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Abstract

We obtain Gagliardo-Nirenberg interpolation inequalities of the form ‖∇u‖X ≤
C1

√
‖u|‖Y ‖∇(2)u‖Z + C2‖u‖Y , where X,Y,Z are Orlicz spaces related to a

single measure which may not satisfy the doubling condition. Some examples

among homogeneous, logarithmic and exponential spaces are given.

1 Introduction

Gagliardo-Nirenberg interpolation inequalities [18, 40]

‖∇(k)u‖q ≤ ‖u‖1−k/m
p ‖∇(m)u‖k/m

r , (1.1)

where u ∈ C∞
0 (Rn), 1

q
= (1− k

m
)1

p
+ k

m
1
r
, and ∇(l)u = (Dαu)|α|=l, play an important

role in the apriori estimates in linear and nonlinear PDE’s and their applications to
the regularity theory.
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Physical motivations (see e.g. [1, 2, 11, 14, 42] and references therein) indicate a
need to consider also PDE’s with solutions not in the classical Sobolev spaces, but
in Sobolev-like spaces related to Orlicz norms rather than Lp norms. Consequently
it is natural to look for an extension of (1.1), where Lp–norms would be replaced
with Orlicz norms.

On the other hand, it is motivated by numerous areas of mathematics (e.g. the
theory of functions, imbedding theorems, spectral theory of differential operators,
boundary value problems, regularity theory, degenerate P.D.E’s, singular integral
equations, theory of analytic functions) to investigate Sobolev spaces with respect
to a general measure, not only the Lebesgue measure. We refer to [17, 26, 27, 30,
31, 38, 39, 44] and references therein for the theory and the motivations. Hence it
is also natural to ask for extensions of (1.1) to Ls spaces equipped with a general
Radon measure. For results in this direction we refer e.g. to [7, 10, 12, 13, 20, 21],
Theorem 1 in Section 1.4.7 of [35] and their references.

In this paper we obtain the following variant of inequality (1.1) in the case k = 1,
m = 2 :

‖∇u‖X ≤ C1

√
‖u‖Y ‖∇(2)u‖Z + C2‖u‖Y , (1.2)

where X, Y, Z are weighted Orlicz spaces, (if the measure is finite then Y is a proper
subspace of X) and constants C1, C2 are independent of u ∈ C∞

0 (Rn). The exact
statement is given in Theorem 4.1, see also Remark 4.4.

There has been already a fair number of papers on Gagliardo-Nirenberg inequalities
(see e.g. [8, 9, 16, 28, 32, 33, 36, 37]), but not much is known on inequalities similar
to (1.2) within Orlicz spaces, even in the nonweighted case. Previous research in
this area comes from two sources. First, Bang and coauthors [3, 4, 5, 6] examined
the nonweighted case for one-variable function, within a single Orlicz space LM (dx).
We have recently obtained variants of (1.2) (with possibly different Orlicz spaces)
in the nonweighted case [22, 23, 24], and also in the weighted case [25], for measures
which necessarily satisfy the doubling condition µ(2B) ≤ Cµ(B) (B is an arbitrary
ball, 2B is the ball with the same center as B and twice the radius, and the constant
C does not depend on B).

Here we extend some of techniques originating in [22] and generalized in [23]. Those
techniques allowed previously to prove inequalities of the form (1.2), with C2 = 0,
in nonweighted Orlicz spaces.

The class of weights covered by our approach seems to be rather big. We require
them to be absolutely continuous with respect to the Lebesgue measure in R

n,
µ(dx) = w(x)dx, and further w(x) = exp(−ϕ(x)), with ϕ ∈ C1 and |∇ϕ| in the
given Orlicz space with respect to the measure µ. See Theorem 4.1 for the precise
statement. In particular exponential-type measures µ(dx) = C1exp(−C2|x|α)dx
where C1, C2 > 0, α ≥ 0, so also the Gaussian measure µ(dx) = 1√

2πn
exp(−|x|2/2)dx,

are in many cases allowed in our inequalities (see Remarks 6.1 and 6.3). Moreover,
typical weights considered in this paper do not satisfy the doubling condition and
so the result obtained in this paper is complementary to the results obtained by
independent techniques in the paper [25], where all the measures considered were
doubling.

As nondoubling measures seem to be of separate interest (see e.g. [19],[34],[41] for
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some recent results), we hope to contribute in this direction too.

Some examples illustrating our approach within homogeneous Young functions, and
also within functions of logarithmic and exponential type, are given in Section 6.

2 Preliminaries

2.1 Notation

Throughout the paper, the symbol ∇(k)u stands for the k–th gradient of the mapping
u :Rn → R: the vector (Dαu)|α|=k. If A is a vector or a matrix, by |A| we denote its
Euclidean norm induced by the standard scalar product 〈·, ·〉 in R

n, while At stands
for its transposition.

By c we denote a general constant which can change even within the same line.
Upper case letters C, D, ... are reserved for those constants whose value is relevant.
By s∗ we denote the Hölder conjugate to a number s > 1. We use the standard
notation: C∞

0 (Rn) stands for smooth compactly supported functions on R
n, and

Lp(Rn), Lp
loc(R

n), W k,p(Rn), W k,p
loc (Rn) for the Lp and Sobolev spaces respectively

defined on R
n. In general the Lp spaces (if not said otherwise then defined on R

n)
subordinated to the measure µ will be denoted by Lp(µ).

If f is defined on the set Ω, then by fχΩ we denote this function extended by zero
outside Ω.

Now we recall some preliminary facts about Orlicz spaces, referring e.g. to [29] or
[43] for details.

2.2 N−functions

A function Φ: [0,∞) → [0,∞) is called an N−function if it is differentiable, strictly
convex, lim

λ→0+
Φ(λ)/λ = 0 and lim

λ→∞
Φ(λ)/λ = ∞.

Note that in particular every N−function Φ satisfies Φ(0) = Φ
′

+(0) = 0.

The Legendre transform of an N−function Φ, denoted by Φ∗, is defined as

Φ∗(y) = sup
x≥0

[xy − Φ(x)].

It is known that Φ∗ is also an N−function. The Legendre transform is an involution,
i.e. (Φ∗)∗ = Φ. Moreover, for every x, y ≥ 0 the Young inequality is satisfied:

xy ≤ Φ(x) + Φ∗(y). (2.1)

Functions Φ and Φ∗ are called mutually conjugate.

Definition 2.1 (∆2−condition). A differentiable function Φ: [0,∞) → [0,∞) such
that Φ(0) = 0 satisfies the ∆2−condition if and only if

λΦ′(λ) ≤ cΦ(λ), (2.2)

with a positive constant c not depending on λ > 0.
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For an N−function Φ, inequality (2.2) is equivalent to the doubling condition

Φ(2λ) ≤ cΦ(λ), (2.3)

with the constant c > 0 not depending on λ.

We will use the following auxiliary functions: for a given N−function Φ, we shall
write

Φ1(λ) =
Φ(λ)

λ
, Φ2(λ) =

Φ(λ)

λ2
, Φ̃(λ) =

Φ′(λ)

λ
. (2.4)

Observe that for any convex Φ one has Φ2(λ) ≤ Φ̃(λ), whereas for a function satis-
fying the ∆2−condition one has Φ̃(λ) ≤ cΦ2(λ), with c > 0 independent of λ.

2.3 Weighted Orlicz spaces

Suppose that µ is a positive Radon measure on R
n and let Φ : [0,∞) → [0,∞) be

an N−function. The weighted space LΦ(µ) with respect to the measure µ is, by
definition, the function space

LΦ(µ)
def
= {f measurable :

∫

Rn
Φ(

|f(x)|
K

)dµ(x) ≤ 1 for some K > 0},

equipped with the Luxemburg norm

‖f‖(Φ,µ) = inf{K > 0:
∫

Rn
Φ(

|f(x)|
K

)dµ(x) ≤ 1}.

This norm is complete and turns LΦ(µ) into a Banach space. Moreover, for
Φ(λ) = λp with p > 1, the space LΦ(µ) coincides with the usual Lp(µ) space.

We recall the following two properties of Young functionals: for every f ∈ LΦ(µ) we
have

‖f‖(Φ,µ) ≤
∫

Rn
Φ(|f(x)|)dµ(x) + 1, (2.5)

and ∫

Rn
Φ( f(x)

‖f‖(Φ,µ)
) dµ(x) ≤ 1. (2.6)

When Φ satisfies the ∆2−condition, then (2.6) becomes an equality.

2.4 Domination and comparison of norms

We say that the function Φ dominates Ψ (symbolically: Ψ ≺ Φ) if there exist two
positive constants K1, K2 such that

Ψ(λ) ≤ K1Φ(K2λ) for every λ > 0. (2.7)

We have:

when Ψ ≺ Φ, then ‖ · ‖(Ψ,µ) ≤ K‖ · ‖(Φ,µ), with K = K2(K1 + 1). (2.8)
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Functions Φ and Ψ are called equivalent (symbolically Φ1 ≍ Ψ) when Ψ ≺ Φ and
Φ ≺ Ψ. It is clear that equivalent N−functions give raise to equivalent Luxemburg
norms.

If (2.7) holds for λ > C, with some positive C, then we say that Φ dominates Ψ
at infinity. As the example of homogeneous spaces Lp(dx) shows, it is not enough
for (2.8) for the inclusion LΦ ⊂ LΨ to hold. However, when µ(Rn) < ∞, then the
inclusion LΦ ⊂ LΨ is spared. Indeed, suppose u ∈ LΦ. Let s0 be such a number that∫

Φ( |u|
s0

) dµ < +∞. Then according to (2.7)

∫
Ψ(

|u|
K2s0

) dµ =
∫

{|u|>K2s0C}
Ψ(

|u|
K2s0

) dµ +
∫

{|u|≤K2s0C}
Ψ(

|u|
K2s0

) dµ

≤ K1

∫
Φ(

|u|
s0

) dµ + Ψ(C)µ(Rn),

which is finite, and therefore u ∈ LΨ(µ).

Also, if we restrict our attention to functions u with compact support, then the
implication {u ∈ LΦ(µ)} ⇒ {u ∈ LΨ(µ)} remains true for any Radon measure µ.
This is so because any Radon measure is by definition locally finite.

2.5 Auxiliary estimates for N−functions

We will need the following two lemmas applied previously in [23]. For the reader’s
convenience we submit their proofs.

Lemma 2.1. Suppose Φ is a nonnegative function such that Φ(λ)/λα is nondecreas-
ing, where α ≥ 1 is given. Then for any λ, µ > 0

Φ(λ)

λα
µα ≤ Φ(λ) + Φ(µ). (2.9)

Proof. It can be readily seen: when µ ≤ λ, then Φ(λ)
λα µα ≤ Φ(λ)

λα λα = Φ(λ) ≤
Φ(λ) + Φ(µ), and when λ ≤ µ, then Φ(λ)

λα ≤ Φ(µ)
µα , so that Φ(λ)

λα µα ≤ Φ(µ) ≤ Φ(λ) +

Φ(µ). �

This lemma applied for α = 2 yields the following result.

Lemma 2.2. Suppose that Φ is an N−function such that Φ2(λ) = Φ(λ)/λ2 is
nondecreasing. Let F : [0,∞) → [0,∞) be a convex function with F (0) = 0. Then
for any λ, µ, ρ > 0

Φ2(λ)µρ ≤ Φ(λ) + H(µ) + J(ρ), (2.10)

where H(λ) = 1
2
Φ(2F (

√
λ)), J(λ) = 1

2
Φ(2F ∗(

√
λ)).
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Proof. (2.10) follows from (2.9), the Young inequality vw ≤ F (v)+F ∗(w), and from
the convexity of Φ :

Φ2(λ)µρ =
Φ(λ)

λ2
µρ ≤Φ(λ) + Φ(

√
µρ)

≤Φ(λ) + Φ(F (
√

µ) + F ∗(
√

ρ))

≤Φ(λ) +
1

2
Φ(2F (

√
µ)) +

1

2
Φ(2F ∗(

√
ρ))

=Φ(λ) + H(µ) + J(ρ). �

Remark 2.1. The particular choice F (λ) = F ∗(λ) = λ2/2 in (2.10) results in the
following inequality:

Φ2(λ)µρ ≤ Φ(u) +
Φ(µ) + Φ(ρ)

2
. (2.11)

3 The basic lemma

We start with the following lemma. It extends Lemma 3.1 from [22] to the class of
weighted Radon measures.

Lemma 3.1. Suppose that Φ: [0,∞) → [0,∞) is an N−function of class C1((0,∞))
such that Φ

′

(λ)/λ is bounded next to 0. Let µ(dx) = w(x)dx be a weighted Radon
measure on R

n, with weight function w(x) = exp(−ϕ(x)), where ϕ ∈ C1(Rn). Then
for every u ∈ C∞

0 (Rn) one has
∫

Rn
Φ(|∇u|)dµ ≤ αn

∫

Rn
Φ̃(|∇u|)|∇(2)u| |u| dµ +

∫

Rn
Φ1(|∇u|)||u| |∇ϕ| dµ, (3.1)

where the functions Φ̃, Φ1 are defined by (2.4), and 0 < αn < c
√

n with some constant
c > 0 independent of n.

Proof. Set Ω = supp∇u, and let

I :=
∫

Rn
Φ(|∇u|)dµ =

∫

Ω

Φ(|∇u|)
|∇u|2 〈∇u,∇u〉exp(−ϕ)dx =

∫

Rn
〈S(x),∇u〉dx,

where

S(x) =

{
exp(−ϕ(x))(Φ(|∇u(x)|)|∇u(x)|−2)∇u(x) for x ∈ Ω

0 for x /∈ Ω.

Let us show that S ∈ W 1,1(Rn,Rn) (Sobolev space of vector-valued functions). By
assumption we have exp(−ϕ(x)) ∈ W 1,∞

loc (Rn) and S is supported in Ω, a compact
set. Therefore it suffices to show that

W (x) :=
Φ(|∇u(x)|)
|∇u(x)|2 ∇u(x) · χΩ(x)

belongs to the space W 1,1(Rn,Rn). One possibility to see this is to consider the
sequence of functions

Wε(x) :=
Φ(|∇u(x)|)

ε2 + |∇u(x)|2∇u(x), where ε > 0
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and to show that Wε converges to W in W 1,1(Rn,Rn) as ε → 0. We have for x ∈ Ω
(in the sense of distributions)

∂Wε

∂xi
=

Φ
′

(|∇u|)
ε2 + |∇u|2

〈∇u, ∂
∂xi

(∇u)〉
|∇u| ∇u − Φ(|∇u|)

(ε2 + |∇u|2)2
2〈∇u,

∂

∂xi
(∇u)〉∇u

+
Φ(|∇u|)

ε2 + |∇u|2
∂

∂xi

(∇u).

Using the fact that |∇(2)u| ≤ C, Φ(λ)
λ2 ≤ Φ

′

(λ)
λ

, and the boundedness of Φ
′

(λ)
λ

next to
0, we get

|∂Wε

∂xi
| ≤ c

Φ
′

(|∇u|)
|∇u| χΩ = F (x) ∈ L1(Rn).

Moreover, for almost every x ∈ Rn, one has ∂Wε

∂xi
(x) → Ki(x) as ε → 0, where

Ki =

{(
Φ

′

(|∇u|)
|∇u| − 2Φ(|∇u|)

|∇u|2
)
〈 ∇u

|∇u| ,
∂

∂xi
(∇u)〉 ∇u

|∇u| +
Φ(|∇u|)
|∇u|2

∂

∂xi
(∇u)

}
χΩ.

Lebesgue’s Dominated Convergence theorem implies ∂Wε

∂xi
→ Ki in L1(Rn). As

simultaneously Wε → W in L1(Rn), we conclude that W ∈ W 1,1(Rn,Rn) and so
∇W = (K1, . . . , Kn). This, together with the fact that u ∈ C∞

0 (Rn), imply

I = −
∫

Ω
div S(x)u(x)dx.

By elementary differentiation we verify that for every x ∈ Ω one has

div S =

(
Φ

′

2(|∇u|)
|∇u| [∇u]t[∇(2)u][∇u] + Φ2(|∇u|)(∆u− 〈∇ϕ,∇u〉)

)
exp(−ϕ)

and

Φ
′

2(t) =

(
Φ

′

(t)

t2
− 2

Φ(t)

t3

)
=

1

t2

(
Φ

′

(t) − Φ(t)

t

)
− Φ(t)

t3
. (3.2)

Since Φ is convex, one has Φ(λ)/λ ≤ Φ′(λ) and so the first summand in (3.2)
is nonnegative and does not exceed Φ

′

(t)/t2. Setting v = ∇u
|∇u| we check that

|div S(x)| ≤ (L1 + L2 + L3)exp(−ϕ), where

L1 = Φ̃(|∇u|) |∇(2)u|,

L2 = Φ2(|∇u|)|∆u − vt[∇(2)u]v|,

L3 = Φ2(|∇u|)|〈∇ϕ,∇u〉| ≤ Φ1(|∇u|)|∇ϕ|.

A direct computation (see [23], Lemma 6.1) shows that

|∆u − vt[∇(2)u]v| ≤
√

n − 1|∇(2)u|.

Since Φ2(λ) ≤ Φ̃(λ), the Lemma follows. �
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Remark 3.1. When Φ satisfies the ∆2−condition, then the functions Φ̃ and Φ2 are
equivalent, so inequality (3.1) can be rewritten as

∫

Rn
Φ(|∇u|)dµ ≤ Cn

(∫

Rn
Φ2(|∇u|)|∇(2)u| |u| dµ +

∫

Rn
Φ1(|∇u|)|u| |∇ϕ| dµ

)
. (3.3)

Remark 3.2. Detailed analysis of the proof (see Lemma 3.1 in [23]) shows that an
inequality slightly stronger than (3.1) holds, namely

∫

Rn
Φ(|∇u|)dµ ≤

∫

Rn
Φn(|∇u|)|∇(2)u| |u| dµ +

∫

Rn
Φ1(|∇u|)||u| |∇ϕ| dµ, (3.4)

with Φn(λ) = λΦ
′

(λ)+(
√

n−1−1)Φ(λ)
λ2 .

4 The Gagliardo-Nirenberg inequalities

In this section we present and prove our main results.

Theorem 4.1. Suppose that Φ is an N−function of class C1((0,∞)) such that Φ
′

(t)
t

is bounded next to 0, and let H, J, J1 be three other N−functions, for which the
following conditions are satisfied for every s, t, r > 0 :

(C1)

Φ̃(s)tr ≤ Φ(s) + H(t) + J(r), (4.1)

(C2)

Φ1(s)tr ≤ Φ(s) + H(t) + J1(r), (4.2)

where Φ̃ and Φ1 were defined by (2.4). Assume that µ(dx) = exp(−ϕ(x))dx,
ϕ ∈ C1(Rn), is a weighted measure on R

n for which ‖∇ϕ‖(J1,µ) < ∞.

Then for every u ∈ C∞
0 (Rn) one has

‖∇u‖(Φ,µ) ≤ βn

√
‖u‖(H,µ)‖∇(2)u‖(J,µ) + Cn,ϕ‖u‖(H,µ). (4.3)

where 0 < βn = c 4
√

n and Cn,ϕ = c
√

n‖∇ϕ‖(J1,µ), with some constant c > 0 indepen-
dent of n.

Applying an elementary inequality 2xy ≤ x2 + y2 we get the following.

Corollary 4.1. Suppose that the assumptions of Theorem 4.1 are satisfied. Then

‖∇u‖(Φ,µ) ≤ βn‖u‖(H,µ) + γn‖∇(2)u‖(J,µ), (4.4)

where 0 < βn = c 4
√

n, γn = c
√

n(1 + ‖∇ϕ‖(J1,µ)), and c > 0 is independent of n
and ϕ.
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Proof of Theorem 4.1. First assume that ‖∇ϕ‖(J1,µ) 6= 0.

Fix four positive numbers s1, s2, s3, s4 and set s =
√

s1s2+s3s4. Starting with formula
(3.1) applied to the function ũ = u

s
, we get

I :=
∫

Rn
Φ(|∇ũ|)dµ ≤ αn

∫

Rn
Φ̃(|∇ũ|) 1

s2
|u| |∇(2)u| dµ +

∫

Rn
Φ1(|∇ũ|)1

s
|u| |∇ϕ| dµ.

Take an arbitrary ε > 0, and estimate the integral in question by

I ≤ αnε
∫

Rn
Φ̃(|∇u|) |u|

s1ε

|∇(2)u|
s2

dµ + ε
∫

Rn
Φ1(|∇ũ|) |u|

s3ε

|∇ϕ|
s4

dµ

=: αnεI1 + εI2 (4.5)

(we have used two obvious properties: s2 > s1s2 and s > s3s4).

Now apply the assumption (4.1) to the first integral. This gives

I1 ≤
∫

Rn
Φ(|∇ũ|) dµ +

∫

Rn
H(

|u|
s1ε

) dµ +
∫

Rn
J(

|∇(2)u|
s2

) dµ. (4.6)

To estimate I2 we apply (4.2) instead of (4.1) and deduce that

I2 ≤
∫

Rn
Φ(|∇ũ|) dµ +

∫

Rn
H(

|u|
s3ε

) dµ +
∫

Rn
J1(

|∇ϕ|
s4

) dµ. (4.7)

Collecting (4.5), (4.6), (4.7) and rearranging, then choosing ε = εn = 1
4(1+αn)

we get

3

4
I ≤ αnεn

(∫

Rn
H(

|u|
s1εn

) dµ +
∫

Rn
J(

|∇(2)u|
s2

) dµ

)

+εn

(∫

Rn
H(

|u|
s3εn

) dµ +
∫

Rn
J1(

|∇ϕ|
s4

) dµ

)
. (4.8)

Without loss of generality we can assume ‖u‖(H,µ) 6= 0, and ‖∇(2)u‖(J,µ) 6= 0, as
otherwise one has u ≡ 0 (since it has been assumed u ∈ C∞

0 (Rn)).

We set

s1 =
1

εn
‖u‖(H,µ), s2 = ‖∇(2)u‖(J,µ), s3 = s1, s4 = ‖∇ϕ‖(J1,µ).

It follows from (4.8) and (2.6) that I < 1, and from the very definition of the
Luxemburg norm

‖∇u‖(Φ,µ) ≤ s.

so that

‖∇u‖(Φ,µ) ≤
1√
εn

√
‖u‖(H,µ)‖∇(2)u‖(J,µ) +

1

εn
‖∇ϕ‖(J1,µ)‖u‖(H,µ),
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which is (4.3), because ε−1
n = 2 + 2αn. Therefore we obtain the desired result.

Now we deal with the remaining case ‖∇ϕ‖(J,µ) = 0. This condition yields ϕ = const
and µ(dx) = c dx. For simplicity put c = 1.

In this case (3.1) has only one term. Take ε = εn = 1
4αn

, s1 = 1
εn
‖u‖(H,dx), s2 =

‖∇(2)u‖(J,dx) and apply (3.1) to the function ũ = u√
s1s2

, getting

I ≤ αnεn

∫

Rn
Φ̃(|∇u|) |u|

s1ε

|∇(2)u|
s2

dx.

Applying (4.1) and rearranging we see that

1

2
I ≤ 3

4
I ≤ 1

4

(∫

Rn
H(

|u|
s1εn

) dx +
∫

Rn
J(

|∇(2)u|
s2

) dx

)
≤ 1

2

and therefore I ≤ 1, ‖∇u‖(Φ,dx) ≤
√

s1s2. Hence

‖∇u‖(Φ,dx) ≤
1√
εn

√
‖u‖(H,dx)‖∇(2)u‖(J,dx)

and 1√
εn

= 2
√

αn. The Theorem follows. �

Remark 4.1. Variants of inequality (4.3) in the particular case of the Lebesgue
measure (with Cn,ϕ = 0) were examined in detail in [23].

Remark 4.2. In general, we cannot expect inequalities in multiplicative form

‖∇u‖(Φ,µ) ≤ βn

√
‖u‖(H,µ)‖∇(2)u‖(J,µ), (4.9)

with βn independent of u ∈ C∞
0 (Rn), to hold. To see that, suppose that µ(Rn) < ∞,

Φ, H, J satisfy the ∆2−condition and
∫
Rn H(|x|)µ(dx) < ∞. Let us consider an

affine function u(x) = 〈A, x〉 where A 6= 0 and choose f ∈ C∞
0 (Rn) with f(x) ≡ 1

on B(0, 1), f(x) ≡ 0 on R
n \ B(0, 2), then let uR(x) = f( x

R
)u(x). Function uR(x)

belongs to C∞
0 (Rn), and for all x ∈ R

n

uR(x) → u(x), ∇uR(x) → ∇u(x), ∇(2)uR(x) → ∇(2)u(x),

when R → ∞. Using the Lebesgue Dominated Convergence Theorem we see that
each of the quantities:
∫

Rn
Φ(|∇uR −∇u|)µ(dx),

∫

Rn
H(|uR − u|)µ(dx),

∫

Rn
J(|∇(2)uR −∇(2)u|)µ(dx)

converges to 0 when R → ∞. Using Theorem 9.4 in Chapter II.9 of [29] adapted to
the case of general µ instead of the Lebesgue measure one gets:

uR → u in LH(µ),

∇uR → ∇u in LΦ(µ),

∇(2)uR → ∇(2)u = 0 in LJ (µ).

Therefore if the inequality (4.9) has been true, it would apply to u(x) = 〈A, x〉 as
well. But in such case the left hand side of (4.9) equals ‖Φ(|A|)‖(Φ,µ) 6= 0, while the
right hand side is zero, a contradiction. Inequality (4.9) cannot be satisfied.
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Remark 4.3. Our constants in Theorem 4.1 do not depend on the measure chosen.
For example the bounds on C1 are the same for all weights considered (see Theorem
4.1).

Remark 4.4. Both N−functions: H and J1 in (4.2) must essentially dominate Φ
at infinity. Moreover, if u has compact support or µ(Rn) < ∞, then the condition
u ∈ LH(µ) implies u ∈ LΦ(µ) and the same holds with J1 instead of H .

Indeed, by the symmetry argument (see (4.2)) it suffices to prove this observation
for one of the functions, let us say for H . Applying (4.2) with t = s we get

Φ(s)r ≤ Φ(s) + H(s) + J1(r), for every s, r > 0.

equivalent to

r ≤ 1 +
H(s)

Φ(s)
+

J1(r)

Φ(s)
.

Therefore r − 1 ≤ lim infs→∞
H(s)
Φ(s)

for every r ≥ 0 and consequently

lim
s→∞

H(s)

Φ(s)
= ∞.

This shows that H essentially dominates Φ next to infinity.

The second statement is a consequence of the discussion following the formula (2.7).

Remark 4.5. We do not impose any particular regularity assumptions on the
measure µ other than: µ(dx) = exp(−ϕ(x))dx, ϕ ∈ C1(Rn), ‖∇ϕ‖(J1,µ) < ∞ in
Theorem 4.1. In particular our measure may not satisfy the doubling condition
µ(2B) ≤ cµ(B), where B is an arbitrary ball in Rn, 2B denotes the ball with the
same center as B and twice the radius. Inequalities within a restricted class of
weights (which necessarily satisfy the doubling condition) were obtained in [25] by
different methods.

5 The class of admissible N−functions

We are now going to discuss examples of triples (Φ, H, J) and (Φ, H, J1) which can
appear in inequalities (4.1) and (4.2). Triples (Φ, H, J) admissible in (4.1) were
formerly analyzed in ([23]). The following result can be deduced from Theorem 7.1
and 7.2 in [23]. For readers’ convenience we include its proof.

Proposition 5.1. Suppose that the functions Φ, F, H, J : [0,∞) → [0,∞) and
g : (0,∞) → (0,∞) are such that:
1. Φ and F are N−functions and Φ ∈ C1((0,∞));
2. g is strictly increasing, Φ(λ)/g(λ) is nondecreasing and the following inequality
is satisfied with a constant Cg independent of λ > 0 :

Φ
′

(λ)

λ
≤ Cg

Φ(λ)

g(λ)
; (5.1)

3. H(y) = ((Φ ◦ g−1)(2CgF (y)) and J(z) = ((Φ ◦ g−1)(2CgF
∗(z)).
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Then the inequality

Φ
′

(λ)

λ
yz ≤ Φ(λ) + H(y) + J(z)

is satisfied for every λ, y, z > 0.

Remark 5.1. Note that the since for a convex Φ one has Φ(λ)
λ

≤ Φ
′

(λ) then (5.1)

implies Φ(λ)
λ2 ≤ Cg

Φ(λ)
g(λ)

. Therefore if g satisfies (5.1) then g(λ) ≤ Cgλ
2 for every

λ > 0. In particular within homogeneous functions only g(λ) = λ2 is admitted. In
such case we just get the ∆2−condition.

Proof of Proposition 5.1. By (5.1) we have

L :=
Φ

′

(λ)

λ
yz ≤ Φ(λ)

g(λ)
(Cgyz).

If a := Cgyz
g(λ)

≤ 1 then L ≤ Φ(λ) and the assertion is satisfied.

If a > 1, then we have g(λ) < Cgyz, so that λ < g−1(Cgyz). Therefore

Φ(λ)

g(λ)
≤ (Φ ◦ g−1)(Cgyz)

(g ◦ g−1)(Cgyz)
=

(Φ ◦ g−1)(Cgyz)

Cgyz

and consequently

L ≤ Φ ◦ g−1(Cgyz) ≤ (Φ ◦ g−1)(Cg(F (y) + F ∗(z))).

If F (y) ≤ F ∗(z), then L ≤ J(z), while if F ∗(z) ≤ F (y), then L ≤ H(y). In either
case the Proposition follows. �

To approach inequality (4.2) we use a similar result.

Proposition 5.2. Assume that Φ and F are N−functions, Φ(λ)
λ

is nondecreasing
and H1(y) = Φ(2F (y)), J1(y) = Φ(2F ∗(y)). Then for every λ, y, z > 0 we have

Φ(λ)

λ
yz ≤ Φ(λ) + H1(y) + J1(z).

Proof. By Lemma 2.1 and the Young inequality we have

Φ(λ)

λ
yz ≤ Φ(λ) + Φ(yz) ≤ Φ(λ) + Φ(F (y) + F ∗(z)) ≤ Φ(λ) + H1(y) + J1(z). �

Remark 5.2. Note that if H1(y) = Φ(2F (y)) where Φ and F are as in the statement
of Proposition 5.2, then again we have Φ ≺ H1 next to infinity (see Remark 4.4)
and Φ cannot be equivalent to H1.

As a direct consequence of Proposition 5.1 and 5.2 we obtain the following result,
which serves as a recipe for finding functions which can appear in (4.3) and (4.1).
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Proposition 5.3. Suppose that the functions Φ, F, H, H1, J : [0,∞) → [0,∞) and
g : (0,∞) → (0,∞) are such that:
1. Φ and F are N−functions and Φ ∈ C1((0,∞));
2. g is strictly increasing, Φ(λ)/g(λ) is nondecreasing and the following inequality
is satisfied with the constant Cg independent of λ > 0

Φ
′

(λ)

λ
≤ Cg

Φ(λ)

g(λ)
;

3. H(y) = ((Φ ◦ g−1)(2CgF (y)) and J(z) = ((Φ ◦ g−1)(2CgF
∗(z));

4. the function R(z) := 1
2
g−1(2CgF (z)) is an N−function and J1(z) = Φ(2R∗(z)).

Then for every λ, y, z > 0 we have

Φ
′

(λ)

λ
yz ≤ Φ(λ) + H(y) + J(z) and

Φ(λ)

λ
yz ≤ Φ(λ) + H(y) + J1(z).

6 Three examples

In this chapter we present three examples illustrating Theorem 4.1.

6.1 Inequalities within homogeneous functions

Our first example deals with homogeneous functions.

Proposition 6.1. Let p > q ≥ 2 and r > 1 be such numbers that 2
q

= 1
p

+ 1
r
.

Suppose that µ(dx) = exp(−ϕ(x))dx is a Radon measure on R
n, ϕ ∈ C1(Rn) and

|∇ϕ| ∈ L
pq

p−q (µ). Then for any u ∈ C∞
0 (Rn) we have

‖∇u‖Lq(µ) ≤ βn

√
‖u‖Lp(µ)‖∇(2)u‖Lr(µ) + Cn,ϕ‖u‖Lp(µ), (6.1)

where 0 < βn ≤ c 4
√

n, Cn,ϕ ≤ c
√

n‖∇ϕ‖(J1,µ), and the constant c > 0 is independent
of n.

Proof. Let us take g(λ) = λ2, Φ(λ) = λq, F (λ) = λs where s = 2p
q

and apply

Proposition 5.3. Then we have H(y) ∼ yp, J(z) ∼ zr, R(z) ∼ z
p
q , R∗(z) ∼ z

p
p−q and

J1(z) ∼ z
pq

p−q . Therefore Proposition follows. �

Remark 6.1. In can easily be seen that the Gaussian measure

γ(dx) = 1√
2πn

exp(− |x|2
2

)dx, exponential measure µ(dx) = αexp(−α|x|) where α > 0

is a given constant or an arbitrary measure of the form µ(dx) = C1exp(−C2|x|β)
where β ≥ 1 are allowed in every inequality of the form (6.1).

Remark 6.2. Proposition 6.1 deals with different class of weights than the weights
in previous papers [7, 12, 13, 20, 21], [35, Theorem 1 in Section 1.4.7]. For example
in the papers [12, 13, 20, 21] one assumes that the measure µ in Lq(µ) on the left
hand side of the inequality (1.2) is doubling, while in Theorem 1, Section 1.4.7 of [35]
it is assumed that such a measure satisfies the following s-regularity condition: there
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exists s > 0 such that sup{r−sµ(B(x, r)) : x ∈ R
n, r > 0} < ∞, where the symbol

B(x, r) denotes the ball with center x and radius r. The paper [7] is restricted to
homogeneous weights. In present paper neither of these conditions is assumed.

The paper [10] deals with triples of measures Ndx, Wdx and Pdx. The authors
obtain very general but additive (therefore weaker) inequalities of the form

∫

Ω
|∇(j)u|pNdx ≤ K

{
ε−ϕ

(∫

Ω
|u|qWdx

)p/q

+ εθ
(∫

Ω
|∇(m)u|rPdx

)p/r
}

,

where ϕ, θ are non-negative functions of m, j, p, q, r, while Ω is a bounded or un-
bounded domain in R

n, ε ∈ (0, ε0), u is sufficiently smooth and N, W, P are weight
functions satisfying certain additional conditions (we skip the detailed formulation
which can be found in the paper). Therefore the approach presented there is differ-
ent. Also, the techniques of [10] are independent from ours.

6.2 Logarithmic inequalities

Our next example applies to logarithmic N−functions

Ms,κ(t) = ts(ln(2 + t))κ.

Orlicz norms related to Ms,κ and the measure µ are denoted by ‖·‖(s,κ,µ). The result
stated below generalizes Theorem 1.1 in [24].

Proposition 6.2. Suppose that β, γ ∈ R, p, r > 1, p > q are given numbers such
that additionally the following condition is satisfied

(q > 2, α ∈ R or q = 2, α ≥ 0) and

(
2

q
=

1

p
+

1

r
,
2α

q
≤ β

p
+

γ

r

)
,

Let µ(dx) = exp(−ϕ(x))dx is a Radon measure on R
n, ϕ ∈ C1(Rn) and |∇ϕ| ∈

LMη,κ(µ) where η = q(p
q
)∗ and κ = −(β − α)((p

q
)∗ − 1) + α.

Then for any function u ∈ C∞
0 (Rn) we have:

‖∇u‖(q,α,µ) ≤ βn

√
‖u‖(p,β,µ)‖ ‖∇(2)u‖(r,γ,µ) + Cn,ϕ‖u‖(p,β,µ), (6.2)

where 0 < βn ≤ c 4
√

n and Cn,ϕ ≤ c
√

n‖∇ϕ‖(J1,µ) and the constant c > 0 is indepen-
dent of n.

Proof. At first we note that each function Ms,κ, where s > 1, satisfies the ∆2−condition,

so that inequality (5.1) holds with g(λ) = λ2. This gives
M

′

s,κ(λ)

λ
∼ Ms−2,κ(λ).

An application of Proposition 5.3 with Φ(λ) = Mq,α(λ), g(λ) = λ2 and F (λ) =

λs(ln(2 + λ))r where s = 2p
q

, r = 2(β−α)
q

and properties

Mq,α ◦ Mµ,κ ∼ Mqµ,qκ+α, M∗
µ,α ∼ Mµ∗,−α(µ∗−1)

(see Theorem 7.1 in [29] for the latter property, the details are furnished in the proof
of Theorem 1.2 in [24]) gives

H(y) ∼ Mp,β(y) and J(z) ∼ Mr,γ(z). (6.3)
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Moreover, R(z) ∼
√

F (z) ∼ M p
q
, β−α

q
(z) and R∗(z) ∼ Mρ,δ(z) where ρ = (p

q
)∗ and

δ = −β−α
q

((p
q
)∗ − 1). Therefore

J1(z) ∼ Mq,α ◦ Mρ,δ(z) ∼ Mη,κ(z),

where η and κ are as in the statement of the Proposition. This ends the proof of
the Proposition. �

Remark 6.3. Similarly as in the case of homogeneous functions every measure of
the form C1exp(−C2|x|β) where C1, C2 > 0 and β ≥ 1 can appear in the inequality
(6.2).

6.3 Exponential inequalities

Our concluding example deals with exponential functions. Such functions do not
satisfy the ∆2−condition but for the large λ’s they satisfy the condition (5.1) with
g(λ) = λs for some positive s < 2. The detailed analysis of the example presented
below for µ = ωdx within certain class of weights ω introduced by Bloom and
Kerman [15] was presented in [25]. Such measures satisfy the doubling condition.
Some results within the Lebesgue measure were also obtained in [23]. Here we extend
it to the Orlicz spaces LΦ(µ) for essentially larger class of measures.

Proposition 6.3. Suppose that p > 2, α ∈ (0, 2), s > 2 are given numbers and

Φ(λ) = λpexp(λα), H(y) = λ
ps

2 exp(λ
sα

2−α ) J(λ) = λ
ps∗

2 exp(λ
s∗α
2−α ). (6.4)

Let µ(dx) = exp(−ϕ(x))dx be a Radon measure on R
n, ϕ ∈ C1(Rn) and

|∇ϕ| ∈ LJ1(µ) where J1(z) = zηexp(zκ) where η = p( s
2
)∗ and κ = α( s

2−α
)∗.

Then for any function u ∈ C∞
0 (Rn) we have:

‖∇u‖(Φ,µ) ≤ βn

√
‖u‖(H,µ)‖ ‖∇(2)u‖(J,µ) + Cn,ϕ‖u‖(H,µ), (6.5)

where 0 < βn ≤ c 4
√

n and Cn,ϕ ≤ c
√

n‖∇ϕ‖(J1,µ) and the constant c > 0 is indepen-
dent on n.

Proof. Let us consider the function g(λ) = λ2

αλα+p
. Then Φ satisfies (5.1), g is

increasing and so is Φ/g. Let us take F (λ) = λs and apply Proposition 5.3. Indeed,
one verifies that the functions H and J defined in Proposition 5.3 are equivalent
to H and J defined in (6.4). The verification is based on the fact that they are
equivalent for λ close to 0 and for λ close to infinity separately. In such a case we
have g(λ) ∼ λ2 for small λ and g(λ) ∼ λ2−α for big λ, Φ(λ) ∼ λp for small λ and
Φ(λ) ∼ exp(λα) for big λ. Now let us compute the function R from the statement
of Proposition 5.3. We observe that R(λ) ∼ λs/2 for small λ and R(λ) ∼ λs/(2−α)

for big λ. Therefore R∗(λ) ∼ λ(s/2)∗ for small λ and R∗(λ) ∼ λ(s/(2−α))∗ for big λ. It
implies that

Φ(2R∗(z)) ∼ zp( s
2
)∗ for small z and Φ(2R∗(z)) ∼ exp(zα( s

2−α
)∗) for big z.
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It follows that the function J1(z) = zηexp(zκ), where η and κ are as in the statement
of the Proposition, together with Φ, H, J, satisfy the assumptions of Proposition 4.1.
This implies the statement of the Proposition. �

Acknowledgement. We would like to thank Piotr Haj lasz for helpful discussion.
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