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Abstract

In this paper we study a class of quasilinear elliptic problems involving

critical exponents and non-standard growth condition. We establish the ex-

istence of at least one nontrivial solution using as main tool Ekeland’s varia-

tional principle.

1 Introduction and preliminary results

In this paper we study the following p-Laplacian elliptic equation

{

−∆pu = λ|u|q(x)−2u + |u|p
⋆−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,
(1)

where ∆pu = div(|∇u|p−2∇u), Ω ⊂ R
N (N ≥ 3) is an bounded, open domain with

smooth boundary ∂Ω, p⋆ = Np/(N−p) is the critical Sobolev exponent, q(x) ∈ C(Ω)
with q(x) > 1 in Ω and λ > 0 is a constant. In this paper we consider the case
1 < p < N .

Problems of type (1) were intensively studied since 1980’s. In the particular case
when p = 2 and q(x) ≡ 2 in Ω such equations were studied in the celebrated paper
by Brézis and Nirenberg [3]. In [3] is also pointed out the fact that such equations
with critical Sobolev exponent appear naturally in some problems in geometry and
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physics. For further results on problem (1) in the case p = 2 we refer to [2] and [11].
In the case when a Hardy potential is also involved we refer to [12] and [13].

In the case when 1 < p < N and q(x) ≡ q in Ω with q a constant such that
1 < q < p Garcia Azorero and Peral Alonso proved in [6] that problem (1) has
infinitely many solutions for λ > 0 small enough. They also established the existence
of a nontrivial solution when p < q < p⋆ and λ > 0 is sufficiently large.

In the case when 1 < p2 ≤ N and q(x) ≡ p in Ω Arioli and Gazzola proved in
[1] that equation (1) has a positive nontrivial solution for all λ ∈ (0, λ1), where λ1

is the principal eigenvalue of the p-Laplacian, i.e.

λ1 = inf
u∈W 1,p

0
(Ω)\{0}

∫

Ω
|∇u|p dx

∫

Ω
|u|p dx

.

Moreover, denoting by S the best constant of the Sobolev embedding W 1,p
0 (Ω) ⊂

Lp⋆

(Ω), i.e.

S = inf
u∈W 1,p

0
(Ω)\{0}

∫

Ω
|∇u|p dx

(
∫

Ω
|u|p

⋆

dx
)p/p⋆ ,

Arioli and Gazzola proved that if q(x) ≡ p in Ω, 1 < p < N < p2 and λ ∈ (λ1−Λ, λ1),
where Λ = S · |Ω|−p/N then equation (1) admits a positive nontrivial solution.

This time, in order to study problem (1), we will appeal to the variable exponent
Lebesgue spaces Lq(x)(Ω). We point out certain properties of that spaces according
to the papers of Kováčik and Rákosńık [8] and Mihăilescu and Rădulescu [9, 10].

Set
C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any q(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lq(x)(Ω) = {u; u is a measurable real-valued function such that
∫

Ω
|u(x)|q(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|q(x) = inf







µ > 0;
∫

Ω

∣

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

∣

q(x)

dx ≤ 1







.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many re-
spects: they are Banach spaces [8, Theorem 2.5], the Hölder inequality holds [8,
Theorem 2.1], they are reflexive if and only if 1 < q− ≤ q+ < ∞ [8, Corollary 2.7]
and continuous functions are dense if q+ < ∞ [8, Theorem 2.11]. The inclusion be-
tween Lebesgue spaces also generalizes naturally [8, Theorem 2.8]: if 0 < |Ω| < ∞
and q1, q2 are variable exponent so that q1(x) ≤ q2(x) almost everywhere in Ω then
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there exists the continuous embedding Lq2(x)(Ω) →֒ Lq1(x)(Ω), whose norm does not
exceed |Ω| + 1.

We denote by Lq
′

(x)(Ω) the conjugate space of Lq(x)(Ω), where 1/q(x)+1/q
′

(x) =

1. For any u ∈ Lq(x)(Ω) and v ∈ Lq
′

(x)(Ω) the Hölder type inequality

∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

≤

(

1

q−
+

1

q′−

)

|u|q(x)|v|q′(x) (2)

holds true.
If (un), u ∈ Lq(x)(Ω) and q+ < ∞ then the following relations holds true

|u|q(x) < 1 ⇒ |u|q
+

q(x) ≤
∫

Ω
|u|q(x) dx ≤ |u|q

−

q(x) (3)

|un − u|q(x) → 0 ⇔
∫

Ω
|un − u|q(x) dx → 0. (4)

Finally, we remember that considering the Sobolev space W 1,p
0 (Ω), defined as the

closure of C∞
0 (Ω) under the norm

‖u‖ = |∇u|p ,

we can state that if q(x) ∈ C+(Ω) and q(x) < p⋆ for all x ∈ Ω then the embedding
W 1,p

0 (Ω) →֒ Lq(x)(Ω) is compact and continuous. We refer to [8] for further properties
of variable exponent Lebesgue-Sobolev spaces.

2 The main result

In this paper we study the existence of nontrivial weak solutions for problem (1) in
the case when q(x) ∈ C+(Ω) and assuming that there exists x0 ∈ Ω such that

1 < q(x0) < p − 1 . (5)

We say that u ∈ W 1,p
0 (Ω) is a weak solution of problem (1) if

∫

Ω
|∇u|p−2∇u∇v dx − λ

∫

Ω
|u|q(x)−2uv dx −

∫

Ω
|u|p

⋆−2uv dx = 0

for all v ∈ W 1,p
0 (Ω).

Our main result is given by the following theorem.

Theorem 1. Assume 1 < p < N , q(x) ∈ C+(Ω) satisfies (5) and q(x) < p⋆ in Ω.
Then, there exists λ⋆ > 0 such that problem (1) has a nontrivial weak solution for
any λ ∈ (0, λ⋆).
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3 Proof of the main result

In order to prove Theorem 1 we define the functional J : W 1,p
0 (Ω) → R by

J(u) =
1

p

∫

Ω
|∇u|p dx − λ

∫

Ω

1

q(x)
|u|q(x) dx −

1

p⋆

∫

Ω
|u|p

⋆

dx .

Standard arguments show that J ∈ C1(W 1,p
0 (Ω), R) and

〈J
′

(u), v〉 =
∫

Ω
|∇u|p−2∇u∇v dx − λ

∫

Ω
|u|q(x)−2uv dx −

∫

Ω
|u|p

⋆−2uv dx ,

for all u, v ∈ W 1,p
0 (Ω). Thus, we remark that in order to find weak solutions of

equation (1) it is enough to find critical points for the functional J .

Lemma 1. There exists λ⋆ > 0 such that for any λ ∈ (0, λ⋆) there exist ξ > 0 and
r > 0 such that

J(u) ≥ r, ∀ u ∈ W 1,p
0 (Ω) with ‖u‖ = ξ .

Proof. Since q(x) < p⋆ for all x ∈ Ω it follows that W 1,p
0 (Ω) is continuously

embedded in Lq(x)(Ω). Thus, there exists a positive constant c1 such that

|u|q(x) ≤ c1‖u‖, ∀ u ∈ W 1,p
0 (Ω) . (6)

Consider ξ ∈ (0, 1) with ξ < 1/c1. Then the above relation implies

|u|q(x) < 1, ∀ u ∈ W 1,p
0 (Ω), with ‖u‖ = ξ . (7)

By relations (3) and (7) we deduce that
∫

Ω
|u|q(x) dx ≤ |u|q

−

q(x), ∀ u ∈ W 1,p
0 (Ω), with ‖u‖ = ξ . (8)

Relations (8) and (6) imply

∫

Ω
|u|q(x) dx ≤ cq−

1 ‖u‖q−, ∀ u ∈ W 1,p
0 (Ω), with ‖u‖ = ξ . (9)

On the other hand, since W 1,p
0 (Ω) is continuously embedded in Lp⋆

(Ω) we obtain
that there exists c2 > 0 such that

|u|p⋆ ≤ c2‖u‖, ∀ u ∈ W 1,p
0 (Ω) . (10)

Relations (9) and (10) yield that for any u ∈ W 1,p
0 (Ω) with ‖u‖ = ξ the following

inequalities hold true

J(u) = 1
p
‖u‖p − λ

∫

Ω
1

q(x)
|u|q(x) dx − 1

p⋆ |u|
p⋆

p⋆

≥ 1
p
‖u‖p − λ

q−
cq−

1 ‖u‖q− −
cp⋆

2

p⋆ ‖u‖
p⋆

.
(11)

Thus, there exists two positive constants a1, a2 > 0 such that

J(u) ≥ ‖u‖q−
[

1

p
‖u‖p−q− −

λ · a1

q−
−

a2

p⋆
‖u‖p⋆−q−

]

.
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Define Q : [0,∞) → R by

Q(t) =
1

p
tp−q− −

a2

p⋆
tp

⋆−q− .

Since relation (5) holds true we deduce that q− < p < p⋆ and thus, it is clear that

there exists ξ > 0 such that maxt≥0 Q(t) = Q(ξ) > 0. We take λ⋆ = q−

a1
Q(ξ) and we

remark that there exists r > 0 such that for any λ ∈ (0, λ⋆) we have

J(u) ≥ r, ∀ u ∈ W 1,p
0 (Ω) with ‖u‖ = ξ .

Lemma 1 is verified. �

Lemma 2. There exists ϕ ∈ W 1,p
0 (Ω) such that ϕ ≥ 0, ϕ 6= 0 and J(tϕ) < 0, for

t > 0 small enough.

Proof. Let Ω0 = {x ∈ Ω; q(x) < p − 1}. Since relation (5) holds true it follows
that Ω0 6= ∅ and |Ω0| > 0.

Let ϕ ∈ C∞
0 (Ω) be such that supp(ϕ) ⊃ Ω0, ϕ(x) = 1 for all x ∈ Ω0 and

0 ≤ ϕ ≤ 1 in Ω. For any t ∈ (0, 1) we have

J(tϕ) =
tp

p

∫

Ω
|∇ϕ|p dx − λ

∫

Ω

tq(x)

q(x)
|ϕ|q(x) dx −

tp
⋆

p⋆

∫

Ω
|ϕ|p

⋆

dx

≤
tp

p

∫

Ω
|∇ϕ|p dx −

λ

q+

∫

Ω0

tq(x)|ϕ|q(x) dx

≤
tp

p

∫

Ω
|∇ϕ|p dx −

λ · tp−1

q+

∫

Ω0

|ϕ|q(x) dx .

It is clear that
J(tϕ) < 0 ,

providing that

0 < t < min{1,
λ · p

q+
·

∫

Ω0
|ϕ|q(x) dx

∫

Ω |∇ϕ|p dx
} .

Lemma 2 is verified. �

Proof of Theorem 1. By inequality (11) we obtain that J is bounded from
below on Bξ(0). Thus, using Ekeland’s variational principle (see [5] or [14]) to the
functional J : Bξ(0) → R, it follows that there exists uǫ ∈ Bξ(0) such that

J(uǫ) < inf
Bξ(0)

J + ǫ

J(uǫ) < J(u) + ǫ · ‖u − uǫ‖, u 6= uǫ.

Using Lemmas 1 and 2 we find

inf
∂Bξ(0)

J ≥ r > 0 and inf
Bξ(0)

J < 0 .

We choose ǫ > 0 such that

0 < ǫ ≤ inf
∂Bξ(0)

J − inf
Bξ(0)

J .
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Therefore, J(uǫ) < inf∂Bξ(0) J and thus, uǫ ∈ Bξ(0).

We define I : Bξ(0) → R by I(u) = J(u) + ǫ · ‖u − uǫ‖. It is clear that uǫ is a
minimum point of I and thus

I(uǫ + δ · v) − I(uǫ)

δ
≥ 0

for small δ > 0 and any v ∈ B1(0). The above relation yields

J(uǫ + δ · v) − J(uǫ)

δ
+ ǫ · ‖v‖ ≥ 0.

Letting δ → 0 it follows that 〈J
′

(uǫ), v〉+ ǫ · ‖v‖ > 0 and we infer that ‖J
′

(uǫ)‖ ≤ ǫ.
We deduce that there exists a sequence {un} ⊂ Bξ(0) such that

J(un) → c = inf
Bξ(0)

J < 0 and J
′

(un) → 0. (12)

It is clear that {un} is bounded in W 1,p
0 (Ω). Thus, there exists w ∈ W 1,p

0 (Ω such
that, up to a subsequence, {un} converges weakly to u in W 1,p

0 (Ω. Then Sobolev
embeddings implies that {un} converges strongly to u in Lq(x)(Ω) and weakly to u
in Lp⋆

(Ω). Thus, we get that

lim
n→∞

∫

Ω
|un|

q(x)−2unv dx =
∫

Ω
|u|q(x)−2uv dx ,

and
lim

n→∞

∫

Ω
|un|

p⋆−2unv dx =
∫

Ω
|u|p

⋆−2uv dx ,

for any v ∈ W 1,p
0 (Ω).

On the other hand, relation (12) implies

lim
n→∞

〈J
′

(un), v〉 = 0 ,

for all v ∈ W 1,p
0 (Ω).

The above information implies

J
′

(u) = 0 ,

and thus, u is a weak solution of equation (1).
We prove now that u 6= 0. Assume by contradiction that u ≡ 0 and

lim
n→∞

∫

Ω
|∇un|

p dx = l ≥ 0 .

Since by relation (12) we have limn→∞〈J
′

(un), un〉 = 0 and {un} converges strongly
to 0 in Lq(x)(Ω) we obtain

∫

Ω
|∇un|

p dx −
∫

Ω
|un|

p⋆

dx = o(1)

or
lim

n→∞

∫

Ω
|un|

p⋆

dx = l .
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Using again (12) we deduce

0 > c+o(1) =
1

p

∫

Ω
|∇un|

p dx−λ
∫

Ω

1

q(x)
|un|

q(x) dx−
1

p⋆

∫

Ω
|un|

p⋆

dx →

(

1

p
−

1

p⋆

)

l ≥ 0

and that is a contradiction. We conclude that u 6= 0.
Thus, Theorem 1 is proved. �
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