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Abstract

The observation and the discussion of the physical reality of phenomena,
leads to bring out concepts which have to be described in a non ambiguous
mathematical language. Concerning Dirac’s calculus we shall introduce, besides
the usual definitions for the concepts of point, number, function etc ... , addi-
tional concepts for the physical point, the physical equalities, physical infini-
ties and infinitesimals ... etc ... In particular we introduce a new equality =D ,
called Dirac-equality, which differs as well from the classical equality as from
the weak equalities introduced in various theories of generalized functions.
All these definitions are based on a definition in the language of Relative Set
Theory, see [15], of the metaconcepts of improperness used by P.A.M. Dirac
in [Di], when he claimed ” Strictly of course, δ(x) is not a proper function
of x, ... , ... δ′(x), δ′′(x).... are even more discontinuous and less proper
than δ(x) itself ”. We defined this way a concept of observed derivative which
extends the usual one to a large class of discontinuous possibly non-standard
functions. All the multiplications of improper or very improper functions,
including the delta-functions and their observed derivatives, are obviously al-
lowed. Now the problem of the multiplication is replaced by another one:
under which conditions is the Dirac-equality of two functions preserved by a
multiplication term by term?

1 Basic language and definitions

We will indicate first how to define the basic vocabulary in order to develop consis-
tently a discourse similar to that of physicists. More precisely, we want to introduce
the words improper, very improper etc .... and elements of vocabulary which play
the same role in reasoning that the constants dx, dy, etc ... and which generalize
them by specifying degrees in infinitesimality . All this can be defined precisely
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in the language of Relative Set Theory, RST. This language is built on two bi-
nary predicates : The usual predicate ≪ · ∈ · ≫ and a new predicate denoted
≪ · SR · ≫.
Let us summarize some rudiments concerning RST. ( See [15], for further details. )

(a) ≪ x SR y ≫ is to be read : x is standard relatively to y.

(b) Any set defined with uniqueness in the classical mathematics is standard rela-
tively to any other set : we summarize saying that it is standard .

(c) The collection of sets is totally preordered by the predicate
≪ · SR · ≫. There are classes of equistandardness. The class of equistandard-
ness of a is the collection α = [a] of x such that ( x SR a ∧ a SR x). We
say that x is [a]standard, or αstandard if x SR a. Then we use the denotation
[a]st(x) or αst(x). Each class of equistandardness has infinitely many members,
there are infinitely many classes.

The theory RST is a conservative extension of the usual theory ZFC, the E.Nelson’s
IST (see [12]) is a subtheory of RST.
E.Gordon also introduced in [7] a binary relation of relative standardness, but his
relation is defined inside IST.

1.1 Definition in RST of the levels of improperness.

Let us define finitely many level of improperness 1, 2, ...... w, where w is an integer
we can choose as large as we need (for example w = 100).
For that we will fix distinct classes of equistandardness

α0 = [0], α1 = [a1], α2 = [a2], .... α
w

= [a
w

],

such that the first class α0 is the standard one and

a1 SR a2, a2 SR a3, · · · a
w−1 SR a

w
.

If 1 ≦ n ≦ w, we say that a number or a function X is nimproper or that X has
the level n of improperness, and we denote nimp(X), if

αnst(X) & ¬ [αn−1st(X)].

In order to extend the former definition we will write

0imp(X) ⇐⇒ st(X), w+1imp(X) ⇐⇒ ¬[awst(X)].

We denote η(X) the level of improperness of X.
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Definition of a finite sequence of infinitesimalities.

We use the abbreviations :

∀αx Φ(x) for ∀x αst(x) ⇒ Φ(x), ∃αx Φ(x) for ∃x ( αst(x) & Φ(x) ).

We define binary relations · ∼ · and · n∼ · on R (1 < n ≦ w + 1) by :

x ∼ y ⇔ ∀stε > 0 ( |x − y| < ε ), x
n∼ y ⇔ ∀αn−1ε > 0 ( |x − y| < ε ).

Definition of a finite sequence of infinitesimal positive increments.

We fix once and for all h = h1, h2, · · · hn · · · h
w

such that

h ∼ 0 and h 1improper ... hn
n∼ 0 and hn

nimproprer.

A number x ∈ R will be said nlimited ( limited, if n = 1 ) if there exists a
n−1improper λ ∈ R such that |x| ≦ λ.

Of course, the axioms of RST legitimate the assertion, in the language of RST,
that numbers satisfying the preceding definitions exist.
We have the following obvious properties.
Proposition 1

(a) Each relation · ∼ ·, · 2∼ ·, ... , · n∼ · ... is an equivalence relation.

(b) ( x
n∼ y and a nlimited )⇒ ax

n∼ ay .

(c) If n > 1, x
n∼ y ⇒ x

n−1∼ y.

1.2 Relationship between RST and Gordon’s levels of relativ e standardness

defined in IST.

IST is a sub-theory of RST because if we define in RST the unary relation ST(x)
by ST(x) ⇔ ∀a (x SR a), then RST’s statements, obtained by replacing, in the
formulation of IST’s axioms, st by ST are theorems of RST.

The definition of Gordon’s binary relation of relative standardness, denoted ”·st ·”,
is as follows

x st y ⇔ ∃stϕ (Ffin(ϕ) & y ∈ dom ϕ & x ∈ ϕ(y) ).

Ffin(ϕ) means : ϕ is a function, and for any y in the domain dom(ϕ) of ϕ, ϕ(y) is
finite.

This definition generates a limitation, which has been pointed out by Gordon: There
exists a number n ( non standard ) and an x ∈ [0, 1] such that each y which is
infinitely close to x is not [n]standard. In particular no [n]shadow of x, namely a
[n]standard [n]x which is [n]infinitely close of x, exists in [0, 1]. This implies that
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the relativized principle of standardization does not hold, contrary to what happens
in RST. The relativized principle of standardization is very useful, the general
principles of transfer idealization and choice we have proved in [16] are linked to the
existence of such a possibility of standardization. Now a lot of applications can be
treated with Gordon’s predicate.

2 Derivations of classically non derivable functions

We need first to develop the concept of point. Of course, none of these definitions
completely captures the intuitive notion.

2.1 Various conceptual symbolical patterns for the physica l point.

Let a be a point and n a level of improperness such that η(a) ≦ n.

We put ]a[n=]a− hn, a+ hn[. If n = η(a) we use the simplified notations ]a[ for ]a[n.

If a is a number and n a level of improperness, which have no relation a priori with
η(a), we put ≀ a ≀ n = {x ∈ R : x

n∼ a} and we use the simplified notation ≀ a ≀ if
n = 0.

Remarks.

(1) The symbol ≀ a≀ n represents a collection which is not a “true set” in the relative
set theory.

(2) In RST, it is not possible to define uniformly the open point ]a[ for any a of R

by means of a function h : R −→ R which associates to any a an infinitesimal
strictly less standard than a itself. The reason is that if such an h existed then
an element a ∈ R would exist such that ( h SR a ) because, if a SR h for any
a in R, R would be finite (see [15], Theorem 2) . Then the axiom of transfer
would give h(a) SR a and this is contradictory.

If x ∈ R we shall use the terms :

”Point” to indicate the number x,

”open point” to indicate ]x[,

”analysed point”to name ≀ x ≀ .

2.2 The collection R.

The set R below is our basic space of functions. This set could seem very particular.
In reality the possibility for a function u ∈ R to be improper or very improper makes
it very general: In particular, R contains exact representatives for any standard or
improper distribution .... and more ...

Its description requires the next definition.
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Definition 1. A subset F of R is said Locally standard-finite if, for any limited x
and y, [x, y] ∩ F is finite and its cardinality is standard.

The axioms of RST enable to prove that if F is a locally standard-finite subset of
R then a standard subset oF of R exists such that, for any limited x, y ∈ R :

(a) oF ∩ [x, y] is a standard finite set,

(b) for any t ∈ F ∩ [x, y] there exists a standard element ot ∈ oF , called the shadow
of t, such that t ∼ ot.

The set oF is called the shadow of F .

Definition 2. We say that a function f R −→ R is regular if

(a) it have a level of improperness among the levels {1, 2, ,w} fixed above,

(b) f is C∞ at any point except the points of a locally standard-finite possibly empty
set F (f),

(c) f has all order left and right derivatives at any point of F (f).

We denote R the collection of regular functions. In this paper, if f, g ∈ R we
put f = g if there exits a finite set F (possibly non standard) such that for any
t ∈ R \ F, f(t) = g(t).

Basic examples. In these examples, for any subset A of R, χA denotes the
characteristic function of A.

1. The Heaviside function Ha at the point a defined by Ha = χ[a,+∞[ is regular and
F (Ha) = {a}.

2. If we simplify H0 in H , f = H ◦ sin is regular and F (f) = π · Z

3. Let a ∈ R with the level η(a) of improperness, 0 ≦ η(a) < w. We define the
principal evaluation δa of the Dirac-function at the point a by

δa =
1

2hη(a)

χ]a[. We will simplify δ0 in δ.

δa is η(a)+1improper, regular and F (δa) = {a − hη(a), a + h−η(a)}.

4. We shall need also ”hyperevaluations” of the Dirac-function.

If 0 ≦ η(a) < n ≦ w, we put
n

δa = 1
hn

χ]a[n .

This implies that
1

δa = δa. We shall use the simpler notations δ̃a rather than
η(a)+1

δa , and δ̃ for
2

δ.

5. The functions P and Z

P (x) = 1 − χ]0[, Z(x) = χ]−h,0[ − χ]0,h[.
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6. Principal evaluation of the function
1

x
.

1
=
x

=
P (x)

x
− 1

h
Z(x)

Principal evaluation of the logarithm

Ln(x) = P ln(x)

Other evaluations in R of the Dirac-function and
1

x
will be considered elsewhere.

1
=
x

1

h

__

1

h

__
--h      h

1__
2h

1

P(x)

-h    h

1

Z(x)

-h              h

Figure 1. Graphical Representations of some improper evaluations

δ(x)

Definition 3. Let f ∈ R be a n−1improper function, with 1 ≦ n ≦ w. We call
observed derivative of f , the function f ]′[ defined by

f ]′[(x) =
f(x + hn) − f(x − hn)

2hn

.

For any finite integer k such that n + k ≦ w, we put

f ]′′[ = (f ]′[)]′[, · · · , f ]k[ = (f ]k−1[)]′[.

We also define in a natural way, for any n−1improper function f ∈ R, and any k
such that 0 ≦ n < k ≦ w, the khyper-observed derivative

f ]′[k(x) =
f(x + hk) − f(x − hk)

2hk

.
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It will be noticed that the index k in f ]′[k(x) indicates the level of improperness
of the hyper-observed derivative. It would be possible to also define concepts of
hyper-observed second derivative, hyper-observed third derivative etc.....

Examples :

(1) For any standard a ∈ R, Ha is standard, 0improper, so

H ]′[
a =

1

2h
[ Ha+h − Ha−h ] = δa, H ]′[2

a =
1

2h2

[ Ha+h2 − Ha−h2 ] = δ̃a,

(2) δa is 1improper hence

δ]′[
a =

1

2h2
[ δa+h2 − δa−h2 ], δ]′[3

a =
1

2h3
[ δa+h3 − δa−h3 ]. δ]′[

a is

2improper, δ]′[3
a is 3improper.

Figure 2 below represents δ]′[. It is only a synoptic representation : we consider that
we are really unable to see precisely inside the point.

]-h[

]h[

(1/2h) . (1/2h2)

- (1/2h) . (1/2h2)

Figure 2. The function δ]′[(x)
If we denote, for any function f ∈ R with the level n − 1 of improperness,

f+(x) = f(x + hn) and f−(x) = f(x − hn).

then the observed derivatives have the obvious following properties. For any f, g ∈
R with the same level of improperness

(f + g)]′[ = f ]′[ + g]′[, (1)

(f g)]′[ = f ]′[ g+ + f− g]′[. (2)

These formulae are false if f and g don’t have the same degree of improperness, for
example

(H + Hh)
]′[ = δ̃ + δh,

H ]′[ + H
]′[
h = δ + δh.
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The second formula is not the exact formula of Leibnitz,‘

(f g)]′[ = f ]′[ g + f g]′[.

However, physicists sometimes freely use formula (1), the formula of Leibnitz as well
as the formula of integration by parts even in the presence of jumps, and this does
not seems to lead to any concrete physical contradiction.

The introduction, besides the concepts above, for points functions and derivatives,
of a concept of equality adapted to the physicist’s discourse, will lighten the mystery.

2.3 Dirac-equalities.

Dirac considers that any improper function whose value is zero outside of the origin
and such that the integral is egal to 1, is identical to delta. Starting from this idea,
we will define a relation between elements of R which, according to our opinion, is
more significant than the classical weak equality of distributions. Its definition uses
the below definite notion of reiterated primitives.

If f ∈ R, we denote

∫ x

1 a
f(s) ds =

∫ x

a
f(s) ds,

∫ x

2 a
f(s) ds =

∫ x

a
dt

∫ t

a
f(s) ds,

. . . ,
∫ x

an+1
f(s) ds =

∫ x

a
dt

∫ t

1 a
f(s) ds . . .

The next proposition gives useful values and infinitesimal approximations of some
reiterated primitives. Let us denote y << a << x if y < a < x, x /∈ ≀ a ≀ and
y /∈ ≀ a ≀ . Then we can state.

Proposition 1. for any y, a, x such that y << a << x, for any standard k ∈ N
⋆,

for any n > η(a)

(1)
∫ x

k y
Ha =

(x − a)k

k!
, (2)

∫ x

k y

n

δa
n∼ (x − a)k−1

(k − 1)!
,

(3)
∫ x

k y
(
n

δa)
2 n∼ (x − a)k−1

2hn (k − 1)!
, (4)

∫ x

y
(t − a)

n

δa(t) dt = 0,

(5)
∫ x

2 y
(t−a)

n

δa(t) dt = −h2
n

3
, if k > 1 (6)

∫ x

k y
(
n

δa)
]′[ n∼ (x − a)k−2

(k − 2)!
.

Proof. These results are obtained through elementary calculations. The proof of
(1) is obvious. Let us prove (2). We will remark first that

n

δa =
1

2hn

[Ha−hn
− Ha+hn

].

An application of (1) gives

∫ x

k y

n

δa =
(x − (a − hn))k − (x − (a + hn))k

2hnk!
=
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(x − (a − hn))k−1+ (x − (a − hn))k−2(x − (a + hn)) + · · ·+ (x − (a + hn))k−1

k!
.

If we remark that each of the k terms between the brackets is ninfinitely close to
(x − a)k−1, we obtain (2). The proofs of (3), (4) and (5) are let to the reader. In
order to prove (6) let us remark first that

(
n

δa)
]′[ =

1

2hn

[
n+1

δ a−hn
− n+1

δ a+hn

]
.

The sequel of the proof makes use of (2) and the binomial formula.
We generalize the definition of analyzed points by writing

≀ + ∞≀ = {x ∈ R : x ∼ +∞}, ≀ −∞ ≀ = {x ∈ R : x ∼ −∞}.

For any locally standard-finite set F , we denote

≀F ≀ =
⋃

x∈F∪{−∞,+∞}

≀x ≀ .

For any set F we put ]
F

[

n
=

⋃

x∈F

]x − hn, x + hn[.

Definition 4. Let f and g be elements of R and let n be a standard integer. We
say that f is Dirac-equal to g without integration and denote f =D

0 g, or more
precisely f =D

0 g (F ), if there exists a locally standard-finite set F such that for
any standard order of derivation k (in the classical sense) for any x ∈ R, x /∈
≀F ≀ ⇒ f (k)(x) ∼ g(k)(x).

We say that f is Dirac-equal to g up to n integration and denote it f =D
n g, or more

precisely f =D
n g (F ), if a locally standard-finite set F exists such that for any

a, b ∈ R,

a, b /∈ ≀F ≀ ⇒
∫ b

k a
f(x) dx ∼

∫ b

k a
g(x) dx for any k ∈ { 1, ..., n }.

We say that f is Dirac-equal to g, and denote f =D g, if for any standard n ∈ N,
f =D

n g.
Theorem. For any standard integer n

(a) For any f , g, h in R : f =D
n g and g =D

n h ⇒ f =D
n h

(b) For any f , f1, g, g1 in R :

( f =D
n f1 and g =D

n g1 ) ⇒ f + g =D
n f1 + g1

Proof. The proof is a simple check.

A general result similar to (b) relative to the usual product of functions does not
exists.
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Counterexamples :

1 - Hδ =D 1

2
δ but H(Hδ) = Hδ =D 1

2
δ 6=D

1

4
δ =D H (

1

2
δ).

2 - If f is constant, f =
1

2h
, g = H−h − Hh then g =D 0 but fg = δ 6=D 0.

However, we shall see useful particular cases in section 3, theorem 8 and 9.
The next proposition states some useful relations.
Proposition 2. Let a ∈ R be such that η(a) ≦ w :
(1) If η(a) < n ≦ m ≦ w, then for any λ ∈ R such that η(λ) ≦ n − 1,

λ
n

δa =D λ
m

δa. In particular, δa =D δ̃a.

(2) Ha δa =D
1

2
δa, (3) δaδ̃a =D δ2

a, (4)
1

x
δh =D

1 2δ2 but
1

x
δh 6=D 2δ2.

(5) δ]′[
a =D

0 0, (6)
∫ x

−∞
δ]′[
a =D δa, (7) δ2

a 6=D δ̃2
a, (8)

1
=
x

δ =D− 1

2
δ]′[,

(9) δa δa+ =D
1

1

2
δ2
a but δaδa+ 6=D 1

2
δ2
a, (10)

1

2h
Z =D 0, (11)

1

2h
Z ]′[ =D 0,

(12)
( 1

2h

)2
Z =D

1

4
δ

]′[

, (13) Hδ2 =D
1

1

2
δ2 but Hδ2 6=D 1

2
δ2,

(14)
1

2h
( δ̃ − δh ) =D

1

2
δ]′[, (15)

1
=
x

δ]′[ =D − 4 δ2δ̃ − 1

2
δ]”[ =D

1 −4 δ3 − 1

2
δ]”[,

(16)
( 1

=
x

)]′[
δ =D 4 δ2 δ̃ =D

1 4 δ3.

Proof. (1) The functions λ
n

δa =D λ
n

δa and λ
n

δa =D λ
m

δa have the value 0 outside ≀ a ≀ .
It remains to be shown that the reiterated integrals are infinitesimally close one to
the other. In order to prove it let us fix x and y such that x /∈ ≀ a ≀ and y /∈ ≀ a ≀ .
From the former proposition we get

∫ x

k y

n

δa
n∼ (x − a)k−1

(k − 1)!
m∼

∫ x

k y

m

δ a hence
∫ x

k y

n

δa
n∼

∫ x

k y

m

δ a.

Multiplying term by term by the nstandard number λ we obtain

λ
∫ x

k y

n

δa =
∫ x

k y
λ

n

δa
n∼

∫ x

k y
λ

m

δ a = λ
∫ x

k y

m

δ a.

(2) and (3) are obvious. Let us prove (4). let us fix x and y such that x /∈ ≀ a ≀ ,
y /∈ ≀ a ≀ and y < a < x. Let us denote ϕ(t) =

∫ t

y

1

s
δh(s) ds.

1

s
δh(s) = 0 if s /∈ [h] and, if s ∈ [h]

1

2h2(h + h2)
≦

1

s
δh(s) ≦

1

2h2(h − h2)
.

Taking the integral we obtain

1

h + h2
≦ ϕ(x) =

∫

[h]

1

s
δh(s) ds ≦

1

h − h2
.
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As
1

h + h2

2∼ 1

h
2∼ 1

h − h2
and

∫ x

y
δ2 =

1

2h
, we obtain

1

x
δh =D

1 2δ2.

This implies

∫ x

2 y

1

t
δh(t) dt =

∫ x

y
ϕ(t) dt ≦

x − (h − h2)

h − h2

.

Now, it follows from x /∈ ≀ 0 ≀ and h2
2∼ 0 that

x − (h − h2)

h − h2

2∼ x

h
− 1.

On the other hand,
∫ x

2 y
δ2 ∼ x

2h
. Hence

∫ x

2 y

1

t
δh(t) dt 6∼

∫ x

2 y
2δ2(t) dt and this implies

that 1
x
δn 6=D 2δ2.

We let to the reader the proofs of (5), (6)and (7). Let us prove (8).

We deduce from the formula
1
=
x

δ =
1

2h2
[−H−h + 2H − Hh] that

∫ x

k y

1
=
x

δ =
−(x + h)k + 2xk − (x − h)k

2h2k!
∼ −1

2

xk−2

(k − 2)!
∼

∫ x

k y
−1

2
δ]′[.

Let us prove (9) now. We have δδh =D
0

1
2
δ2 because both δδh and 1

2
δ2 have the value

zero outside of ≀ 0 ≀ . Let now x and y be elements of R \ ≀ 0 ≀ . If y < 0 < x then an
easy calculation gives

∫ x

n y
δδh =

(x − (h − h̃)n − (x − h)n

4hh2n!
,

∫ x

n y

1

2
δ2 =

(x + h)n − (x − h)n

4h2n!
.

So we obtain :

with n = 1 :
∫ x

1 y
δδh =

∫ x

1 y

1

2
δ2 =

1

h
,

with n = 2 :
∫ x

2 y
δδh =

1
2h

x − 1

4
,

∫ x

2 y

1

2
δ2 =

x

8h
. Hence

δδh =D
1

1

2
δ2, but δδh 6=D 1

2
δ2 because δδh 6=D

2

1

2
δ2.

the formulas (10) to (16) are left to the reader.

Let us consider now the following functions, which usually play the role of Dirac-
functions in physics.

δ1(x) =
1

2h
e−

|x|
h , δ2(x) =

1

π

h

x2 + h2
, δ3(x) =

1

h
√

π
e−

x2

h2 , δ4(x) =
sin(x

h
)

πx
.

Then we have

Proposition 3. δ1 =D δ2 =D δ3 =D δ but δ4 6=D δ .
If a ∼ ±∞ and ξa = 1

2h
(Ha− − Ha+) then ξa =D 0 .

Proof. It is an immediate check
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10.50-0.5-1
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2.5
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-2.5

-5

-7.5

-10

x

y

x

y

1/x/PI*sin(10000*x)

Figure 3.
1

π

sin(x
h
)

x
, h = 10−4

Remark.
1. Although it is an infinitesimal approximation (in the space of distributions) of
the Dirac-distribution, the last function, δ4(x), cannot be considered as a Dirac-
function, even if its integral is 1, because δ4 is not infinitesimal outside of ≀ 0 ≀ .
2. It would be possible to extend the definition of R , permitting non standard
cardinalities for the sets F (f). Then relations of Dirac-hyperequalities should be
defined.

3 Basic theorems.

Theorem 1. For any f, g ∈ R with f continuous, and any level of improperness
n > η((f, g)) :

(a) f ]′[ng =D f ′g.

(b) if η(f) ≦ η(g) then fg]′[ =D fg]′[n .

Proof. We remark that f ′ is defined except on a finite set.
(a) Let us prove that f ]′[ng =D

0 f ′g. Let k be a standard order of derivation. For any

x /∈ ≀F (f)∪F (g) ≀ , (f ]′[ng)k(x) =
p=k∑

p=0

Cp
k(f

]′[n)(p)(x)g(k−p)(x)

and for each p (f ]′[n)(p)(x) = (f (p))]′[n(x)
n∼ (f p)′(x) = (f ′)(p)(x) so, each g(k−p)(x)

being nlimited, we have

(f ]′[ng)k(x)
n∼

p=k∑

p=0

Cp
k(f ′)(p)(x)g(k−p)(x) = (f ′g)(k)(x).

This prove f ]′[g =D
0 f ′g. Let us compare the reiterated integrals.

For any limited x, y,
∫ y

x
f ]′[n(t)g(t) dt =

∫ y

x

f(x + hn) − f(x − hn)

2hn

g(t) dt.

If x does not belong to any ]a[n with a ∈ F (f) then

f(x + hn) − f(x − hn)

2hn

= f ′(x + θhn) with θ ∈] − 1, 1[.
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Now, by the definition of R, f ′ is uniformly continuous over each interval of conti-
nuity of f , so

f ′(x + θhn)
n∼ f ′(x), f ′(x + θhn)g(x)

n∼ f ′(x)g(x)

because g is nlimited, and
∫ y′

x′
f ′g ∼

∫ y′

x′
f ]′[ng whatever x′, y′ such that [x′, y′] ⊂

([x, y] \ ]F (f)[n.

If a ∈ F (f), then f ′g and f ]′[ng are both nlimited on ]a[n so the integrals
∫ y”

x”
f ′g

and
∫ y”

x”
f ]′[ng are infinitesimals for any x”, y” ∈]a[n, a ∈ F (f), because |y”− x”| is

ninfinitesimal.
We conclude that

∫ y

x
f ′g ∼

∫ y

x
f ]′[ng. Computing the iterated primitives up to a

standard rank k, we get
∫ y

xk
f ′g ∼

∫ y

xk
f ]′[ng.

Hence f ′g =D f ]′[ng.
(b) Let us expand g ∈ R in the form g = u+

∑

ai∈G

αiHai
, with locally standard-finite G

and continuous u ∈ R. An easy proof, making use of the axiom of transfer, see [15],
shows that η(u) ≦ η(g) < n and for any i ∈ G, η(ai) ≦ η(g) < n, η(αi) ≦ η(g) < n.

As G is locally standard-finite then for any limited x and y the integrals
∫ x

k y
fg]′[

and
∫ x

k y
fg]′[n are respectively equal to

∫ x

k y
fu]′[η(g)+1 +

∑

ai∈Gx,y

∫ x

k y
f.(αiHai

)]′[η(g)+1

and
∫ x

k y
fu]′[n +

∑

ai∈Gx,y

∫ x

k y
f [αiHai

]]
′[n .

This sum being standard-finite, we only have to prove

fu]′[η(g)+1 =D fu]′[n and f.(αiHai
)]′[η(g)+1 =D f.(αiHai

)]′[n.

The first relation is an application of (a). Item (a) applies because

n ≧ η(g) + 1 > η(g) ≥ η(u), and η(g) ≧ η(f) ⇒ η(g) + 1 > η(u, f).

The last inequality is a consequence of the axiom of transfer.
The second Dirac-equality follows from

f.(αiHai
)]′[η(g)+1 =D f(ai)αi

η(g)+1

δ ai
=D f(ai)αi

n

δai
=D f(αiHai

)]′[n,

the verification of which is easy.

In order to prove the necessity of the hypothesis, we have to produce counterexam-
ples.
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Counterexamples.

(1) With f = H and g = H we have, f ′ = 0 ⇒ f ′g = 0. f ]′[ = δ, f ]′[g =D
1

2
δ. So

f ′g 6=D f ]′[g. The missing assumption is the continuity of f

(2) Let be f(x) =





0 if x ≤ h
2

1

h̃
x − h

2 h̃
if x ∈ [h

2
, h

2
+ h̃]

1 if x ≥ h
2

+ h̃

and g = H .

Then f is continuous, fH ]′[2 = f δ̃ = 0 and fH ]′[ = fδ =D
1

4
δ. In this example the

problem comes from the relation η(f) > η(g).

(3) Concerning (b), let f(x) = δ3 and g(x) = x3. An easy computation yields
g]′[(x) = 3x2 + h2, so f(x)g]′[(x) − f(x)g′(x) = h2δ3. Now the computation of the
first integral prove that h2δ3 6=D 0. We should obtain the Dirac-equality replacing
g]′[ by g]′[2.

Corollary. For any f ∈ R and any standard integer n ≥ η(f),

f ]′[ =D f ]′[n and f ]′[ =D f ′ if f is continuous.

Theorem 2. For any f ∈ R and y, x /∈ ≀F (f) ≀ ,
∫ x

y
f ]′[(t) dt ∼ f(x) − f(y).

Proof. Any function of R decomposes in a sum of elementary functions. It is enough
to prove the theorem for these elementary functions. The result is obvious if f

is a continuous function. If f = αHa with limited a then f ]′[ = α
n

δa with n =
Max{η(α), η(a)}+1 . For any y, x

∫ x

y
f ]′[ =





α if y << a << x,

0 if y, x << a, or y, x >> a
= f(x) − f(y).

Theorem 3. For any f, g ∈ R, whatever their level of improperness :

(f + g)]′[ =D f ]′[ + g]′[

Proof. Let n = Max{η(f), η(g), η(f+g)}+1. Then by the definition of nhyperobserved
derivatives we have (f +g)]′[n = f ]′[n +g]′[n . Now, the corollary above and properties
(a), (b) gives,

(f + g)]′[ =D (f + g)]′[n = f ]′[n + g]′[n =D f ]′[ + d]′[.
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Theorem 4. For any f, g ∈ R, whatever their level of improperness if n ≥ η((f, g)) + 1 :

(fg)]′[n =D f g]′[n + g f ]′[n

Proof. It is enough to show it for elementary functions .

If f = αHa and g = βHb.

If a < b.

Then n is strictly larger than η(a), η(b), η(α) and η(β) (Transfer). So we have

f ]′[n = α
n

δa, g]′[n = β
n

δb, (fg))]′[n = (αβHb)
]′[n = αβ

n

δb

]a[n∩]b[n= ∅ ⇒




fg]′[n = αβHa

n

δb = αβ
n

δb and

f ]′[ng = αβ
n

δaHb = 0
Hence the formula is true.

If a = b

(fg)]′[n = αβ
n

δa, f ]′[ng = g]′[nf = αβHa

n

δa =D αβ

2

n

δa

If f is continuous and g = Ha.

Then (fHa)
]′[n(x) = f(x−hn)

n

δa(x)+f ]′[n(x)H
a+hn

(x). The facts that f is continuous
and that the jumps of the successive derivatives have a level of improperness strictly

less than n allow us to prove, through an easy calculation that f
hn

n

δa =D f
n

δa and

f ]′[nH
a+hn

=D f ]′[nHa.

The proof is immediate also if both f and g are continuous elements of R.

Corollary 1 If f and g have the same level of improperness then

(fg)]′[ =D fg]′[ + gf ]′[.

There is nothing to prove.

If f and g have distinct levels of improperness there are counterexamples.

Counterexamples.

(1) Let f and g be respectively H and H
h̃
.

Then f.g = H
h̃
, (fg)]′[ = δ

h̃
, fg]′[ = Hδ

h̃
= δ

h̃
. An easy calculation gives f ]′[g =

δH
h̃

=D 1

2
δ. so (fg)]′[ 6=D fg]′[ + gf ]′[.

(2) This counterexample aims at proving that, even if f and g are generated, starting
from the standard elements of R, by observed derivations, then the rule of corollary
1 does not generally apply. Let us take f = H and g = δ]′[. We obtain directly
(H δ]′[)]′[ = H δ]′′[, and the Leibniz rule would give (H δ]′[)]′[ = δδ]′[ + H δ]”[. Now,
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we can verify directly that δ δ]′[ 6=D 0, or wait until theorem 6 in order to use the

arguments that δ δ]′[ =D
1

2
(δ2)]′[ 6=D 0 for δ2 6=D 0.

Corollary 2. For any f, g ∈ R, if f is continuous and η(f) ≦ η(g) then

(fg)]′[ =D fg]′[ + f ′g.

Proof (fg)]′[ = (fg)]′[η(g) = fg]′[η(g)+1 + f ]′[η(g)+1 (Theorem 4). Now theorem 1 gives
f ]′[η(g)+1g =D f ′g. This end the proof.

Example :
Let xq

+ = H.xq, q being a standard positive integer. Then for any standard integer
n,

(xq
+ δ]n[)]′[ =D q xq−1

+ δ]n[ + xq
+ δ]n+1[.

Remark.

Let be f ∈ R with f(t) 6= 0 for all t. Then we can verify the formula

(
1

f
)]′[ = − f ]′[

(f−)(f+)
.

However, (
1

f
)]′[ is not generaly Dirac-equal to −f ]′[

f 2
. In order to prove it, let us

consider f = 1 + H . We have f ]′[ = δ,
1

f
= 1 − 1

2
H ,

1

f 2
= 1 − 3

4
H ,

(
1

f
)]′[ = −1

2
δ, −f ]′[

f 2
= −δ (1 − 3

4
H) =D − 5

8
δ.

Now, corollary 1 allows us to write from the equality
1

f
f = 1,

(
1

f
)]′[ f =D − 1

f
f ]′[.

The difficulty lies in the illegality of the multiplication by 1
f

of the two members of
a Dirac-equality.

Demonstrations of theorems 5 and 6 below, derive directly from the definition of the
relations =D

k and =D.

Theorem 5. For any f, g ∈ R and any standard k ∈ N
⋆,

( f =D
k g (F ) and a /∈ ≀F ≀ ) ⇒ (x →

∫ x

a
f) =D

k−1 (x →
∫ x

a
g).

Theorem 6 For any f, g ∈ R, and any k ∈ N,

f =D
k g ⇒ f ]′[ =D

k+1 g]′[.
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Theorem 7. For any f, ϕ ∈ R, if ϕ is C∞ on R, if ϕ−1(F (f)) and ϕ−1(oF (f)) are
locally standard-finite then f ◦ϕ ∈ R and for any level n > η((f, ϕ)) of improperness

(f ◦ ϕ)]′[ =D (f ]′[n ◦ ϕ) × ϕ′.

To avoid complicated denotations, we shall suppose that ϕ is standard. The general
result is obtained through a classical shift of the levels of improperness.

Lemma. If ϕ is continuous on R:

(a) For any limited a ∈ R and any locally standard-finite and standard F0 ⊂ R,
[−a, a]

⋂
ϕ−1( ≀F0 ≀ ) ⊂ ≀ϕ−1(F0) ≀ .

(b) For any locally standard-finite F ⊂ R : ≀ϕ−1(F ) ≀ ⊂ ≀ϕ−1(oF ) ≀ .

Proof. Let x ∈ [−a, a]
⋂

ϕ−1( ≀F0 ≀ ) then there exits u0 ∈ F0 such that ϕ(x) ∼ u0.
From x limited and ϕ standard we deduce that x has a shadow ox and ϕ(x) is
limited. Also u0 is limited. Now from F0 standard and locally standard finite we
deduce that u0 is standard. From the continuity of ϕ we get ϕ(x) ∼ ϕ(ox). Hence

ϕ(ox) = u0,
ox ∈ ϕ−1(F0), x ∈ ≀ϕ−1(F0) ≀ .

This prove the inclusion of (a). Let us prove (b).
If x ∈ ≀ϕ−1(F ) ≀ then there exists a such that x ∼ a and ϕ(a) ∈ F . We have
ϕ(oa) = oϕ(a) ∈o F . From x ∼ oa, and oa ∈ ϕ−1(oF ) we derive x ∈ ≀ϕ−1(oF ) ≀ .
This ends the proof of (b).

Proof of Theorem 7.

Case where f is continuous.

Let us prove that (f ◦ ϕ)]′[ =D (f ]′[n ◦ ϕ)ϕ′ ( ϕ−1(oF (f)) ).
It makes sense because ϕ−1(oF (f)) is locally standard-finite.
The function f being in R its derivatives exists on R \ F . Hence, (f ◦ ϕ)(p) exists
on ϕ−1(F (f)) at any order p . The function f ◦ ϕ is continuous so we have, from
the corollary of theorem 1

(f ′ ◦ ϕ) × ϕ′ = (f ◦ ϕ)′ =D (f ◦ ϕ)]′[ ( ϕ−1(F (f)) ).

As ≀ϕ−1(F ) ≀ ⊂ ≀ϕ−1(oF ) ≀ (lemma, (b))

(f ′ ◦ ϕ) × ϕ′ = (f ◦ ϕ)′ =D (f ◦ ϕ)]′[ ( ϕ−1(oF (f)) ).

It remains to prove that

(f ′ ◦ ϕ) × ϕ′ =D (f ]′[n ◦ ϕ) × ϕ′ ( ϕ−1(oF (f)) ).

(a) Proof of : (f ′ ◦ ϕ) × ϕ′ =D
0 (f ]′[n ◦ ϕ) × ϕ′ ( ϕ−1(oF (f)) ).
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Let be x /∈ ≀ϕ−1(oF (f)) ≀ then , item (b) of lemma, x /∈ ≀ϕ−1(F (f)) ≀ . Consequently
ϕ(x) /∈ F (f) and (f ′)(k)(ϕ(x)) ∼ (f ]′[n)(k)(ϕ(x)) for any standard k. Multiplication
by limited products of ϕ(p)(x), member by member conserve the relation ∼. We
remark that (f ]′[n)(p) = (f (p))]′[n for any p. We deduce from these facts that for any
limited k,

((f ′ ◦ ϕ)(x)ϕ′(x))(k) ∼ ((f ]′[n ◦ ϕ)(x)ϕ′(x))(k).

Proof of : ∀standardk ∈ N (f ′ ◦ ϕ) × ϕ′ =D
k (f ]′[n ◦ ϕ) × ϕ′ ( ϕ−1(oF (f)) ).

It is enough to prove that for any x /∈ ≀ϕ−1(oF (f)) ≀ and any limited y
∫ y

x
(f ′ ◦ ϕ)(t) × ϕ′(t) dt ∼

∫ y

x
(f ]′[n ◦ ϕ)(t) × ϕ′(t) dt

even if y is in ≀ϕ−1(oF (f)) ≀ . We have to consider mainly the cases where [x, y] ∩
≀ϕ−1(oF (f)) ≀ ⊂ ≀ y ≀ n because [x, y] is an union of standard finitely many such
intervals.
If y /∈ ≀ϕ−1(oF (f)) ≀ n then f ′(s)

n∼ f ]′[n(s) for all s ∈ [ϕ(x), ϕ(y)] so
∫ y

x
(f ′ ◦ ϕ)(t) × ϕ′(t) dt =

∫ ϕ(y)

ϕ(x)
f ′(s) ds

n∼
∫ ϕ(y)

ϕ(x)
f ]′[n(s) ds

=
∫ y

x
(f ]′[n ◦ ϕ)(t) × ϕ′(t) dt.

If y ∈ ≀ϕ−1(oF (f)) ≀ n then for any nimproper integer m >
1

|y − x| , [x, y − 1

m
] ⊂

R \ ≀ϕ−1(oF (f)) ≀ n. Such an integer exists because x /∈ ≀ϕ−1(oF (f)) ≀ , ⇒ x ≁ y.
This implies that for any any nimproper m ∈ N ,

m >
1

|y − x| =⇒
∫ y− 1

m

x
(f ′ ◦ ϕ)(t) × ϕ′(t) dt

n∼
∫ y− 1

m

x
(f ]′[n ◦ ϕ)(t) × ϕ′(t) dt.

Now a so-called principle of permanence of non standard mathematics allows us to
say that this infinitesimal equivalence remains true for some ninfinitely large integer
m.

Both
∫ y

y− 1

m

(f ′ ◦ ϕ)(t) × ϕ′(t) dt and
∫ y

y− 1

m

(f ]′[n ◦ ϕ)(t) × ϕ′(t) dt are ninfinitesimal

because the length of the interval [y − 1

m
, y] is ninfinitesimal and the function (f ′ ◦

ϕ)(t) × ϕ′(t) as well as (f ]′[n ◦ ϕ)(t) × ϕ′(t) is nlimited.

Case where f = µ H , and ϕ has only one (isolated) zero a.

Let be n ≥ η((a, ϕ)).

If f is locally increasing or decreasing, let α and β such that ϕ(α) = −hn and
ϕ(β) = hn. Then we have

If ϕ is locally increasing

f ◦ ϕ = µ H ◦ ϕ = µ Ha

µ H−hn
◦ ϕ = µ Hα

µ Hhn
◦ ϕ = µ Hβ
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If ϕ is locally decreasing

f ◦ ϕ = µ H ◦ ϕ = µ (1 − Ha)

µ H−hn
◦ ϕ = µ (1 − Hα)

µ Hhn
◦ ϕ = µ (1 − Hβ)

If ϕ is locally increasing

(f ◦ ϕ)]′[ = (µ Ha)
]′[ = µ δa

(f ]′[n ◦ ϕ) × ϕ′ =
µ (H−hn

◦ ϕ − Hhn
◦ ϕ) × ϕ′

2hn

=
µ(Hα − Hβ)

2hn

× ϕ′

Now,
1

2hn

µ (Hα − Hβ) × ϕ′ is Dirac-equal to µ, δa for it is zero outside of ≀ a ≀ , it

have a constant sign, and if y << a << x then

∫ x

y

1

2hn

µ (Hα − Hβ) × ϕ′) =
1

2hn

µ,
∫ β

α
ϕ′ =

1

2hn

µ(ϕ(β) − ϕ(α))

= µ
1

2hn

· 2hn = µ. Hence: (f ◦ ϕ)]′[ =D (f ]′[n ◦ ϕ) × ϕ′.

The proof is quite similar if ϕ is locally decreasing.

If a is a local extremum then f ◦ ϕ is constant, its value is µ or 0 so (f ◦ ϕ)]′[ is 0.
So is (f ]′[n ◦ ϕ) × ϕ′, because H−hn

◦ ϕ = Hhn
◦ ϕ = 1 or 0.

The reader is now able to proceed alone to the more general case.

If η(f) ≥ η(ϕ), the formula of the theorem becomes

(f ◦ ϕ)]′[ =D (f ]′[ ◦ ϕ)ϕ′.

If η(ϕ) > η(f) the formula (f ◦ ϕ)]′[ =D (f ]′[ ◦ ϕ)ϕ′ could be false.

Counterexample.

f = H and ϕ(x) = hx2 give :
(f ◦ ϕ)]′[ = 0 . For any locally standard-finite F ⊂ R, there exists x such that
−x, 2x /∈ ≀F ≀ , −x << 0 << 2x ≦ 1. (f ]′[ ◦ ϕ)ϕ′(x) = (H ]′[(hx2)) × 2h x =

δ(hx2) 2hx 6=D 0, because
∫ 2x

−x
δ(ht2) × 2h t dt =

1

2h
h

[
t2

]2x

−x
=

3 x2

2
≁ 0 .

Corollary. for any f ∈ R and any derivable standard ϕ such that ϕ′ have isolated
zeros then f ◦ ϕ ∈ R and

(f ◦ ϕ)]′[ =D (f ]′[ ◦ ϕ)ϕ′.

Proof. The reason is that under the assumption on ϕ, ϕ−1(F (f)) and ϕ−1(oF (f)) are
locally standard-finite. Let us prove it. Let [x, y] be a standard compact interval
then ϕ([x, y]) is a standard compact interval too so, it contains a finite-standard
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number of element of F (f).
If ϕ−1(F (f)) ∩ [x, y] or ϕ−1(oF (f)) contains non finite-standard many elements
then c ∈ F (f) exists such that card(ϕ−1({c})) is not standard-finite. This implies
that the standard set Z = (ϕ′)−1({0}))∩ [x, y] is infinite and contradicts the hypoth-
esis that the zero of ϕ′ are isolated. Hence card(ϕ−1(F (f))∩ [x, y]) and ϕ−1(oF (f))
are standard-finite.

Examples.

1. H(x2) = 1 gives H(x2)]′[ = 0. With de denotations of theorem 7 we have
F (f) =o F (f) = ϕ−1(oF (f)) = {0} so H(x2)]′[ =D δ(x2) × x2. Hence δ(x2) ×
x2 =D 0, which can be obtained also through a direct calculation.

2. δ(x2)]′[ =D δ]′[(x2) × x2.

Open problem. What happens if it is only supposed that ϕ ∈ R. Under which
conditions is the formula (f ◦ ϕ)]′[ =D (f ]′[ ◦ ϕ)ϕ]′[ true?

The next theorems, 8 and 9, approach the problem of the conservation of the Dirac-
equality after a multiplication term by term.

Theorem 8. For any f, g ∈ R and any standard integer n

f =D g ⇒ xn f =D xn g.

Proof. It is enough to prove that f =D g ⇒ x f =D x g, and one obtains the
theorem through an induction. Let us prove inductively that the property P (n) :
∀ f, g ∈ R ( f =D

n g ⇒ x f =D
n x g ),

is satisfied for any standard n. P (0) is obvious. The reason is that for any x /∈
≀F (f) ≀ ∪ ≀F (g) ≀ , and any limited order k ≧ 0 of derivation, (xf(x))(k) = xf (k)(x)+
kf (k−1)(x). The numbers x and k being limited, the relations f (k)(x) ∼ g(k)(x)
and f (k−1)(x) ∼ g(k−1)(x) (if k > 0) involve xf (k)(x) ∼ xg(k)(x) and, if k > 0,
kf (k−1)(x) ∼ kg(k−1)(x). Hence (xf(x))(k) ∼ (xg(x))(k).
Let us suppose P (n) for a fixed standard n. Let f, g be elements of R Let us

fix y /∈ ≀F (f) ≀ ∪ ≀F (g) ≀ . Let us put F (x) =
∫ x

y
f(t) dt and G(x) =

∫ x

y
g(t) dt.

Theorem 5 gives F =D G, so F =D
n G.

P (n) being true, we obtain xF (n) =D
n xG(x), and by theorem 6,

(xF (n))]′[ =D
n+1 (xG(x))]′[. From the corollary 2 of theorem 4 we get

x f(x) + F (x) =D
n+1 x g(x) + G(x). As F =D

n+1 G, we obtain
x f(x) =D

n+1 x g(x). Hence P (n) is true for any standard n.

Of course, in theorem 8 we can replace xn by (x−a)n. We shall prove now a similar
theorem where xn is replaced by a non polynomial function.
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Theorem 9. Let f, g, u ∈ R with f =D g (F ) and u standard. Let be G = F ∪ F (u).
If for any a ∈ G there exists a standard integer na and ya, xa ∈ R such that,

[ya, xa] ∩ ≀G ≀ = ≀ a ≀ and
∫ xa

ya

|(t − a)na(f(t) − g(t))| dt ∼ 0,

then if u has na continuous derivatives at each a ∈ G : u f =D u g.

Proof. f (p)(t) ∼ g(p)(t) for any t /∈ ≀G ≀ and any limited p. Hence u being stan-
dard, we have (uf)(k)(t) ∼ (ug)(k)(t) for any t /∈ ≀G ≀ and any limited k. Hence
u f =D

0 u g. To end the proof it is enough to show that∫ xa

yak
u(t) f(t) dt ∼

∫ xa

yak
u(t) g(t) dt for any limited a ∈ G and any standard k. Obvi-

ously, ya and xa can be chosen limited. Now, by the hypothesis on u, we have an
expansion of the form

u(t) =
n−1∑

i=0

(t − a)i u(i)(a)

i!
+ (t − a)na

u(na)(a + θ(t − a))

na!
, θ ∈ [0, 1].

As u(na) is continuous on [ya, xa] there is a standard constant C such that, for any
x ∈ [ya, xa],

|
∫ x

ya

(t − a)na
u(na)(a + θ(t − a))

na!
(f(t) − g(t)) dt | ≦

C
∫ xa

ya

|(t − a)na(f(t) − g(t)| dt ∼ 0.

Hence :
∫ x

ya

(t − a)na
u(na)(a + θ(t − a))

na!
(f(t) − g(t)) dt ∼ 0.

This implies for the k-iterated integrals, with standard k :

(1)
∫ xa

k ya

(t − a)na
u(na)(a + θ(t − a))

na!
(f(t) − g(t)) dt ∼ 0.

Now, theorem 8 gives, for any i ∈ {0, ..., na − 1} and any standard k

(2)
∫ xa

yak
(t − a)i u(i)(t) (f(t) − g(t)) dt ∼ 0.

The conjunction of (1) and (2) gives
∫ xa

k ya

u(t) f(t) dt ∼
∫ xa

yak
u(t) g(t) dt.

Example of an application of theorem 9.

Let be f = 4 (1 − 2H) δ2, g = δ]′[ and u(x) = ex ( F (u) = ∅).

Let us admit f =D g (F ) with F = {0}, whose checking is not very difficult. Let us

prove that for any x0, y0 such that y0 << 0 << x0,
∫ x0

y0

|t3 (f(t) − g(t))| dt ∼ 0.

On the one hand
∫ x0

y0

|t3f(t)| dt =
∫ h

−h
|t3f(t)| dt =

1

h2

[
t4

4

]h

−h

∼ 0,

on the other hand
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∫ x0

y0

|t3g(t)| dt =
∫ −h+h̃

−h−h̃
|t3g(t)| dt +

∫ h+h̃

h−h̃
|t3g(t)| dt =

1

4hh̃
× 2h̃ × (−h + θ1h̃)3 +

1

4hh̃
× 2h̃ × (h + θ2h̃)3, θ1, θ1 ∈ [−1, 1].

This equality implies that
∫ x0

y0

|t3g(t)| dt ∼ 0.

From
∫ x0

y0

|t3f(t)| dt ∼ 0 ∼
∫ x0

y0

|t3g(t)| dt we deduce that

∫ x0

y0

|t3(f(t) − g(t))| dt ∼ 0.

Hence theorem 9 applies and we can conclude that u f =D u g.

4 Applications.

1 - From xδ =D 0 and theorem 6 we obtain (x δ)]′[ =D 0 =D xδ]′[ +δ so, x δ]′[ =D −δ.

An easy induction give : For any standard integers p and q

(1) xp δ]q[ =D






0 if p > q

(−1)p q!

(q − p)!
δ]q−p[, if q ≥ p

The statement of this result is similar to a classical result in distribution theory.
The principal difference is that our relations involve Dirac equality, and not equality
of distributions .

The next formula has no equivalent in distribution theory because the products δ δ]′[

and δ2 are not defined.

2 - From the easily verifiable relation xδ2 =D 0 we get (xδ2)]′[ =D 0 by an application
of theorem 6 , which can be developed in

δ2 + 2xδδ]′[ =D 0 , 2xδδ]′[ =D − δ2. (2)

3 - If xp
+(t) is the function with value 0 for negative t and tp for positive t ( in

particular x0
+ = H) then for any standard integer p

xp
+ δ]p[ =D

(−1)p p!

2
δ. (3p)

The formula is true if p = 0 because x0
+ δ]0[ = H δ =D

1

2
δ. Let us suppose it is true for

a fixed standard integer p. Multiplying by x the two members of xp
+ δ]p[ =D

(−1)p p!

2
δ

we obtain, through theorem 8,

xp+1
+ δ]p[ =D

(−1)p p!

2
x δ =D 0.
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Taking the derivatives we get thanks to theorems 1 (see example) and corollary 2 of
theorem 4 we have

(p + 1) xp
+ δ]p[ + xp+1

+ δ]p+1[ =D 0

which gives

xp+1
+ δ]p+1[ =D

(−1)p+1 (p + 1)!

2
δ

so the relation is true for any p.

The fourth example corresponds to a recent (1999) formulation by Damyanov [Da]
in Colombeau’s theory of generalized functions, with a weak equality.

4 - with x+ defined above, p standard integer

(−1)p

p!
xp

+ δ]p+1[ + δ2 =D
p + 1

2
δ]′[. (4)

The result is true if p = 0, because (H δ)]′[ =D δ̃ δ + H δ]′[, x0
+ = H,

(H δ)]′[ =D 1
2
δ]′[ and δ δ̃ =D δ2.

Let us suppose that the formula is true with the integer p. From the formula of
example (3p+1), we obtain through a derivation

(−1)p+1 (p + 1)!

2
δ]′[ =D (p + 1) xp

+ δ]p+1[ + xp+1 δ]p+2[.

If we apply the hypothesis of induction we obtain

(−1)p+1

(p + 1)!
xp+1

+ δ]p+2[ + δ2 =D
p + 2

2
δ]′[,

so the formula is true for p + 1 and consequently, for any standard p.

Final remarks

1- Many theorems exist which aim at representing or “approaching” standard dis-
tributions by nonstandard functions : see for example
[Gr, I, K, Rob, (S − L), T ]. Among all these approaches Kinoshita’s one, contin-
ued later by J.P. Grenier the formulation of which are close to numerical analysis,
presents a particular interest, and can be linked to the work presented in this paper.
Now, it will be first necessary to forget reference to the theory of distributions and
to study Kinoshita-Grenier’s generalized functions for themselves, referring to the
physical world.

2 - The relations which we established are not true for any evaluation of the delta

function, of the functions
1

x
, ln x etc ... . For example the relation

1
=
x

δ =D
1

2
δ]′[ is

strongly dependant on the choice of the evaluations. This choice should be decided
by the physical observation.
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However, from theorems 6 and 8 we can prove that the formula (1) is still true for
any other choice of the delta function.

The formula (3p) remains true if we replace the principal evaluation δ of the Dirac
function by any even function ζ such that ζ =D δ. Now there is a change in (4), δ2

should be changed, not in ζ2 but in ζ ζ̃ , (2) is true for any delta function ζ such
that x ζ2 =D 0. Otherwise, if ζ is even then xζ2 is odd so

x ζ2 =D
1 0, (x ζ2)]′[ =D

2 0, and 2 x ζ2 =D
2 −ζ2.
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[23] L.Schwartz, Théorie des distributions, Hermann-Paris (1966).

[24] C. Zuily, Distributions et équations aux dérivées partielles, Hermann, collection
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