0 ≤ |ν| ≤ q then both L1(ν) ≥ −q and L2(ν) ≥ −p, so the basis step is
|ν| = q + 1. Suppose ν = ζ is such that |ζ | = q + 1, and that either (i) L1(ζ) < −q
or (ii) L2(ζ) < −p.

Case (i). By the first inequality in (28) ζ = (ζ1, . . . , ζℓ, 0, . . . , 0) and we must
have uk = −1 for all k, 1 ≤ k ≤ ℓ, for which ζk 6= 0. Thus L1(ζ) = −q − 1. By the
definition of Ṽ , if the jth term ζj of ζ is zero, then the corresponding summand in
(27c) is zero; in particular, every summand in the second sum in (27c) is zero. If ζj

is non-zero then the corresponding summand in (27c) is a constant times

L1(ζ1, . . . , ζj − 1, . . . , ζℓ, 0, . . . 0) + q = L1(ζ) − uj + q = −q − 1 + 1 + q = 0 .

Case (ii). The proof is similar. We remark that now ζ = (0, . . . , 0, ζℓ+1, . . . , ζ2ℓ),
and that this case arises only if q = p (recall our standing assumption that q ≤ p).

Inductive step. Assume the statement of the lemma is true for all ν satisfying
|ν| ≤ m and let ν = ζ be such that |ζ | = m+1 and either L1(ζ) < −q or L2(ζ) < −p.
For any term in either sum in (27c), the argument µ = (ζ1, . . . , ζj − 1, . . . , ζ2ℓ) of Ṽ
satisfies |µ| = m.

Suppose L1(ζ) < −q. For any summand in the first sum in (27c), j ≤ ℓ, hence
L1(µ) = L1(ζ) − uj. If uj ≥ 0, then L1(µ) < −q, so by the induction hypothesis
Ṽ (µ) = 0, and the summand is zero. Suppose then that uj = −1. If in fact
L1(ζ) < −q − 1, then L1(µ) < −q, so Ṽ (µ) = 0 and the summand is zero for the
same reason. If L1(ζ) = −q − 1, then L1(µ) = −q, hence L1(µ) + q = 0, and the
summand is zero because the second factor is zero.

For any summand in the second sum in (27c), we do not examine L2(µ), but
instead still examine L1(µ). Since j ≥ ℓ+1, L1(µ) = L1(ζ)−v2ℓ−j+1. Since v2ℓ−j+1 ≥
0, L1(µ) < −q, so by the induction hypothesis Ṽ (µ) = 0, and the summand is zero.

The argument for the case L2(ζ) < −p is completely analogous.

Theorem 5. For a family of systems of the form (1), with parameter space E(a, b) =
C2ℓ, where p, q ∈ N, GCD(p, q) = 1, let Ψ(x, y) be the formal series of the form (2)
and let {gkq,kp : k ∈ N} be the polynomials in C[a, b] given by Theorem 4. Then

(a) for ν ∈ Supp(vk1,k2
), the coefficient v

(ν)
k1,k2

of [ν] in vk1,k2
is V (ν);

(b) for ν ∈ Supp(gkq,kp), the coefficient g
(ν)
kq,kp of [ν] in gkq,kp is

W (ν) = −




ℓ∑

j=1

Ṽ (ν1, . . . , νj − 1, . . . , ν2ℓ)(L1(ν1, . . . , νj − 1, . . . , ν2ℓ) + q)

−
2ℓ∑

j=ℓ+1

Ṽ (ν1, . . . , νj − 1, . . . , ν2ℓ)(L2(ν1, . . . , νj − 1, . . . , ν2ℓ) + p)


 .

(29)
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Proof. Without loss of generality we assume that q ≤ p.

The proof of part (a) is by induction on k1 + k2.

Basis step. For k1 +k2 = 0, the corresponding polynomials form the set J of (5).
The only polynomial in J with non-empty support is v00: Supp(v00) = (0, . . . , 0),
and v00 = 1 ·a0

ı̄1 · · ·a
0
ı̄ℓ
b0
̄ℓ
· · · b0

̄1 = V ((0, . . . , 0)) ·a0
ı̄1 · · ·a

0
ı̄ℓ
b0
̄ℓ
· · · b0

̄1 , as required. Thus
statement (a) holds vacuously.

Inductive step. Suppose statement (a) holds for vk1,k2
for k1 +k2 ≤ m, and let k1

and k2 be such that k1 +k2 = m+1. If k1p = k2q then because p and q are relatively
prime vk1,k2

= 0 by Theorem 4(c). By Theorem 4(b), for any ν ∈ Supp(vk1,k2
),

L(ν) = (k1, k2), so L1(ν)p = L2(ν)q and by definition V (ν) = 0, as required. If
k1p 6= k2q, then by (24)

(k1p − k2q) vk1,k2

=
k1+k2−1∑

s1+s2=0
s1≥−q,s2≥−p

[(s1 + q)ak1−s1,k2−s2
− (s2 + p)bk1−s1,k2−s2

]vs1,s2

=
k1+k2−1∑

s1+s2=0
s1≥−q,s2≥−p

[
(s1 + q)

(
∑

µ∈Supp(vs1,s2
)

v(µ)
s1,s2

[µ]ak1−s1,k2−s2

)

− (s2 + p)

(
∑

µ∈Supp(vs1,s2
)

v(µ)
s1,s2

[µ]bk1−s1,k2−s2
]

)]

=
k1+k2−1∑

s1+s2=0
s1≥−q,s2≥−p

[
(s1 + q)

∑

µ∈Supp(vs1,s2
)

v(µ)
s1,s2

aµ1

ı̄1 · · ·aµc+1
ı̄c · · ·aµℓ

ı̄ℓ
b
µℓ+1

̄ℓ
· · · bµ2ℓ

̄1

− (s2 + p)
∑

µ∈Supp(vs1,s2
)

v(µ)
s1,s2

aµ1

ı̄1
· · ·aµℓ

ı̄ℓ
b
µℓ+1

̄ℓ
· · · b

µ2ℓ−d+1+1
̄d

· · · bµ2ℓ
̄1

]

(30)
where ı̄c = (k1 − s1, k2 − s2) (provided (k1 − s1, k2 − s2) ∈ S, else by convention the
product is zero) and ̄d = (k1 − s1, k2 − s2) (provided (k2 − s2, k1 − s1) ∈ S, else by
convention the product is zero).

Fix ν ∈ N2ℓ
0 for which L(ν) = (k1, k2). We wish to find the coefficient v

(ν)
k1,k2

of
[ν] in vk1,k2

. For a fixed j ∈ {1, . . . , ℓ}, we first ask which pairs (s1, s2) are such that
ı̄c = (k1 − s1, k2 − s2) = ı̄j = (uj, vj). There is at most one such pair: s1 = k1 − uj

and s2 = k2−vj ; it exists if and only if k1−uj ≥ −q and k2−vj ≥ −p. For that pair,
we then ask which µ ∈ N2ℓ

0 are such that (µ1, . . . , µj + 1, . . . , µ2ℓ) = (ν1, . . . , ν2ℓ).
There is at most one such multi–index: (µ1, µ2, . . . , µ2ℓ) = (ν1, . . . , νj − 1, . . . , ν2ℓ);
it exists if and only if νj ≥ 1. For this µ, L(µ) = ν1 ı̄1 + · · · + ν2ℓ̄1 − (uj, vj) =
(k1 − uj, k2 − vj) = (s1, s2), although µ 6∈ Supp(vs1,s2

) is possible. Applying the
same considerations to the cases ̄d = ̄2ℓ−j+1 for j = ℓ + 1, . . . , 2ℓ, we see that for

any term v
(ν)
k1,k2

[ν] appearing in vk1,k2
there is at most one term on the right hand

side of (30) for which the value of c is 1, at most one for which the value of c is 2,
and so on through c = ℓ, and similarly at most one term for which the value of d
is ℓ, at most one for which the value of d is ℓ − 1, and so on through d = 1. Thus
the coefficient of [ν] in (24) is (recalling that vk1,k2

is a (k1, k2)–polynomial so that
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(k1, k2) = (L1(ν), L2(ν)), and similarly for vs1,s2
):

v
(ν)
k1,k2

=
1

pL1(ν) − qL2(ν)
×




ℓ∑

j=1

′(L1(ν1, . . . , νj − 1, . . . , ν2ℓ) + q)v
(ν1,...,νj−1,...,ν2ℓ)
k1−uj ,k2−vj

−
2ℓ∑

j=ℓ+1

′(L2(ν1, . . . , νj − 1, . . . , ν2ℓ) + p)v
(ν1,...,νj−1,...,ν2ℓ)
k1−v2ℓ−j+1,k2−u2ℓ−j+1



 ,

(31)

where the prime on the first summation symbol indicates that if (i) νj−1 < 0, or if (ii)
k1−uj < −q, or if (iii) k2−vj < −p, or if (iv) νj−1 ≥ 0, k1−uj ≥ −q, and k2−vj ≥
−p, but (ν1, . . . , νj − 1, . . . , ν2ℓ) 6∈ Supp(vk1−uj ,k2−vj

), then the corresponding term
does not appear in the sum, and the prime on the second summation symbol has a
similar meaning.

If in either sum j is such that νj −1 < 0, then since the corresponding term does

not appear, the sum is unchanged if we replace v
(ν1,...,νj−1,...,ν2ℓ)
k1−uj ,k2−vj

by Ṽ (ν1, . . . , νj −
1, . . . , ν2ℓ), since the latter is zero in this situation.

In the first sum, suppose j is such that νj − 1 ≥ 0. If both k1 − uj ≥ −q and
k2−vj ≥ −p, then there are two subcases. If the corresponding term appears in the
sum, then because |ν1+· · ·+(νj−1)+· · ·+ν2ℓ| ≤ m, the induction hypothesis applies

and v
(ν1,...,νj−1,...,ν2ℓ)
k1−uj ,k2−vj

= V (ν1, . . . , νj−1, . . . , ν2ℓ). Since in this situation Ṽ (ν1, . . . , νj−
1, . . . , ν2ℓ) = V (ν1, . . . , νj − 1, . . . , ν2ℓ), in the corresponding term we may replace

v
(ν1,...,νj−1,...,ν2ℓ)
k1−uj ,k2−vj

by Ṽ (ν1, . . . , νj − 1, . . . , ν2ℓ) and the sum is unchanged. The second
subcase is that in which the corresponding term does not appear, meaning that
(ν1, . . . , νj − 1, . . . , ν2ℓ) 6∈ Supp(vk1−uj ,k2−vj

). But again the induction hypothesis
applies, and now yields V (ν1, . . . , νj −1, . . . , ν2ℓ) = 0, so again the sum is unchanged
by the same replacement.

Finally, suppose that in the first sum j is such that νj − 1 ≥ 0 but either
k1 − uj < −q or k2 − vj < −p, so the corresponding term is not present in the sum.
Then because L(ν1, . . . , νj − 1, . . . , ν2ℓ) = (k1 − uj, k2 − vj), Lemma 1 applies, by
which we can make the same replacement as above, and thus the first sum in (31)
is the same as the first sum in (27c). The second sum in (31) is treated similarly.
This proves point (a). The same argument as in the inductive step gives point (b).

The results of this section yield the Focus Quantity Algorithm for computation
of the focus quantities for family (1) given at the end of this paper.

As an example, we now resolve the center problem for system (22).

Theorem 6. System (22) on C2 has a center at the origin, that is, has a local first
integral of the form (2) if and only if at least one of the following conditions holds:
(1) a−13 = b3,−1 = 0,
(2) a20 = b3,−1 = 0,
(3) a−13 = b02 = 0.

Proof. Using the Focus Quantity Algorithm we compute the first five focus quan-
tities; for example, g3,1 = 1

2
b3,−1 b02 and g6,2 = 3

8
a2

20 a−13 b3,−1 + 5
36

b2
3,−1 b2

02; g9,3,
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g12,4, and g15,5 have degrees 6, 8, and 10 and contain five, seven, and eleven terms,
respectively.

Let V1 = V(〈g3,1〉), the variety of the ideal in C[a, b] generated by g3,1, let
V2 = V(〈g3,1, g6,2〉), and so on. Using the Radical Membership Test [7], which states
that a polynomial f ∈ C[x1, . . . , xn] vanishes on the variety V(I) of an ideal I ⊂
C[x1, . . . , xn] if and only if the reduced Gröbner basis of 〈I, 1−wf〉 ⊂ C[w, x1, . . . , xn]
is {1}, we find that V3 6= V4, but V4 = V5. It follows from the Hilbert Basis Theorem
that the chain of varieties V1 ⊃ V2 ⊃ V3 ⊃ . . . stabilizes; the computation thus far
suggests that it stabilizes on the fourth step, that is, that VC = V(B) = V4. Solving
the system g3,1 = g6,2 = g9,3 = g12,4 = 0 we find that the variety V4 is the union
of the three components defined in the statement of the theorem. Hence the three
conditions stated in the theorem are necessary conditions for the existence of an
integral of the form (2). To prove that they are also sufficient we construct a first
integral in each case.

The first case is immediate: direct integration of the equation

dy

dx
=

b02y
3 − 3y

x − a20x3

yields an integral of the form Ψ(x, y) = x3y + · · · , as in (2).
To treat the remaining cases we use the Darboux method of integration. Recall

that a polynomial f(x, y) defines an algebraic invariant curve f(x, y) = 0 of system
(1) if and only if there exists a polynomial k(x, y), the cofactor of f , such that
D(f) = k · f . It is easily verified that if f1, . . . , fm are algebraic invariant curves of
(1) with respective cofactors k1, . . . , km, and if there exist constants α1, . . . , αm such
that

m∑

i=1

αiki(x, y) +
∂P

∂x
(x, y) +

∂Q

∂y
(x, y) = 0 (32)

then µ = fα1

1 · · · fαm
m is an integrating factor for system (1).

In the second case of the theorem system (22) has the form

ẋ = x − a−13 y3, ẏ = −3y + b02 y3. (33)

If b02 = 0 then a simple integration after multiplying by the integrating factor y−2/3

gives the first integral Φ(x, y) = 3xy1/3− 3a
10

y10/3. Then Ψ := Φ3/27 is a first integral
of the form (2). When b02 6= 0 then factoring the right hand side of the ẏ equation
in (33) yields the three invariant lines fi(x, y) = 0, i = 1, 2, 3, where

f1(x, y) = y, f2(x, y) = 1 +

√
b02

3
y, f3(x, y) = 1 −

√
b02

3
y,

with their respective cofactors

k1(x, y) = −3 + b02 y2, k2(x, y) = −
√

3b02 y + b02 y2, k3(x, y) =
√

3b02 y + b02 y2.

Solving (32) for α1, α2, and α3 we find that µ = y−2/3(f2f3)
−7/6 = y−2/3(1− b02

3
y2)−7/6

is an integrating factor for (33), with corresponding first integral

Φ(x, y) = 3xy1/3(1 − b
3
y2)−1/6 − 3

10
a−13 y10/3

2F 1(
7
6
, 5

3
; 8

3
; b02

3
y2) ,
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where 2F 1(a, b; c; z) is the hypergeometric function. Then Ψ := Φ3/27 is a first
integral of the form (2).

In the third case of the theorem system (22) has the form

ẋ = x − a20x
3, ẏ = −3y + b3,−1x

3 . (34)

If a20 = 0 then a simple integration after multiplying by the integrating factor x2

gives the first integral Ψ(x, y) = x3 y − b3,−1 x6

6
. When a20 6= 0 we factor the ẋ

equation to obtain three invariant lines, find the cofactors, and solve equation (32)
to obtain the integrating factor µ = x2/(1−a20 x2)5/2, which yields the first integral

Φ(x, y) =
b3,−1(8 − 12a20 x2 + 3a2

20 x4) + 3a3
20 x3y

3a3
20 (1 − a20 x2)3/2

.

Then Ψ(x, y) = Φ(x, y) − 8b3,−1

3a3
20

is a first integral of the form (2).

4 Appendix: The Focus Quantity Algorithm

Combining Theorem 5 with parts (b) and (d) of Theorem 4 we obtain the following
efficient algorithm for computing the focus quantities for family (1). For r ∈ R, ⌊r⌋
denotes the greatest integer less than or equal to r.

Input:

K ∈ N

Ordered set S = {(u1, v1), . . . , (uℓ, vℓ)} ⊂ ({−1} × N0)
2

p, q ∈ N, GCD(p, q) = 1

Output:

Focus quantities gkq,kp, 1 ≤ k ≤ K, for family (1)

Procedure:

w := min{u1 + v1, . . . , uℓ + vℓ}

M := ⌊K(p+q)
w

⌋
gqp := 0; . . . , gKq,Kp := 0;
V (0, . . . , 0) := 1;
FOR k = 1 TO M DO

FOR ν ∈ N2ℓ
0 such that |ν| = k

Compute L(ν) using (23)
Compute V (ν) using (27)
IF
L1(ν) p = L2(ν) q
THEN
Compute W (ν) using (29)
gL(ν) := gL(ν) + W (ν) [ν]
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