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Abstract

In recent years, there has been an enormous effort put in the definition and
analysis of fractional or fractal operators. Fractional calculus is for example
a flourishing field of active research. In this paper we restrict ourselves to the
fractional Fourier operator and friends that are traditionally used in optics,
mechanical engineering and signal processing. The book by H.M. Ozaktas,
Z. Zalevsky, and M.A. Kutay, The fractional Fourier transform, John Wiley,
2001 gives a state of the art of 2001. Because this field is still in full expansion,
we want to summarize in this survey paper some of the recent developments
that appeared in the literature since then, revealing some unexplored aspects.

1 Introduction

The idea of fractional powers of the Fourier operator appears in the mathemati-
cal literature as early as 1929 [120, 33, 58]. It has been rediscovered in quantum
mechanics [76, 70], optics [73, 84, 13] and signal processing [14]. The boom in pub-
lications started in the early years of the 1990’s and it is still going on. A recent
state of the art can be found in [85] which contains an extensive bibliography. See
also [57].
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However, it is not only the Fourier transform that has been fractionalized. The
term fractal or fractional is now available in almost everywhere: geometry, optics,
mechanics, signal processing, numerical analysis, calculus. We shall restrict ourselves
in this paper to a summary of the recent developments in the literature since 2000
concerning fractional operators used in signal processing. chemistry, dynamical
systems, stochastic processes, . . .

2 The fractionalization of a linear operator

If M ∈ Rn×n is a square diagonalizable matrix M then we may write its eigenvalue
decomposition M = EΛE−1. Clearly for any integer a it holds that

Ma = EΛaE−1. (1)

So it is a natural generalization to use the same formula as a definition if a is not
integer. We say that we have a fractional (in fact any real) power of M .

Exactly the same idea can be used for a linear operator M on a linear space
if it has a sequence of eigenvectors that is complete in the whole space [129]. Let
{λk, ek}∞k=0 be the sequence of eigenvalues and corresponding eigenvectors. Since
the set of eigenvectors is complete, we can associate with each element f in the
Hilbert space a unique set of coordinates and conversely, if we are given a sequence
of coordinates, we know to which element f they belong. These mappings are called
the analysis and the synthesis operators respectively. They are adjoint operators.
If E is the synthesis operator and E∗ the analysis operator, which for a given set of
basis vectors {ek} are defined by

E : {ck}∞k=0 7→ f =
∞
∑

k=0

ckek and E∗ : f 7→ {ck}∞k=0, (2)

then we can write
M = EΛE∗ (3)

where Λ is the simple diagonal scaling operator

Λ : {ck}∞k=0 7→ {λkck}∞k=0. (4)

Its fractional power is then clearly Ma = EΛaE∗ since E∗E is the expansion operator,
or if we identify the function with its series expansion, it can be considered as the
identity operator.

If the space is not spanned by a countable set, but by a set of eigenfunctions
depending on a continuous variable ξ ∈ R, again the same scheme is applicable:

E : {c(ξ)}ξ∈R 7→ f =
∫

c(ξ)e(ξ)dξ and E∗ : f 7→ {c(ξ)}ξ∈R, (5)

then we can write
M = EΛE∗ (6)

where Λ is the simple diagonal scaling operator

Λ : {c(ξ)}ξ∈R 7→ {λ(ξ)c(ξ)}ξ∈R. (7)
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Of course all these relations will only hold under suitable conditions for the sums
and integrals to converge.

An example is the fractional derivative. The derivative operator has eigenvectors
{eiξx : ξ ∈ R} and eigenvalues {jξ : ξ ∈ R}. So the analysis operator is the Fourier
transform, Λ is the scaling operator with the eigenvalue jξ and the synthesis operator
is the inverse Fourier transform. This is indeed a well known property of the Fourier
transform: a derivative in the x-domain corresponds to a multiplication with jξ in
the ξ-domain. The fractional form of the derivative is thus obvious: we multiply
with (jξ)a in the Fourier domain instead of with jξ. This is the basis of the whole
theory of fractional calculus [102], a domain that goes back to a question raised by
Leibniz in 1695. See [80, 74] for an introduction and some history.

The subject of fractional calculus is broad and still growing. In this survey, we
shall not follow this path any further. Instead we shall concentrate on another set
of fractional operators that evolved from the fractional Fourier transform and other
integral transforms that are often used in signal processing applications. Their spec-
trum will be discrete as opposed to the continuous spectrum of the differentiation
operator.

3 The fractional Fourier transform

The fractional form of the classical Fourier operator

F : f 7→ 1√
2π

∫ ∞

−∞
e−iξxf(x)dx. (8)

will be at the heart of this survey. The fractionalization fits into the second scheme
mentioned in the previous section when we restrict ourselves to the Hilbert space
L2 = L2(R). A set of eigenfunctions that is conventionally agreed upon is given by
the Gauss-Hermite functions ψn(t)

ψn(x) =
21/4

√
2nn!

e−x2/2Hn(x), where Hn(x) = (−1)nex2 dne−x2

dxn
, (9)

and the eigenvalues are λn = e−inπ/2, n = 0, 1, . . .. Since {ψn} forms an orthonormal
set, cn = 〈f, ψn〉. Thus E∗ : L2 → ℓ2 : f 7→ {〈ψn, f〉}. So for a ∈ R, the FrFT of f
is defined as

[Faf ](ξ) =
∞
∑

n=−∞

〈f, ψn〉λa
nψn(ξ) =

∫ ∞

−∞
f(x)ka(ξ, x)dx, (10)

where the kernel ka(ξ, x) of the integral representation

ka(ξ, x) =
∞
∑

n=0

λa
nψ

∗
n(x)ψn(ξ). (11)

Using Mehler’s formula [62, p. 61] it turns out that the kernel equals

ka(ξ, x) = CaKa(ξ, x) exp {−ixξ cscα} , (12)
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Ka(ξ, z) = exp
{

i

2
(x2 + ξ2) cotα

}

, Ca =
exp(iα/2)√

2πi sinα
=

√

1 − i cotα

2π
, α = a

π

2
.

(13)
If sinα = 0, then it is defined by a limiting process, which reduces the kernel to a
Dirac delta: δ(x± ξ).

The fractional Fourier transform is very popular in optical system analysis. The
reason is the following. Consider an object illuminated by some light source and
place several optical components (lenses, and other optical media) on the axis formed
by source and object. Then, moving a screen along this axis, it is possible that under
certain ideal conditions, we see an image or an inverted image of the object on the
screen. This is an illustration of the fact that the Fourier operator is just inverting
the axis when it is applied twice and it is the identity operator when applied four
times. In between the place of the upright and the inverted image, there is a place
where the Fourier transform or the inverse Fourier transform of the image can be
seen. But when moving the screen continuously, we shall not only see projections
of the Fourier transform, the inverse object, the inverse Fourier transform, and the
upright object. The projection on the screen will visualize all the fractional powers
of the Fourier transform.

Quantum mechanics is another domain where the FrFT appears naturally. The
wave function of an harmonic oscillator satisfies the Schrödinger equation. The wave
function at instant t can be obtained from the initial wave function at time t = 0
by an integral transform whose kernel is the Green function. It can be shown [68]
that this Green kernel is essentially the kernel of the FrFT. See also [122].

When considering the class of all FrFT, which is parameterized by the param-
eter a, then it has a group structure, called the elliptic group [122]. It is like a
rotation group since FaF b = Fa+b and F0 is the identity and the inverse is obvi-
ously (Fa)−1 = F−a. It does indeed operate in the (x, ξ)-plane like a rotation (see
below) which may be characterized by a rotation matrix

Ra =

[

cosα sinα
− sinα cosα

]

, where α = aπ/2 (14)

In the case of the Fourier transform, x is often a time variable and ξ is the frequency
variable when a = 1. So when looked at in the time-frequency plane, then the
Fourier transform will map the representation of the signal as a function of time into
a representation of the same signal as a function of frequency, which corresponds to
a a rotation over an angle π/2 (assuming time and frequency axes are orthogonal).
The FrFT generalizes this to a rotation over any angle aπ/2 in the time-frequency
plane.

The definition of the FrFT that we gave here is the standard one. However, there
are other eigenfunctions possible, which lead to alternative definitions. A systematic
investigation of the eigenfunctions of the Fourier operator is undertaken in [26] which
gives rise to nonstandard definitions of the FrFT.

The best handbook available for the moment on the fractional Fourier transform
is [85]. However, there do appear many papers in this domain, and the purpose of
this paper is to sketch the additional achievements of the last couple of years.
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4 The linear canonical transform

Besides the fractional Fourier transform (FrFT), a much more general class of linear
canonical transforms (LCT) has been studied [122, 1, 22, 95]. The linear canonical
transforms are characterized by a general matrix A which need not be restricted
to a rotation matrix, but it will represent any affine linear transformation in the
(x, ξ)-plane that is characterized by a general 2 × 2 matrix

A =

[

a b
c d

]

, det(A) = ad− bc = 1. (15)

However, for typographical convenience, we shall often denote this matrix as A =
(a, b, c, d) in the text, but all operations have to be understood in the usual matrix
sense. Obviously, there are 3 free parameters. It is an integral transform denoted
as [FAf ](ξ) =

∫∞
−∞ kA(ξ, x)f(x)dx whose kernel is

kA(ξ, x) = CAKA(ξ, x) exp{−iξx/b} (16)

KA(ξ, x) = exp

{

i

2

(

d

b
ξ2 +

a

b
x2

)}

, CA =
1√
2πib

. (17)

Clearly for A = Ra, we get the FrFT of order a, except for a constant unimodular
factor eiα/2. I.e., Fa = eiα/2FA if A = Ra.

If b = 0, the transform is defined by a limiting process, which reduces the kernel
to

ka(ξ, x) = ±a−1/2 exp{icξ2/2a}δ(x− ξ/a). (18)

Unless otherwise stated, we shall restrict ourselves to the case of real matrices A.
In that case the LCT FA is a unitary operator in L2(R).

The FrFT is not the only particular case for real A. Four other special cases are

- The Fresnel transform:

It is defined as

[Fresnel
zf ](ξ) :=

eiπz/l

√
ilz

∫ ∞

−∞
ei(π/lz)(ξ−x)2f(x)dx (19)

This is obtained for A = (a, b, c, d) = (1, b, 0, 1) in the sense that with b = zl
2π

we have Fresnel z = eiπz/lFA.

- Dilation: Defining the dilation operation as f(x) 7→ √
sf(sξ), then it can

be obtained as with A = (a, b, c, d) = (1/s, 0, 0, s) writing the operation as
√

sgn(s)FA.

- Gauss-Weierstrass transform or chirp convolution:

This is the transform obtained for A = (a, b, c, d) = (1, b, 0, 1):

[FAf ](ξ) = CA

∫ ∞

−∞
exp{i(x− ξ)2/2b}f(x)dx. (20)
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- Multiplication by a Gaussian or chirp multiplication:

A transformation obtained for A = (a, b, c, d) = (1, 0, c, 1):

[FAf ](ξ) = exp{icξ2/2}f(ξ). (21)

The eigenfunctions and eigenvalues of the LCT can be found in [122, 54, 95].
Since the kernel is Hermitian, the kernel for the inverse transform is given by

k−1
A (ξ, x) = k∗A(ξ, x) = kA(x, ξ). (22)

Moreover, the group structure implies that

FAFB = FC with C = AB. (23)

We shall call this the additivity property for LCTs.
Note that this definition is given for a signal that is nonperiodic and depending

on a continuous variable x. Essentially the same type of definition can be used for
periodic signals and/or signals that depend on a discrete variable. See also [87] for
fractional Fourier series and discrete time fractional Fourier transforms. See also [25]
for a uniform treatment in the case of the FrFT. It is clear by that by the general
procedure explained above, we can also fractionalize the LCT itself.

5 Geometric interpretation

The meaning of the transformation made by the LCT can be illustrated by its effect
on the Wigner distribution.

Let f be a signal, then its Wigner distribution or Wigner transform Wf is defined
as

[Wf ](x, ξ) =
1√
2π

∫ ∞

−∞
f(x+ u/2)f(x− u/2)e−iξudu. (24)

Its meaning is roughly speaking one of energy distribution of the signal in the (x, ξ)-
plane. Indeed, setting f1 = Ff , we have

∫ ∞

−∞
[Wf ](x, ξ)dξ = |f(x)|2 and

∫ ∞

−∞
[Wf ](x, ξ)dx = |f1(ξ)|2, (25)

so that
1√
2π

∫ ∞

−∞

∫ ∞

−∞
[Wf ](x, ξ)dξdx = ‖f‖2 = ‖f1‖2, (26)

which is the energy of the signal f .
The effect of the LCT on the Wigner distribution is that if fA(ξ) = [FAf ](ξ) is

the LCT of f and if the Wigner distributions of f and fA are given by Wf and WfA

respectively, then

WfA
(x′, ξ′) = Wf (x, ξ) (27)

where

x
′ :=

[

x′

ξ′

]

= A

[

x
ξ

]

=: Ax. (28)
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Figure 1: The effect of a LCT on a square. Left when the matrix A is decomposed as
in (46) and right when it is decomposed as in (47). The eventual result is of course the
same.
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In other words if MA : w(x) 7→ w(Ax), then MAWFA = W. Thus in the case
of the FrFT, the Wigner distribution of f is rotated over and angle α. In the case
of the LCT, the Wigner distribution has been transformed by a more general affine
transform as illustrated in Figure 1.

The ambiguity function, defined as

[Af ](x, ξ) =
1√
2π

∫ ∞

−∞
f(u+ x/2)f(u− x/2)e−iξudu (29)

is essentially the two-dimensional Fourier transform of the Wigner distribution: if
F is the two-dimensional Fourier transform, then [Af ](xξ) = 2π[FWf ](−x, ξ).
Whereas the Wigner distribution gives an idea about how the energy of the signal
is distributed in the (x, ξ)-plane, the ambiguity function will have a correlative
interpretation. Indeed [Af ](x, 0) is the autocorrelation function of f and [Af ](0, ξ)
is the autocorrelation function of f1 = Ff . It can be shown that also for the
ambiguity transform we have MAAFA = A.

In fact such a relation holds for any (x, ξ) representation of the Cohen class [32].
For a more detailed analysis of the effect of the parameters of the LCT on the

Wigner distribution and ambiguity function see [93]. Some properties about the
signal can be obtained by considering the Wigner or the ambiguity transform of the
Wigner or the ambiguity transform [50], which are then called quartic transforms.
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6 Fractional operations

Several operations like convolution, correlation, x-shift, ξ-shift etc can be defined in
the fractional domain. See [5, 25, 38]. As the LCT is unitary we can use the same
approach as in [5] to define shifts in the LCT domain. Define the unitary operator
denoting a shift in the x-domain as follows

[T0(x
′)f ](x) = f(x− x′). (30)

Then we may define a unitary shift in the LCT domain as

TA(xA) = (FA)−1T0(xA)FA. (31)

A frequency shift T1(ξ
′) : f(x) 7→ eiξ′xf(x) can then be represented by T1(ξ

′) =
F−1T0(ξ

′)F .
Other operations can be defined in a similar way. Defining the L2(R) inner

product as

〈f, g〉 =
1√
2π

∫ ∞

−∞
f(x)g(x)dx, (32)

the convolution in the x-domain can be defined as

(f ∗0 g)(x) =
〈

f,F2T0(x)g
∗
〉

=
1√
2π

∫ ∞

−∞
f(x′)g(x− x′)dx′, (33)

where [F2T0(x)g
∗](x′) = g∗(x− x′).

With this notation, it is easy to denote the ambiguity function as follows. Set

F (x, u, ξ) = T1(ξ/2)T0(u/2)f(x) = eixξ/2f(x− u/2), (34)

then
[Af ](u, ξ) = 〈F (x,−u,−ξ), F (x, u, ξ)〉 (35)

where the inner product is with respect to the variable x.
The convolution in the LCT domain can then be defined as

(f ∗A g)(x) =
〈

f,F2TA(x)g∗
〉

. (36)

Note that for A = I, FA is the identity and therefore the classical convolution is
recovered as f ∗I g = f ∗0 g. Note that this definition is inspired by [5] and differs
from the more common definition (37) given below. Similar definitions can be given
for correlation operations etc.

It is well known that h = f ∗0 g if and only if Fh = Ff × Fg. Therefore the
convolution in the x-domain and the multiplication in the domain of its Fourier
transform are called dual operations. Similarly, one can define a dual operation
“◦A” for a general fractional operation “•A”. For a general framework to obtain
such dualities in the case of the FrFT, we refer to [59].

In fact such duality is the basis for giving alternative definitions of fractional
operations. Again we restrict ourselves to the convolution. A proposal by Mustard
[75] (see also [85, p. 420]) is essentially to define the fractional convolution as

h = f ∗A g ⇔ FAh = FAf × FAg. (37)
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Note that we may consider G = FAg as the transfer function of a linear system.
This is useful in analyzing the role of the parameters (a, b, c, d) of the LCT.

Also other more general operations can be defined in such a way. For example a
canonical correlation of f and g can be defined as (see [91])

FA3[(FA1f) × (FA2g)∗], (38)

where it is required that
d1

b1
+
a3

b3
=
d2

b2
. (39)

The latter type of fractional operations can be seen as general filtering operations
in the fractional domain. Indeed, writing gA = FAg then h = f ∗A g means that

h = (FA)−1
(

[FAf ] × gA

)

(40)

i.e., we multiply with a filter function gA in the xA domain. In this sense, the Hilbert

transform is also of this type since with g(x) = 1/x,

[Hilbert f ](x) =

√

2

π
(f ∗0 g)(x) =

1

π

∫ ∞

−∞

f(x′)

x− x′
dx′ (41)

(integral in the sense of principal value). So in the frequency domain, we have to
multiply with the signum function. Thus some fractional generalization along these
lines is obvious. See section 11.

A somewhat related problem is the so called windowed fractional Fourier trans-
form. Here the windowed Fourier transform is applied to the FrFT of the signal.
Thus it is defined as F−a[h × Faf ], where h is the window function. Applying a
window in the fractional Fourier domain may have advantages if in that domain
the signal is more concentrated, and thus better caught in a narrow window. See
[112]. An optimal fractional domain with minimal spread can be computed from
the moments [9]. When the optimal rotation angle is found, there will be a better
reduction of cross terms from the different components in the signal [11]. What has
been done for the FrFT could also be done for the LCT, but we are not aware of
publications on this aspect.

7 Simplified linear canonical transform

Often in optical applications, of the 3 free parameters in the LCT, it is only the
ratio a/b that is important. Consider an optical systems whose image is given by
the transformation fA1

= FA1f and suppose we want to model it by a (simpler)
system described by fA2

= FA2f , where A1 = (a1, b1, c1, d1) and A2 = (a2, b2, c2, d2).
In defining the model, it will be important to fix the characteristics of the image
that we want to match. The following property holds [6]. If s = a1/a2 = b1/b2, then

|FA2f | = |FSFA1f | (42)

where S = (1/s, 0, 0, s) represents a scaling of the variable. This implies that the
results of the two transforms FA1 and FA2 will have the same intensity if (a1, b1) =
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(a2, b2). If the scaling is ignored, and only the intensity is important, then it is
sufficient to choose a1/b1 = a2/b2. In the latter case, the remaining variables in the
model are chosen freely (subject to the constraint a2d2 − b2d2 = 1).

Another approach which leads to the same conclusion can be found in [91].
There it is shown that if we define two filtering operations in the xA-domain (see
the previous section)

hi = (FAi)−1[(FAif) ×Gi], i = 1, 2 (43)

then h1 = h2 if a1/b1 = a2/b2 and G2(xA) = G1(b1xA/b2). Thus if a1/b1 = a2/b2,
then whatever operation that can be obtained with A1 can also be obtained by A2.
I.e., A1 and A2 are equivalent.

Also the effect of a/b on the Wigner distribution of FAf discussed in [93] leads
to a similar conclusion.

The freedom to choose the parameters of the LCT for a given ratio a/b can lead
to a simplification in the computation.

For example, if in the FrFT we want to keep the ratio a/b = cotα, then this
can be realized as a LCT with parameters A = (cotα, 1,−1, 0) (type 1) or A =
(1, tanα,−2 cotα,−1) (type 2) or still other types which are inspired by applications
or by its optical realization. See [91].

8 Computational aspects

Note that the kernel of the LCT contains a factor of the form

exp
{

i

2b
(dξ2 + ax2 − 2xξ)

}

= exp
{

i

2b

[

(d− 1)ξ2 + (a− 1)x2 + (x− ξ)2
]

}

(44)

which means that the LCT can be decomposed into several steps. Let us define
chirp functions

cr(x) = exp
{

i
r

2
x2
}

(45)

then the successive steps are

1. chirp multiplication: Ca−1

b
: f(x) 7→ g(x) = f(x)ca−1

b
(x)

2. chirp convolution: g(x) 7→ h(ξ) = CA[Fg](ξ)[Fc1/b](ξ)

3. chirp multiplication: Cd−1

b
: h(ξ) 7→ fA(ξ) = h(ξ)c d−1

b
(ξ).

This corresponds to the following decomposition of the LCT matrix
[

a b
c d

]

=

[

1 0
(d− 1)/b 1

] [

1 b
0 1

] [

1 0
(a− 1)/b 1

]

. (46)

As we have mentioned above, the rightmost and leftmost factors define chirp multi-
plications, while the middle factor corresponds to a chirp convolution.

Another interesting decomposition is
[

a b
c d

]

=

[

1 0
db−1 1

] [

b 0
0 b−1

] [

0 1
−1 0

] [

1 0
b−1a 1

]

. (47)

In this case the computation can be read off from right to left:
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1. chirp multiplication: Cb−1a : f(x) 7→ g(x) = f(x)cb−1a(x)

2. Fourier transform: F : g(x) 7→ h(ξ) = [Fg](ξ)

3. dilation: Db : h(ξ) 7→ k(ξ) = g(ξ/b)/
√
b

4. chirp multiplication: Cdb−1 : k(ξ) 7→ fA(ξ) = k(ξ)cdb−1(ξ)

so that FA = Cdb−1DbFCb−1a. The latter is the decomposition that was exploited in
[59].

For the digital computation, we have to discretize the variables under the re-
striction of the Nyquist sampling theorem. Using a fast Fourier transform, we can
derive a fast algorithm for the computation [35, 83, 45, 60].

Suppose that the Wigner distribution of the original signal f is supported in the
(x, ξ)-plane within a circle with ‖x‖ < ∆/2 where x = [x, ξ]T . Then the Wigner
distribution of fA = FAf will be supported in a circle with radius m∆/2 where
m = ‖A‖. For example in the case of the FrFT where A = Rα, it is not difficult to
show that ‖A‖ ≤ 2. Thus if we want to recover the result from discrete samples, we
need to have at leastmN samples. Therefore some sinc interpolation is used to insert
samples in between two given samples before the chirp convolution is computed. For
more details in the case of the FrFT we refer to the cited references. The case of
the LCT is very similar. See for example [90, 96] for the use of the DCT technique
to evaluate all types of fractional and linear canonical transforms efficiently. For a
filter bank implementation see [53].

9 Multidimensional linear canonical transform

So far we considered functions f in only one variable x. However the same ideas
can be used to obtain definitions for the multivariate case.

The most simple solution is a tensor product form. This means that we define
the n-dimensional (n-D) LCT as the result of applying subsequently n LCTs to
each of the variables separately. Thus, if we denote in bold face the n-tuples of
the corresponding one-dimensional variables, then the n-dimensional LCT can be
defined as

fA(ξ) = [FAf ](ξ) =
∫ ∞

−∞
kA(ξ,x)f(x)dx, (48)

where kA(ξ,x) =
∏n

j=1 kAj
(ξj, xj). It is convenient to define the matrix A as the

square matrix

A =

[

a b

c d

]

, where Aj =

[

aj bj
cj dj

]

, j = 1, . . . , n and

a = diag(a1, . . . , an), b = diag(b1, . . . , bn),
c = diag(c1, . . . , cn), d = diag(d1, . . . , dn).

Such a definition implies that almost all the properties of the 1-D case are main-
tained. For example we have the composition rule FAFB = FC with C = AB,
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which means that Cj = AjBj , j = 1, . . . , n. Also, the affine transformation of the
Wigner distribution is as before. Indeed the n-D Wigner distribution is defined as

[Wf ](x, ξ) = (2π)−n/2
∫ ∞

−∞
f(x + u/2)f(x − u/2)e−iξ·udu (49)

where we have used the dot to denote the inner product of the two vectors: ξ · u =
∑n

j=1 ξjuj. It can then be shown along the same lines as in the scalar case that

[WfA](x′, ξ′) = [Wf ](x, ξ),

[

x
′

ξ′

]

= A

[

x

ξ

]

. (50)

The nonseparable (affine) transform corresponds to taking general instead of
diagonal matrices a, b, c, and d. The kernel does not factor anymore. The problem
has been considered in [114], where the authors are looking for unitary transforms
FA that have the linear transformation effect (50) on the Wigner distribution. These
are called metaplectic transforms. (See also [34, 43].) It turns out that A needs to
be symplectic (hence | detA| = 1) and so they came to the following definition based
on the decomposition (47):

FA = C
db

−1DbFCb−1a. (51)

where the n-D Fourier transform is the classical one:

[Ff ](ξ) = (2π)−n/2
∫ ∞

−∞
f(x)e−ix·ξdξ, (52)

the dilation operator stands for

[Dbf ](x) =
1√

det b
f(b−1

x). (53)

and an n-D chirp is cr(x) = exp{ i
2
x

T
rx}. However, besides the standard condition

det A = ±1, it is required that b is symmetric. The reason why b has to be
symmetric is that in the block case, the dilation is described by a matrix of the form

[

b
−1

0

0 b
T

]

(54)

which does not fit into the decomposition (47) of A. The definition of [114] also
requires db

−1 and b
−1

a to be symmetric. But that is no real restriction because
these matrices appear in chip expressions and if r is not symmetric, then the the
quadratic form x

T
rx can always be rewritten as 1

2
x

T (r + r
T )x (if r is real). The

previous definition requires b to be invertible, but that condition can be removed
[115].

For non separable 2-D FrFT definitions and properties see also [109, 108, 115, 94].
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10 Radial canonical transforms

It is well known that the Hankel transform appears naturally as the radial part of
the Laplace operator expressed in cylindrical coordinates [122, sec. 8.4]. This makes
a link with the n-D FrFT. Indeed, when dealing with a circular symmetry in the
problem, it is advantageous to write the FrFT in appropriate coordinates.

In general the canonical transforms for such a situation are known as radial

canonical transforms [121, 116].
Such a radial canonical transform is obtained as the result of applying the LCT

in n-D and assume spherical symmetry, so that we may use the variables x = ‖x‖
and ξ = ‖ξ‖ instead of the vectors x and ξ because the function will only depend on
x and its transform will only depend on ξ. In this way a LCT leads to a canonical

Hankel transform characterized by the matrix A of the LCT. Its definition is an
integral transform

[HAf ](ξ) =
∫ ∞

0
kA(ξ, x)f(x)dx. (55)

with kernel

kA(ξ, x) = xn−1 e
−i π

2
(n

2
+ν)

b
(xξ)1−n/2 exp

{

i

2b
(ax2 + dξ2)

}

Jn/2+ν−1

(

xξ

b

)

, (56)

with Jν the Bessel function of the first kind of order ν. The dimension of the original
problem is n. For n = 2 and for A the rotation matrix, we obtain the fractional
Hankel transform

[Haf ](ξ) =
ei(1+ν)(π/2−α)

sinα

∫ ∞

0
f(x) exp

[

−i(ξ
2 + x2)

2
cotα

]

Jν

(

xξ

sinα

)

xdx. (57)

The eigenfunctions are Gauss-Laguerre functions

ψν
n(x) =

√

n!

Γ(n+ ν + 1)
e−x2/2Lν

n(x), ν > −1 (58)

where Lν
n(x) is the nth Laguerre polynomial of order ν.

See also [58, 77, 7, 61, 85, 39, 40, 126].
See also [125] for the example of the 2-D FrFT. Similar investigations could be

undertaken for problems with other types of symmetry.

11 Other fractional transforms

The idea that was explained in section 2, has been the inspiration to define several
other fractional operators. As opposed to the LCT, we shall call them fractional

angular transforms because, like the FrFT, they will depend on only one parameter,
which can be given an angular interpretation.

Alieva and coworkers [8, 12, 10] have derived general definitions and properties
for what they call cyclic transforms. These are operators M such that for some
integer N the power MN becomes the identity. For example, N = 4 for Fourier and
Hilbert transforms and N = 2 for Hankel and Hartley transforms. If in the LCT
a+ b = 2 cos(2πm/N) with m and N integers, then the period is N .
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The operator M being cyclic implies that its eigenvalues are unimodular of the
form λn = exp(2πm/N). Requiring that MaMb = Ma+b and M0 = MN = I
implies a specific form for the kernel yet leaving a lot of freedom. By this general
strategy it is possible to generate several fractional forms for a single operator M.

In this way they are able to define fractional forms of the Hilbert, Hankel, Sine,
Cosine and Hartley transform.

These were fractional angular operators that were inspired by a theoretical mo-
tivation. It is easy to derive certain properties of the eigenfunctions for example,
but they are in most cases identical to results obtained by different approaches.

Zayed [129] gave an extra twist to this idea. Instead of using the definition (11)
for the kernel of the fractional transform, he proposes to use as a kernel the radial
limit along a ray (defined by α = aπ/2), of some “artificially” constructed kernel,
namely

ka(ξ, x) = lim
|λ|→1−

∞
∑

n=0

|λ|neinαψ∗
n(x)ψn(ξ). (59)

Note that the eigenvalues λa
n are replaced by |λ|neinα. In this way, we can just choose

some complete set of orthogonal functions ψn and a value a to define a fractional
operator. The form of the kernel immediately implies that MaMb = Ma+b and
that it has period 4 (or less) in a. Since the FrFT has eigenvalues einα, it will be no
surprise that this is a trivially recovered as a special case of Zayed’s definition.

In a similar way he can also obtain a fractional form of the Mellin transform, the
Hankel transform, the Riemann-Liouville derivative and integral. For the space of
functions square integrable on the interval [−1, 1], Jacobi-functions can be defined
to play the role of the ψn, leading to a new fractional transform [129]. It is not
clear though what effect these transforms will have on the Wigner distribution of
the function or for what particular applications they will be useful..

Again these definitions are inspired by theoretical considerations. It is however
one of the very few exceptions where the fractional transforms that we consider in
this survey and the fractional derivative and fractional integral feature in the same
paper.

Let us look somewhat closer at some of the more important fractional transforms
in the recent literature.

•The Hilbert transform

It is defined as the principal value of the integral

1

π

∫ ∞

−∞
(ξ − x)−1f(x)dx. (60)

Its Fourier transform is −i sgn(ξ)[Ff ](ξ). So that we could define it as
F−1[−i sgn(ξ)[Ff ](ξ)]. Observe that −i sgn(ξ) = e−iπ/2h(ξ) + eiπ/2h(−ξ) where
h(ξ) is the Heaviside step function: h(ξ) = 1 for ξ ≥ 0 and h(ξ) = 0 for ξ < 0. This
formulation allows for a fractional canonical generalization [93], namely

[Hilbert
A
φ f ](ξ) = (FA)−1

[(

e−iφh(ξ) + eiφh(−ξ)
)

[FAf ](ξ)
]

. (61)

For φ = π/2 and A = I we get the classical formula. For A = Ra we obtain an
angular fractional Hilbert transform. This transform has not a tractable effect on
the Wigner distribution [93].
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The multidimensional case is not so well developed, unless when it is defined
relative to some direction e ∈ Rn, ‖e‖ = 1 as the principal value of

[Hilbert ef ](ξ) =
1

π

∫ ∞

−∞
t−1f(ξ − te)dt. (62)

In [31], a “fractional form” is defined where the t−1 in the integrand is replaced by
t−a with 0 < a ≤ 1.

See also [67, 128, 86] for some other aspects of the fractional Hilbert transform.
In section 13 we consider an application.

• The Cosine, Sine and Hartley transforms

In the Fourier transform the original function is multiplied by eixξ = cos xξ +
i sin xξ and the product is integrated. In the Cosine, Sine and Hartley transform,
the exponential factor is replaced by cos xξ = Re(eixξ), by sin xξ = Im(eixξ), and
by cas xξ = cos xξ + sin xξ respectively. These classical transforms are therefore
used when the signal is real, and this also holds for the derived transforms that we
shall discuss in this section. The only advantage of the generalizations is that they
contain more parameters and are therefore more flexible for whatever application
they will be used sooner or later.

So, let us see how we can fractionalize these transforms. One possibility to obtain
angular fractionalizations of these (see [49]) is to replace the kernel ka of the FrFT by
its real part, its imaginary part or the sum of its real and imaginary part. However
this will not respect the angular additivity property and hence the inverse of the
transform with power a is not just the transformation with power −a.

With the arsenal of fractionalization techniques, it is not difficult though to give
several fractionalizations that do respect the additivity property [96]. If ψn is the
nth Gauss-Hermite function, then it is an eigenfunction of the Fourier operator
F with eigenvalue (−i)n. Moreover, ψn is even for n even and it is odd for n
odd. This allows us to conclude that they are also eigenfunctions of the cosine,
sine and Hartley operators but with sightly adapted eigenvalues. Using the general
technique of section 2, we obtain fractional forms of these operators. The kernel for
the fractional cosine transform (FrCT) is exactly like the kernel (12) of the FrFT,
except that in the last factor we have to replace exp by cos. For the fractional sine
transform (FrST) we have to replace exp by sin, but we have to add an extra phase
shift by adding an extra factor to the kernel of the form −ieiα, with α = aπ/2. The
fractional Hartley tranform (FrHT) turns out to be the sum of the fractional cosine
and fractional sine transform. With formulas:

Cos =
1

2
[F + F2F ], Sin =

i

2
[F − F2F ] (63)

and

Hartley = Cos + Sin =
1 + i

2
F +

1 − i

2
F2F (64)

generalize to

Cosa =
1

2
[Fa + F2Fa], Sina =

ia

2
[Fa −F2Fa] (65)

and

Hartley a = Cosa + Sina =
1 + ia

2
Fa +

1 − ia

2
F2Fa. (66)
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All of them are cyclic of order N = 2. To some extend, they satisfy the addi-
tivity property. That they are not invertible in the whole space follows from the
fact that for example the cosine transform has eigenvalues λ2n+1 = 0 for the odd
eigenfunctions ψ2n+1, and the sine transform has eigenvalues λ2n = 0 for the even
eigenfunctions ψ2n. Thus the cosine will kill all the components of the function in
the space of the odd eigenvectors and thus it will not be possible to recover these by
inverting the operation, except if we know that there are no components along these
odd eigenfunctions, i.e., if the given signal is even. Similarly for the sine transform.
There is no problem for the Hartley transforms since there are no zero eigenvalues
in that case. Thus Cos−aCosaf = f only if f is even and Sin−aSinaf = f only if f
is odd.

For this reason the cosine and sine transforms are usually defined as one-sided
transforms. This just means that it is assumed that the given function is even
respectively odd and the integral over R in the integral representation is replaced
by 2 times the integral over R+, thus

∫∞
−∞ = 2

∫∞
0 .

Exactly the same procedure can be used to define canonical cosine, sine or Hart-
ley transforms. We only need to recall from [95] that for any LCT there is always a
complete set of orthogonal eigenfunctions ψn that can be chosen such that the ψ2n

are even and the ψ2n+1 are odd. Thus, we can in the above derivation replace the
exponent a by A except for the factor ia. Therefore, this factor is skipped in [96]
and replaced by 1, which leaves us with the definitions

CosA =
1

2
[FA + F2FA], SinA =

1

2
[FA −F2FA], (67)

Just like FA = eiα/2Fa, we also have CosA = eiα/2Cosa and SinA = ei3α/2Sina when
A is the rotation matrix Ra. The additivity properties in the sense of LCTs will hold
for the CosA and SinA transform if we restrict ourselves to the even, respectively odd
functions. However, defining Hartley A = CosA + SinA does not give the additivity
property like in the LCT. Using instead Hartley A = 1

2
[FA ± iF2FA] would give the

additivity property, but now we do not get Hartley a when A = Ra.
We also note that CosAf = FAf and a fortiori Cosaf = Faf if f is even.
Furthermore simplified canonical cosine, sine and Hartley transforms can be

defined just like the simplified LCTs were defined. There are however several pos-
sibilities depending on how the matrix A is chosen. One of the advantages of the
simplified versions is that in general, when f is real, then we can arrange the sim-
plified fractional or canonical cosine transform such that the transform will also be
real. The additivity property is lost though. We refer to [95, 92] for further details.

• LCT with complex matrix A
Although it is not the main theme in this survey, we briefly mention some ele-

ments of the theory where in the LCT, the matrix A is allowed to be complex. Such
transformations appear in quantum physics, differential equations or more advanced
optics. See [122].

When A is complex, we loose the unitarity of the LCT as an operator on L2(R).
It is however possible to define a measure µA(z) in the complex plane such that with
respect to the inner product

〈f, g〉A =
∫

C

f(z)g(z)dµA(z) (68)
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the LCT FA becomes unitary when A is complex. Some examples.

- The Bragman transform

This transform corresponds to the matrix

AB =
1√
2

[

1 −i
−i 1

]

. (69)

The kernel is
1

√√
2π

exp(−ξ2/2 +
√

2xξ − x2/2) (70)

and

dµA(x) =

√

2

π
exp(−|x|2)dx. (71)

- The bilateral Laplace transform

In this case we have a particularly simple matrix

AL =

[

0 i
i 0

]

. (72)

The transform kernel is

− i√
2π

exp(−xξ). (73)

The corresponding inner product collapses to an integral along the imaginary
axis with weight 1.

- In the case of circular symmetry, one may switch to spherical coordinates
and the Barut-Girardello transform will appear in the Bragman case and the
Hankel transform in the bilateral Laplace case.

Note also the relation between the Bragman and bilateral Laplace transform and
the Fourier transform. Using the dilation matrix AD = (eiπ/4, 0, 0, e−iπ/4) (to be read

as a 2 × 2 matrix), we have AL = ADAFA
∗
D and AB = A

−1/2
F where AF = R1 =

(0, 1,−1, 0) is the matrix corresponding to the Fourier transform. This relation
allows for the definition of fractional Laplace transforms by defining their LCT
matrix as

ALa = ADAF aA∗
D =

[

cosα i sinα
i sinα cosα

]

, (74)

where α = aπ/2. The Bragman and bilateral Laplace transforms are special cases
obtained for a = −1/2 and a = 1 respectively.

Just like the Hankel transform was obtained from the FrFT in the case of circular
symmetry, it is possible to exploit this type of symmetry in the case of the bilateral
Laplace transform. This results in the Barut-Girardello transform. It is essentially
like the Hankel transform but replacing the Bessel functions of the first kind Jν

appearing in the kernel by Iν , which are Bessel functions of the second kind. Its
fractional variant is then defined as the radial counterpart of the fractional bilateral
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Laplace transform. For more details eigenfunctions and integral kernel, see [116,
119].

• Offset transforms

The offset versions of the previous transforms add a shift in both the x and the ξ
domain to the usual definition. For example the offset LCT is the integral transform
with kernel

CAe
iξη exp

{

i

2

(

d

b
(ξ − τ)2 − 2(ξ − τ)x+

a

b
x2

)}

(75)

where η and τ are the ξ and x shifts respectively. It is shown in [97] that if ψ is an
eigenfunction of the LCT, then for example if a+ d 6= 2

ψτ,η(x) = exp

{

i
cτ + (1 − a)η

2 − a− d
x

}

ψ

(

x− (1 − d)τ + bη

2 − a− d

)

(76)

is an eigenfunction of the offset LCT. It is further shown that there is always a
complete set of orthonormal eigenfunctions of the offset LCT (and hence also of the
offset FrFT).

The offset transforms and their generalizations are useful when in optical sys-
tems one wants to investigate self-imaging phenomena, that is when the output is a
(possibly scaled) duplicate of the original. If in such a system, a lens is shifted up or
down, or when a prism is inserted, then the self-imaging phenomenon will remain.
Both of these modifications can be modelled by an offset transform and more gen-
erally, all inputs that will result in a self-imaging phenomenon can be computed. In
this way resonance phenomena can also be analysed. The more general forms of the
offset transforms have more parameters and will thus be better equipped to model
more general situations.

• Other transforms

Fractionalization of all types of transforms have been undertaken. The most
useful ones are based on eigenvalue decomposition. For example the Hadamard

transform [99]. Walsh and Haar transform [71, 72], Mellin transform [129, 4], Gabor

transform [2, 132, 21, 30, 3], Radon transform [127] etc. To keep this survey within
a reasonable number of pages we shall not elaborate further on these.

12 Discrete fractional transforms

During recent years a lot of effort went to the design of discrete analogs of the
fractional transforms. The definitions are however not unique and many approaches
exist. We give some elements of recent developments.

12.1 Discrete fractional Fourier transform

The discrete Fourier transform (DFT) multiplies a vector f with the DFT matrix
F . This matrix has eigenvalues λk ∈ {1,−1, i,−i} with certain multiplicities. It
is possible to choose the eigenvectors orthogonal such that the eigenvalue decom-
position of M is F = EΛE∗. As we have explained before, the discrete fractional
Fourier transform (DFrFT) will then be defined as F a

f = EΛaE∗
f . So the problem
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is reduced to an appropriate computation of the eigenvectors of the DFT matrix.
To approximate the Gauss-Hermite functions we also want them to be even or odd
vectors, just like the even and odd Gauss-Hermite functions. The method proposed
in [27, 28, 29] is to construct a symmetric matrix S with simple eigenvalues that
commutes with F , so that it has the same eigenvectors as F . This matrix is obtained
by discretizing the continuous differential equation whose eigenfunction solutions are
the Gauss-Hermite functions:

(D2 + FD2F−1)f(x) = λf(x), D =
d

dx
. (77)

It is proved that S is given by S = A+B with A a circulant matrix whose first row
is (2, 1, 0, . . . , 0, 1) and B = FAF−1. Using the symmetry properties, we can even
more simplify the problem with the matrix

P =
1√
2







√
2

Ir Jr

Jr −Ir





 or P =
1√
2













√
2

Ir Jr√
2

Jr −Ir













(78)

where r = ⌊(N−1)/2⌋ depending on N being odd or even Ir is the r×r unit matrix
and Jr is Ir with its columns in reversed order. Indeed,

PSP−1 =

[

Ev 0
0 Od

]

(79)

and the problem is thus reduced to finding eigenvectors for Ev and Od. It is proved
that the eigenvectors constructed in this way can be uniquely defined to be even
and odd. These eigenvectors are the so called discrete Gauss-Hermite functions
(vectors) and they represent approximate samples of the continuous counterparts.
It is however only true if the size N of the matrix tends to infinity. For finite N ,
the approximation will become worse when the order of the discrete Gauss-Hermite
functions approaches N . Therefore, a more accurate discretization of the continuous
equation (77) is proposed. The matrix A is somewhat more complicated, but the
same arguments can be used to come to the same result with better approximating
properties. An investigation of these approximating properties is undertaken in
[19, 18].

Since the dimension of the 4 eigenspaces of F is approximately N/4, there are
several possibilities to choose the orthogonal eigenvectors in each eigenspace. So
there are many different possible choices for the decomposition F = EΛE∗, hence
also many possible definitions of F a = EΛaE∗. For example, depending on the order
of approximation in the discretisation of (77), we get a different matrix S, and hence
different eigenvectors. Another element that makes the definition ambiguous is the
choice of the fractional power of the eigenvalues. In general, the complex value (−i)a

is not uniquely defined when a is real.
Modifications are proposed in [89] where approximations of the discrete Gauss-

Hermite vectors are obtained by sampling the continuous Gauss-Hermite functions
and then they are projected and orthogonalized in the appropriate eigenspaces. A
somewhat similar technique was used in [88]. Other techniques based on eigenvalue



990 A. Bultheel – H. Mart́ınez-Sulbaran

decompositions are [70, 98]. For an implementation suited for implementation on a
parallel computer see [123].

Thus variants to define the DFrFT were proposed. One may consult [90] for a
survey with advantages and disadvantages of the different approaches. We mention
briefly

- There are methods based on linear combinations of F k, k = 0, 1, 2, 3 [110, 26].
This has some disadvantages similar to the disadvantages of the early definition
of the FrFT given in [76] which was also based on a combination of Fk, k =
0, 1, 2, 3.

- Some methods are based on sampling the continuous FrFT [83].

- In [15] a definition was given based on group theory.

- The authors of [107] define the DFrFT as the result of the continuous FrFT
whose input is a pulse train.

- Closed form solutions [90] are obtained by considering the input and output
as samples of the continuous transform. The discrete matrix F a is then con-
structed by sampling the continuous transform kernel and then force it to
satisfy (F a)∗(F a) = I. The number of samples needed in the output will de-
pend on a and will be large when a is close to 0. Using F a = F a−1F , this
disadvantage can be overcome. If N is the number of given samples, then we
will have M ≥ N samples for the output and the sampling distance in the x
and ξ domain should satisfy ∆x∆ξ = s2π sinα/(2M + 1) with s an integer
relative prime to 2M+1. A completely similar technique can be used to define
a discrete form of the LCT. This definition will not have the additivity prop-
erty. It is however efficient in computing samples of the continuous transform.
For other applications some simplifications are possible. A comparison with
all the other types of DFrFT can be found in [90].

- In [37] orthogonal eigenvectors are constructed by imposing certain symme-
tries. The idea is the following. If the eigenvector has to satisfy a certain “sym-
metry” property like being periodic or like having certain zero entries, then the
subspace of eigenvectors has a smaller dimension. Therefore, the eigenvectors
can be found by solving a small eigenvalue problem, which results in a small
eigenvector, which is then “expanded” to a full size eigenvector of the DFT
matrix. Choosing the symmetries such that orthogonality is obtained, these
authors obtain explicit forms of orthogonal eigenvectors that can be computed
efficiently if N is of the form N = rM2 with r small (typically 1 or 2). The
discrete cosine transform of [24] is an example of such an algorithm. Of course,
when the eigenvectors are fixed, the DFrFT is immediately defined.

- A somewhat different approach is taken in [17, 16]. The DFrFT (also called
Fourier-Kravchuk transform) is still defined by the decomposition F a = EΛaET

with Λ = diag(1, e−ia, . . . , e−iNa). The matrix E is an orthogonal matrix which
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contains N Kravchuk functions. The nth Kravchuk function is a vector of di-
mension N whose kth entry is given by

2n−N/2

√

√

√

√

(

N

N/2 + k

)

/

(

N

n

)

φn(k +N/2) (80)

where φn is the nth symmetric Kravchuk polynomial:

φn(k) =
(−1)n

2n

(

N

n

)

2F1(−n,−k;N ; 2). (81)

The Kravchuk polynomials are orthogonal with respect to summation over

the points {0, 1, . . . , N} with respect to the binomial weight
{

2−N
(

N
k

)}N

k=0
so

that the Kravchuk functions are orthogonal over the same points with weight
1. In other words, the matrix E is orthogonal. The Kravchuk functions
appear as solutions of an eigenvector of the harmonic oscillator equation in
which the Hamiltonian is replaced by a finite difference operator on equis-
paced points. Moreover, as N → ∞, these Kravchuk functions converge to the
Gauss-Hermite functions that solve this eigenequation with continuous Hamil-
tonian. The additivity property is obviously satisfied by construction.
The computation of this Fourier-Kravchuk transform can be easily computed
by first multiplying by ET which is possibly implemented by the Feinsilver-
Schott algorithm [41] (not a fast algorithm!), then multiplying by the diagonal
matrix Λa and finally multiplying by E.

12.2 Other discrete transforms and related problems

It is clear from the previous section that there is not a unique approach to the
discrete fractional Fourier transform. Perhaps this is the reason why the discrete
versions of other related transforms is still so much underdeveloped. Because of page
limitations and because there is only little to be said we just quickly summarize what
is known so far. There is still room for many new research results here.

• Discrete cosine, sine and Hartley transform and general LCT

These transforms are most directly related to the Fourier transform, and their
fractional counterparts were fairly easily obtained in the continuous case. How-
ever, there are some complications for the discrete case.

As is well known there are eight types of discrete cosine (DCT) and sine (DST)
transforms [113]. The DFT matrix has eigenvectors that are even if they are
in the eigenspaces of ±1 and they are odd when they are in the eigenspaces of
±i. The DCT-I and DST-I matrices have only nonzero eigenvalues ±1 and the
DCT-I and DST-I eigenvectors of size N can be easily obtained from the first
half of the entries of the Gauss-Hermite eigenvectors of a DFT matrix of size
that is approximately twice the size. See [100] for details. A similar technique
is used in [117] for the discrete Hartley, DCT-IV and DST-IV transforms. See
also [88]. Thus, for those cases, we can basically rely on the computations that
were proposed for the discrete fractional Fourier transform.
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For the DCT and DST of types II and III, the eigenstructure is more compli-
cated. Besides the eigenvalues ±1, which will be simple (if they appear at all),
there are a number of complex conjugate pairs of eigenvalues. The advantage
is that the eigenvectors are uniquely defined, so it only remains to choose the
real powers of the eigenvalues. This has been explored in [24]. The DCT’s of
type I, IV, V, VIII all behave similar (only multiple eigenvalues ±1 and 0), and
those of type II, III, VI, VII are similar in that they have distinct eigenvalues.
An in depth analysis of all the eigenvalues and eigenfunctions is given in [26].

It should also be possible to fractionalize the multidimensional Hartley trans-
form [131].

We mentioned before the closed form technique for the discrete LCT given in
[90]. Apart from this, the definition and computation of a discrete LCT seems
to be largely unexplored.

• Discrete Wigner distribution

One of the basic facts about the fractional Fourier transform is its rotational
effect on the Wigner distribution of the signal. However, the effect of discrete
transforms on the Wigner distribution is not so clear anymore. First of all
one needs to define a discrete Wigner distribution. Again, there are several
approaches possible. See [106, 81, 82, 101, 105]. We also note that the Wigner
distribution is redundant so that it can be recovered from a relatively small
number of sample values [104]. The rotation interpretation of the FrFT, and
more generally, the transformation resulting from a LCT, is not trivial either
[107].

• Sampling theorems and uncertainty principle

Let ∆2
a be the spread of the function fa = Faf , then the well known un-

certainty principle says ∆2
0∆

2
1 ≥ 1/4. Thus a more precise localization in the

x-domain will imply a less precise localization in the Fourier domain. It should
then be clear that we may expect an intermediate result for a fractional do-
main that is in between. This is also what has been obtained. The previous
uncertainty principle is generalized to ∆2

0∆
2
a ≥ (sin2 α)/4 [111] for fractional

Fourier transforms over an angle α. Of course such results could be placed in a
much broader perspective of uncertainty principles for operators. See [47, 48]
and the references therein.

Sampling theorems say how many samples of a signal are needed to recover
the signal exactly. Obviously, it is only possible to formulate such theorems
if we know something about the signal. More precisely, the bandwidth, i.e.,
the maximal frequencies that are allowed in the signal will essentially fix the
number of samples that are needed, as in the classical Shannon sampling the-
orem. But what if we have only information about the FrFT instead of the
Fourier transform? Also in that case several sampling theorems were obtained
like e.g., in [38, 44, 130].

To the best of our knowledge, there has not been a systematic investigation of
these topics in the general LCT case or the multidimensional case. Neither is
there a theory for the fractional transforms for the case of unequally spaced
data like for the classical FFT [103].
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13 Applications

Traditionally, the FrFT is used as modelling tool in quantum mechanics and in optics
systems. In fact, that is where the impulse for the development of the whole theory
came from. So far we have written this survey with the signal and image processing
applications in mind. The quantum mechanical applications usually require a more
abstract and somewhat less intuitive approach. So we have chosen to neglect this
part of the story. It is well documented in the literature [42, 122]. But even when
we restrict ourselves to the optical, and the signal and image processing side of the
story, there is still an overwhelming pile of literature where the previously surveyed
transforms are used. So, we do not want or can elaborate on all of these because
they often need a specific vocabulary, and because it would bring us far beyond the
restrictive page limit. So we mention very briefly the scent some of the applications
and invite the reader to look up the details in the literature. These are only intended
as illustrations of what is possible with these transforms, and we are fully aware of
the fact that we are far from complete and that we do not include many details.
Moreover we only want to refer to the more recent papers, since the order ones have
been covered in other surveys or books.

13.1 Filtering

One of the typical applications is filtering. If the components of a signal interact
in the time and the frequency domain, then it may be difficult to separate them
and filter out the noise. However using different rotations, it is possible to separate
components from a signal as long as their Wigner distributions are disjunct. See for
example [85]. Figure 2 shows schematically the Wigner distribution of a noisy signal.

Figure 2: Filtering operations to remove noise by rotations and bandpass filtering.

signal

noise

1

2

3

By successive rotations (3 in the example of the figure that bring the indicated axes
in vertical position) and removing the energy that is on the indicated side of the
axes using some low or high-pass filter, the noise can be completely removed. This
is impossible with classical Fourier techniques.
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13.2 Compression

Another application is the compression of signals [124]. The idea is that one or
more fractional Fourier transforms are computed and filtered (e.g. by thresholding)
to obtain simpler representations of the signal. It may well be that the FrFT com-
ponents are much simpler in one domain than in the other. Take for example a
chirp function. An appropriate FrFT will transform it into a delta function, which
allows for a very sparse representation. If more FrFTs are made, they can be done
sequentially or in parallel, and in the case of an image, they can be different for the
two spatial directions. As it is now, this technique does not seem to be competitive
in quality or in computer time with classical techniques.

13.3 Image encryption

There are many papers on optical encryption using the FrFT. E.g., [51, 52, 64, 65,
79, 78, 118, 133] to mention just a few. A possible encryption technique for an image
is to first multiply the image with a random phase (i.e., multiply it with a function
of the form eiφ(x,y)), then apply a 2-D FrFT of some order that may be different
in the two directions. Only the intensity of the result is stored. The same set of
operations is applied a second time to the image but with a different phase and
different orders. The original signal (intensity and phase) can be recovered from the
two resulting images by a recursive scheme [51].

There are several variants to this. For example [65] proposes to do the phase
multiplication and FrFT not in parallel but in cascade. Thus performing three
subsequent FrFTs interlaced by a multiplication with a random phase.

Decryption is obtained by simply inverting all the operations in opposite order.

Moreover, because all these techniques can be implemented by optical systems,
which are naturally two-dimensional, they become extremely performant when ap-
plied to images.

13.4 Digital watermarking

For copyright protection, a watermark can be embedded in a digital image. This
watermark should be some signature embedded in the image without disturbing the
original image visually. This embedding can be done by computing a (separable)
2-D FrFT of the image. Then the FrFT coefficients are ordered and some signature
(e.g. a chirp-like signal cos(axx

2+ayy
2)) is added to a sequence of coefficients. These

coefficients should not be the largest ones to not disturb the image, but also not the
smallest ones in order not to be filtered out as noise. An inverse FrFT will restore an
image that is practically not blurred by the watermark, and the watermark can only
be removed by someone who knows the parameters of the signature and orders of the
FrFT which provides an extra security and makes it much more robust for attacks
such as translation, rotation, filtering, and cropping. See [36] for more details.
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13.5 Neural networks and pattern recognition

Because of the extra parameter that is provided in the FrfFT by the rotation angle
as compared with the ordinary Fourier transform gives an extra degree of freedom
that can be used to optimize the performance of some system. In [20] for example,
the FrFT is used as a preprocessor for a neural network that has to recognize certain
situations. By testing the learning convergence of the neural network for different
values of the FrFT order, one may find an optimal value of this order for which
the recognition is best. See also [66] for pattern recognition application. A certain
object will be “recognized” if there is a high correlation with a known object. Most
often the correlation is computed in the original or in the classical Fourier domain.
But in such applications again, it is possible that the correlation peak can be made
more prominent or sharper by computing a correlation in an optimally chosen FrFT
domain.

13.6 Edge detection

The Hilbert transform is known to be very effective for edge detection problems.
The fractional Hilbert transform This is illustrated in [86]. The classical Hilbert
transform will also detect the edges, but with the fractional order, it is possible to
emphasize the rising or the falling edges. More specifically, if you take the ampli-
tude of the fractional Hilbert transform of a rectangular function, then plotting the
magnitude of the classical Hilbert transform will show some overshoot at the top
corners of the rectangle. This overshoot will be quite symmetric. However, using a
fractional Hilbert transform, this symmetry will be lost and depending on α being
smaller or larger than 1, the overshoot will shrink on the left top corner (rising edge)
and increase on the right top corner (falling edge) or vice versa. Thus the fractional
parameter can be used to distinguish between the rising and falling edges.

13.7 Antennas, radar and sonar

In [56], the blind source separation problem is considered. Classically, the mixing
coefficients (the received signal is a linear combination of unknown uncorrelated
signals to be recovered) can be estimated using a weighted correlation matrix of the
mixed signal. It is proposed to use different weights that correspond to windowing
operations applied in different FrFT domains. That is, if Dk is a diagonal matrix of
samples for the kth window or weight function and F ak is the DFrFT matrix, then
the weight matrices chosen are [F ak ]−1DkF

ak . This is sometimes called a (discrete)
short time FrFT. Joint diagonalization (approximately in least squares sense) of all
these correlation matrices gives then an estimate of the mixing coefficients. For
other applications in radar and sonar see [23, 63, 55].

13.8 Communication theory

In multicarrier communication systems, the limited time-frequency window within
which a certain message has to be transferred, one may assign different symbols
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of the message to subcarriers. To avoid symbol interference, one should arrange
for the carriers to have nonoverlapping support in this time-frequency window. By
taking carriers that are orthogonal in the time or the frequency domain one may
avoid that the symbols mutually influence each other in the time or the frequency
domain. In wireless communication channels, the channel frequency response is
rapidly time varying and then Doppler spread my cause interchannel interference.
In [69], it is proposed to use chirp carriers. It is illustrated that with these carriers,
the transmitter is essentially a block inverse FrFT and the receiver a block FrFT.
The main idea is thus as follows. Suppose the symbols of the kth block are {ak,n :
n ∈ Z} and we assign each symbol to a carrier f−α,n(t), which is a chirp F−a[δ(u−
(n/T ) sinα)], properly normalized such that

∫

R
fα,n(t)fα,m(t)dt = δn,m. Then for

block k, we obtain a signal sk(t) =
∑

n ak,nf−α,n(t), which is essentially an inverse
FrFT. The ak,n can be recovered by sampling the FrFT of sk(t). For more details
and a discrete time implementation see [69].

13.9 Tomography

Consider a plane wave that is scattered by an object. The tomography problem is to
recover the object from the measurements of the scattered wave. In computed axial
tomography (CAT), the wavelength is small compared to the size of the scattering
objects (e.g., X-rays in medical applications) and then a geometric model for the
scattering can be used. With ultrasound waves, this is not true anymore and the
wavelength is of the same size as the scattering objects and quantum mechanical
issues play a role. This is called diffraction tomography. The relation between the
FrFT and quantum mechanics is known [68], and this is used in [46] to show that
under certain conditions, the measured data function and the 3-D Fourier transform
of the scattering potential are related by a 2-D FrFT. This is used to analyse how
diffraction tomography transforms in CAT when the wavelength approaches zero,
and hence it can be analysed in what range of the wavelength vs. the size of the
scattering object CAT is still effective.

14 Conclusion

The FrFT and related fractional transforms play or can play an essential role in
many applications. Much has been achieved, but the understanding of basics and
generalizations is constantly growing. As an appendix to the book [85] we have tried
to sketch some recent developments and new results. There are however numerous
topics that we have not touched upon because we wanted to stay closely to the
interest of readers working in signal processing and related topics. The survey
leaves some space for open problems that become apparent when all the results are
placed next to one another. We hope that it will trigger some researchers to try and
fill the gaps.



Fractional Fourier and linear canonical transforms 997

References

[1] S. Abe and T. Sheridan. Almost Fourier and almost Fresnel transformation.
Optics Communications, 113:385–388, 1995.

[2] A. Akan and L.F. Chaparro. Discrete rotational Gabor transform. In IEEE

International Symposium on Time-Frequency and Time-Scale Analysis TFTS-

96. IEEE, 1996.
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