Extending a first order predicate calculus with
partially defined iota terms

Geert Vernaeve* Albert Hoogewijs

Abstract

Partial functions and “undefinedness” have been around in mathematics
for a long time, without causing any trouble. It was only when mathematics
and computer science met in projects on “automatization” of formal reason-
ing that some problems came up [Hoogewijs 1987]. Where humans are able
to avoid the application of a partial function on an argument outside “the
domain” of the function, formalizing the rules for this activity seems to be
less trivial. In [Farmer 1996] Farmer states that there does not exist a con-
sensus on how partial functions should be mechanized and the developer of a
mechanized mathematics system must choose among many different possible
ways of representing and reasoning about partial functions. We want to add
one more possibility by introducing “partially defined iota terms” of the form
1x () which represents the unique x satisfying ¢ whenever the condition v is
fulfilled. We present an extension of a two-valued first order sequent calculus
for predicate logic with identity [Hermes 1973], where we are able to reason
correctly about partially defined iota terms.

1 Introduction

Our motivation is to extend the classical first order predicate calculus with identity
(as formalised in e.g. [Hermes 1973]), in a form which is more in line with ‘common
mathematical practice’, so it could be used as a foundation for a computer-based
mathematical package.

*Supported by Wuytack Fonds UGent

1991 Mathematics Subject Classification : 03B35.

Key words and phrases : Mechanisation of proofs, sequent calculus, partial functions, unde-
finedness.

Bull. Belg. Math. Soc. 13 (2006), 917-930

918 G. Vernaeve

More specifically, we add so-called t-terms to the calculus, in a way which is
analogous to [Hilbert and Bernays 1968]: the term ‘wx(y¢)’ is to be interpreted as
‘the (unique) x for which ¢ is true’. Such ¢-terms are only allowed to be used if
one can show that the uniqueness condition 3lxz(y) holds. For example, in a
theory describing real numbers, we can introduce the operation of subtraction given
addition: ‘x — y’ is just 12(z + y = x); we can indeed show F 3lz(z +y = z).

However, we extend this “classical” notion of (-term to situations where there is
not always a unique x satisfying ¢ but only when a certain condition ¢ (the domain
formula) holds. For example, if we want to introduce division in the example given
above, we'd like to proceed analogously and define % as tz(z -y = x); however we
can only show that y # 0 F 3lz(z -y = z); if y = 0 then every z satisfies z - y = x.
We will show that allowing such ¢-terms to be added to the calculus introduces no
contradictions, providing one considers the obtained ¢-term as undefined when the
uniqueness condition is not met (i.e., we consider tz(z-y = x) as undefined if y # 0).
We will denote this partially defined t-term as tz,40(2 - y = z): in the subscript, we
note when the (-term is defined (i.e., its domain formula). The interpretation of this
t-term is still ‘the unique z for which z -y = 2’ when y # 0, but when y = 0, this
t-term will be interpreted as ‘undefined’.

The introduction of terms to denote the unique element for which a certain
formula is true seems to date back to Peano, who used the notations tz to re-
fer to the set with x as its only element (i.e., what we would nowadays denote
as {r}) and 7y to denote the element of the sole member of a set y (which cor-
responds to our (-terms). Also Frege had a notation for the same purpose ear-
lier [Whitehead and Russell 1910]. Whitehead and Russell elaborate further on this
theme [Whitehead and Russell 1964], investigating the cases in which the term tz(y)
can be introduced even when there exists no unique = such that ¢ is true. We follow
the approach of Hilbert [Hilbert and Bernays 1968|: when there is no such unique
x, 1tx(yp) is still allowed as a term but one cannot derive any meaningful properties
about it.

Hilbert also developed a related epsilon calculus which uses terms of the form
ex(p). These are interpreted as ‘an x for which ¢ is true’ when there exist one
or more such x, or ‘a certain element of the domain’ when there is no such x. In
case there is no unique z satisfying ¢, epsilon-terms hence represent a form of the
axiom of choice. Note that these terms are always defined, even in the cases there
is no unique x satisfying ; in that respect, they are less suitable for our purpose of
treating partially defined terms.

2 Syntax

We will introduce a logic which is an extension of the logic developed in [Hermes 1973],
which we will refer to as the (-free calculus; we will call our extension the t-calculus.
The syntax of the t-calculus is that of the (-free calculus, with the only modifi-
cation that we allow terms of the form tx,(p), where ¢ and ¢ are formulae of the
t-calculus and z is a variable symbol. This kind of terms will be called (-terms. We
call 1 the domain formula and ¢ the definiens of the (-term.
The formulae are built up following the same rules as the (-free calculus, except

Extending a first order predicate calculus with partially defined iota terms 919

that as terms we of course use terms of the ¢-calculus.

We will use the metalogical symbols = and # to express that two sequences of
symbols are equal or not equal. We will often use variable names as z where we
actually mean names for a variable name (just like we did when we said ‘terms of
the form txy(p)’, where x can be any variable symbol).

If a is a formula, then informally, A(«a) is defined as the formula that states
when « is defined. However, A(«a) may also be the symbol T in case « is always
defined. The logic will be constructed in such a way that the symbol T never will
occur inside sequents; it is just a syntactical device to aid in the construction of
A(a). Semantically, T will behave as if its interpretation were ‘true’.

For example, A(txyzo(x -y =1) > 0) will be the formula y # 0. Note that the
symbol A is not part of our formal language; A(«a) is a metalogical operator that
maps the formula a to another formula or the symbol T.

Likewise, if ¢ is a term, A(¢) will be the formula that states when ¢ is defined,
50 A(txyzo(r-y=1)) =y #0.

Formally, A(?) is defined as follows:

e If ¢ is a variable symbol, then A(t) is T.

o A(f(ty,ta,...)) = A(t1) &A(ty) & ... and for 0-ary function symbols A(f()) =
T.

o Alury(p)) =9

One could also express these rules less formally as A(t) = 1 &in& ... where
11,19, ... are the domain formulae of the top-level (-terms of ¢ (i.e., those t-terms
that are themselves not contained into another «-term), in their order of appearance
from left to right in the term ¢.

As indicated above, we don’t want the symbol T to occur in sequents. To achieve
this, we will assume that formulae containing T are automatically simplified with

the rules
a&T — «

T&a — «o
Ve(T) — T

We see that, using these rules, either the symbol T does not occur in A(t) or
A(t)=T.
For formulae, the formal definition of A(«) is

o Aty =1) = A(t)) &A(ts)

A(p(ty,ta,...)) = A(ty) &A(t2) & . ..; for 0-ary predicate symbols we have
again A(p(ty,ta,...)) =T

o A(—a) = Aw).

A(a&f) = Aa) &(a = A(H)).

AVz(a)) = Va(A(a)).

920 G. Vernaeve

For atomic formulae o, we see again that A(«a) = ¥1&Y0& ... where 1,1, ... are
the domain formulae of the top-level (-terms of « in their order of appearance from
left to right in «.

Finally, we define A(T) =T.

A term 1z (p) has as free variables the union of the free variables of ¢ except z
(which we call a bound variable of the term) and the free variables of ¢). Symbolically,
if we denote the set of free variables of a term ¢ as F'V(t), then FV (wxy(p)) =
(FV (@) \ {z}) UFV(9).

We denote the substitution of all free occurrences of a term ¢ for a variable symbol
x in a formula « or term T as [t/x]a resp. [t/z|T. The substitution is defined in the
same way as in the (-free calculus (in particular, the substitution cannot take place
when free variables of ¢ would become bound); substituting in (-terms is defined as
follows:

o If x = y or if z is not a free variable of ¢, then [t/z|wyy(¢) = tyy(p) when
x is not a free variable of ¥, or [t/x]wyy (@) = Wawsjt/«w () when z is a free
variable of).

o If x # y and z is a free variable of ¢ and y is not a free variable of ¢, then
then [t/x]uyy (9) = wagel/ae([t/z]e)-

o If z # y and z is a free variable of ¢ and y is a free variable of t, then
[t/x]uyy (@) is undefined; we say that the substitution would capture the free
variable y of t.

A (-sequent is an expression of the form

0'1,0'2,...;’}/1,”}/2,...|_L06

where the os, vs and «a are formulae of the t-calculus. If there are no os, then the
leading semicolon is to be dropped.
The finite and possibly empty list o1, 09, . . . is called the context of the sequent; the
finite and possibly empty list 71, 72, . . . is called the antecedent and the mandatory
formula « is the consequent.
As before, the order of the formulae of the antecedent is not important and we
suppose that no double formulae occur. However, the order of the formulae in the
context is significant. When the context contains double formulae, we consider the
sequent identical to the same sequent in which we only keep the first copy of the
double formula in the context.

Note that the derivability relation of the t-calculus is noted as -, whereas we
denote the derivability relation of the (-free calculus with .

3 Semantics

We start from a domain D, which must be a non-empty set. An interpretation
is a function Z defined on the variable, function and predicate symbols, such that

e for each variable symbol x we have Z(z) € D

Extending a first order predicate calculus with partially defined iota terms 921

e for each n-ary function symbol f, Z(f) is a n-place function over D
e for each n-ary predicate symbol p, Z(p) is a n-place predicate over D

Intuitively, an interpretation fixes a ‘meaning’ for each symbol of the formal lan-
guage.

Remark that all functions and predicates above are total, i.e., defined for all
n-tuples of elements of D where n is the arity of the function or predicate.

An interpretation depends on the domain chosen, so actually we should write
Ip, but in the sequel we suppose the domain to be a fixed set and just write Z to
ease the notation.

Given an interpretation Z, a variable symbol x and an element a € D, we define
a new interpretation Z¢ as follows:

e 7%z)=a

e Ii(y) =ZI(y) if v £ y.

We write Z¢? as an abbreviation of (Z¢)?.

Starting from Z, we can associate to each term ¢ an element of D or the status
‘undefined’. As not to burden the notation, we will note this element (or the status
‘undefined’) too as Z(t). It is defined as follows:

o Z(wry(p)) is undefined if ¢ is invalid or undefined in Z. If ¢ is valid in Z, then
ZI(vxy(p)) is the a € D such that ¢ is valid in Z¢. If there is no such a, or

there are multiple such a, then Z(tx,()) is undefined. (Note that the notions
‘valid’ and ‘invalid” will be defined shortly.)

o T(f(tr,...,tn)) = Z(f)(Z(t1),...,Z(tn)), provided all Z(t;) are defined; else
Z(f(ty,...,t,)) is undefined.

Note that again, for function symbols f and predicate symbols p, Z(f) and Z(p)
are supposed to be total functions resp. predicates. Also, the interpretation of a
variable symbol is always an element of D; it can never be undefined. Support for
partially defined functions and predicates will be given in §8. Hence, for now, the
only “source of undefinedness” are the (-terms.

We attach to a formula « and an interpretation Z the status valid, invalid or
undefined as follows:

e If o is atomic, then we say that t; = t, is valid in Z if both ¢; are defined and
Z(t1) = I(t2). We say that p(ti,...,t,) is valid in Z if all ¢; are defined and
Z(p)(Z(t1),...,Z(t,)) holds. However, if not all Z(¢;) are defined, we say that
« is undefined. In all other cases, « is invalid.

e — is valid in Z if « is invalid in Z; -« is invalid in 7 if « is valid in Z; -« is
undefined if « is undefined.

o & is valid in Z if both a and g are valid in Z; a&(is invalid when « is
invalid, or when « is valid and £ is invalid; else a& (3 is undefined. (This is the
McCarthy conjunction.)

922 G. Vernaeve

e Vz(«) is valid in Z if for each a € D, «v is valid in Z2. If there exist one or more
a € D such that « is undefined in Z¢, then we say that Vz(«) is undefined. In
all other cases, « is invalid.

When a formula is valid or invalid, we will call it defined.

Note that we use the term ‘undefined’ in two contexts: a substitution can be
undefined in the sense that the substitution [t/z]a cannot take place, hence this is
a syntactical notion; on the other hand, a term or a formula of the ¢-calculus can
be undefined in an interpretation Z, so this is a semantical notion. It will be clear
from the context which kind of ‘undefined’ we mean in the sequel.

Let ¥ = 01,09, ... If for an interpretation Z, the following three conditions hold,
then we say that « is a consequence in 7Z of ¥; I

e whenever all formulae of I' and ¥ are valid in Z, then also « is valid in 7.

e whenever all formulae of X are valid in Z, then all formulae of I" are defined
in 7.

e 0, is defined in Z; when o is valid in Z, o5 is defined in Z; when o7 and o4 are
valid in Z, o3 is defined in Z, and so on. This is equivalent to requiring that
the formula o1& o9& ... is defined in 7.

We denote this as 3;T' =7 a.
If these conditions hold for any interpretation Z, then we say that « is a conse-
quence of ¥;T". We denote this as &;T" |, a.

3.1 Motivation

Equivalently, we can determine whether 3;T' =2 « using the following procedure.
First, examine ;. If it is undefined, then « is not a consequence of ¥; I", which we
will denote as 3; ' |&, a.. If oy is invalid, then X; T =2 «v. If it is valid, then examine
0y. We then proceed similarly as with o; and continue until we have processed X
completely. If all o; are valid, we consider I': if at least one ; is undefined then
YT B, «; else if at least one is invalid then ;T =7 q; if they are all valid then
finally we also have to examine «. If v is undefined or invalid then X;T" £, «; if it
is valid then ;T 7 a.

Thus there are two “left-to-right evaluation” elements in our calculus: the def-
inition of conjunction and the definition of consequence. In our view, this is the
reflection of the way in which ‘common mathematical practice’ deals with undefined
terms: one is not permitted to prove something about potentially undefined terms
like % unless one first ascertains that = # 0; the “left-to-right” way of evaluating
gives us a way to assert the validity of certain formulae before that of others.

Hence, for example, z = % Koo #£5but z #0 % # 0. In the first case, we
are not permitted to consider % because it is possible that x = 0; in the second case,
this is impossible, because when we have to evaluate % # 0, earlier, Z(x # 0) must
have been valid.

Note that in contrast, Vz(«) is undefined as soon as Z2(«) is undefined for one
a € D, even though there might be b € D for which Z¢(«) is invalid, which seems

Extending a first order predicate calculus with partially defined iota terms 923

to run counter to the idea of universal quantification as a ‘generalised conjunction’.
However, in general, there is no natural order in which we can enumerate the ele-
ments of D; if we were to start with a, the generalised conjunction would evaluate as
undefined, whereas if we started with b, it would yield invalidity. Since as indicated,
we wish to avoid to reason about potentially undefined terms, the only safe choice
is to consider Vz(«) as undefined.

4 Deduction rules

Double formulae are to be removed from the antecedent of the conclusion. For the
context of the conclusion, the same holds, but here we cannot choose arbitrarily
which copy we keep: we have to keep the first instance of a formula and remove
the others. Note that a formula is allowed to occur both in the antecedent and the
context of the conclusion; we do not remove those double formulae. For example,
we will assume that the sequent

a,a, B, 0,7, By, 7, a0

is automatically rewritten into o, 3,~v;v,a -, d or o, B,v;,v I, d; these are the
only two valid forms of that sequent.

Also note that the order of the premises is significant; e.g., when we interchange
both premises of the &-introduction rule, we get a different sequent, o, %1; ', A F,
B&a as a result:

22; F }_L ﬁ
YA FH o«
Yo, X, A, p&a

The uniqueness condition corresponding to a ¢-term tx, () is the sequent

¥ Jlz(e)

where 3lz(p) is an abbreviation for Jz(p)&VaVy((p&ly/z|p) = = = y) where y is
a variable symbol not occuring in ¢ and a = (3 is shorthand for =(a&—/3).

Given a formula «, we denote the list containing the uniqueness conditions cor-
responding to all its -terms as UC(«).

Concerning the T symbol, we introduce the following conventions which will as-
certain that the T symbol never will occur inside sequents, as we already announced:

e If T would occur inside the context or antecedent of a sequent, it is removed
from the context or antecedent. For example, the sequent T,a; 3, T F, 7 is to
be rewritten as a; (5 F, .

e If T would occur as consequent, the whole sequent is simply dropped. For
example, if a proof rule would require ¥;I" -, T as premise, that premise
doesn’t need to be supplied.

UC(«)
Assumption introduction: — ¥; F, A(«)
Yoa ko«

According to the convention given above, if A(«)is T, then the ¥;+, A(«) premise

924 G. Vernaeve

is to be dropped (note that in this case, it is easy to see that UC(«) is empty so
this rule then requires no premises at all).

YuI' F o«
&-introduction: Yo A F, 0
Zl,ZQ;F,A "L Oé&ﬁ
PPN 1 AN e o 74 T F, ok
&-elimination: ST T, o ST F, 3
Yi;a 3

Removal: Yoy A, B, 0
Y1, % A B

uc(s)
o Yu I F o«
Contradiction: Sy A b, -
Y, 80 A F S
. . ».I' F, « . . .
V-introduction: ST T, Va(a) provided z is not free in I" and ¥
5D, Vr(a)
V-elimination: ST T, o
UC(t)
Substitution: I F o«

At),[t/z]2; [t/=z]l F, [t/x]a
where [t/x]T" is shorthand for [t/x]y, [t/x]ys, ... with I' = ~1,79, ..., 7, The nota-
tion a&I stands for a&eyy, a&ys, .. .; when I is empty it is shorthand for a.

UC(t)
Equality rules: A(t)UE(t)t—t I ko«
L YA T,e=t b, [t/z]a
UC(ury(p))

t-rule:

b () /2l
where ¢ is obtained from ¢ by changing the names of all bound variables, i.e., T = ;

fltr,.) = flt, ..); wwy(o) = Lylz([y/x]q;) where y is not a free variable of ¢ and

o plty,...) = plty,...); a&p = a&f; =a = —a and Vr(a) = Vy([y/x]a) where y
is not a free variable of ¢ and a.

A-rules; only applicable when the consequent of the conclusion is not T:

UC(«) >“Ia F, 3 DOFS R e
o A(A(a)) 5ok Ale) XD R A(a)

Finally, we add these rules for manipulating contexts:

Yookl A H, « Y,o. ' H, «
Yoo VA FH o« ookl FH, «

5 Equiconsistency proof

In this section, we will give a process to transform a sequent in the t-calculus to one
or more sequents in the (-free calculus.

Extending a first order predicate calculus with partially defined iota terms 925

We define two metalogical operations on formulae « of the t-calculus: the reduc-
tion R(«) and the definedness D(«). Both produce a sequent of the (-free calculus.
Semantically, R(«) will express that if « is defined, it is true (or equivalently, that
« is undefined or true), and D(«) will express that « is defined.

We define R by structural induction on the formula a:

e «is an atomic formula, i.e., « = t; =ty or a = p(ty, ta,...). We will only cover
the latter case; the former is analogous. We enumerate all top-level (-terms of
a (i.e., those t-terms that are themselves not contained into another (-term)
as 11y, (1), T2y, (P2), ... We define R(a) as

FuiFug . .. (R([ur/z1]p1) &R ([ua/z2]p2)& . . . &q)

where ¢ is the formula obtained from « by replacing all top-level (-terms
LTy, (i) by their corresponding variable symbol u;. We choose the w;s such
that they are all different from each other and such that u; does not occur in
a.

If there are no «-term arguments of p, then we define R(«) = .

e R(—a) = -R(«a)
o R(a&f) = R(a)&R ()
e R(Vz(a)) =Va(R(a))

Note that this is the same definition as in [Hilbert and Bernays 1968], except that
there, u; = x; is chosen, which is incorrect when two or more x;’s are the same
variable symbol.

Next, we define D:

o D(p(ty,ta,...)) = R(Y1)&R(12)& ... with the same notations as in the defi-
nition of R. If there are no t-terms as argument of p, then D(p(...)) = Va(x =
x). We treat D(t; = t5) analogously. Note that it would be natural to define
D(p(ty,ta,...)) = R(Y1)&D(¢1)& ... but it appears that we get D(v;) from
the uniqueness condition for tz;y, (¢;).

e D(—a) =D(«a)
o D(a&f) = D(a)&(R(a) = D(B))
e D(Vx(a)) = V(D())

5.1 Translation of proofs

We define the translation of a (-sequent ;" I, « as the three sequents

F D(o1&or& ... &aoy,)
{ y ,...,R(O’n) F D(’}/l)&p(”)/g)&
R(01), R(72), ..., R(0), R(M), R(72),... F R(a)&D(«)

926 G. Vernaeve

where ¥ = 01,09,...,0, and I' = 7,7, ... I[f I is the empty list, then we drop the
second sequent of the translation.

One can now prove that given a correct (-proof of a (-sequent, one can obtain
a proof in the t-free calculus of its translation. One shows this by examining all
deduction rules of the ¢-calculus in turn and proving that one can find a proof in the
t-free calculus of the translation of the conclusion of that rule, given the translation
of the premises.

Just like in [Hilbert and Bernays 1968, pp. 441-448], for most rules this is fairly
easy; the rules involving substitution are more complicated. In [Hilbert and Bernays
1968],the key step is to prove that, using our notations,

= (Vz(R(p) = R())) & R(lwwy(p)/z]a)

is derivable from the uniqueness condition F 3!z(R(¢)). Analogously, the key step
in our proof is to prove that

R(@) b (Ve(R(p) = R(a))) < R(lury(p)/xla)

is derivable from the translation of the uniqueness condition of tx,(¢); Hilbert and
Bernays’ proof is rather easy to extend to this case.

Of course, we also need to prove some extra properties concerning D, among
which

R(A(«a)) 4+ D(a)
D(t),Vz(R(e)) + R([t/z]a)
D(t), R([t/z]D(a)) F D([t/x]a)
D(t),Vz(D(e)) F D([t/z]a)

are useful lemmas.

5.2 Equiconsistency

Suppose that the t-calculus would be inconsistent, i.e., every (-sequent is derivable
in the ¢-calculus. In particular, the sequent - —(z =) would then be derivable
in the (-calculus. Translating the t-proof of this sequent, we get a proof whose last
sequent is

FR(-(x=2)&D(~(x =x)) ,ie, Fa(x=2)&Vr(x=u1x)

But then we would have a proof (in the «-free calculus) of - —(z = z), and it is easy
to see that this would imply that the -free calculus would be inconsistent.

5.3 Conservativeness of the extension

The ¢-calculus is a conservative extension of the «-free calculus, i.e., if a given sequent
I' F « is not derivable in the -free calculus, it remains underivable in the ¢-calculus.

Indeed, suppose that we would have a «-proof of I' I, a. As shown above,
we can translate this into a proof of its translation, and hence we get a proof of
R(11), - F R(«a), i.e., of I' F a, a contradiction.

Extending a first order predicate calculus with partially defined iota terms 927

6 Soundness

We first prove a connection between the semantics and the operations R and D.

Lemma 1. Given a formula o of the t-calculus and an interpretation Z. Suppose
that the uniqueness conditions of all .-terms in « are valid in Z. Then

aiswvalidinZT < R(a)&D(«) is valid in T (in the i-free calculus)
a is invalid in T < —R(a)&D(«) is valid in I (in the t-free calculus)
a is undefined in T < —D(«) is valid in Z (in the t-free calculus)

One proves this by structural induction on a.
Theorem 2 (Soundness of the t-calculus). If 'k, «, then also T =, a.

Proof. We know that if we hava a t-proof of I' I, o, we can translate this into a
proof in the «-free calculus, i.e., we obtain a proof of the sequents

R(m),R(72), - Rlm) F R(a)&D()

We have to prove I' =, «, which means that

e For any interpretation Z, if 71, 7s, ...are valid in Z, then « is valid too in Z.
Using the previous lemma, this is equivalent with proving in the -free calculus
that if R(71)&D(71)&R(72)&D(v2)& . .. is valid, then R(a)&D(«) is valid,

R(71)7 ,D(fyl)v R(fY?)v D(72)7 s ’: R<a)&D(a>

Because of the soundness of the -free calculus, this amounts to
R(m), D), R(12),P(12), - - F R(a)&D(e)
which follows easily from the second sequent of the translation given.

e There exist no interpretations in which a ~; is undefined. Hence, in each
interpretation, ; must be valid or invalid, which we can express using the
previous lemma as = (R(7:)&D(y;)) V (- R(7:)&D(v;)) which is equivalent
with = D(v;). Again, because of the completeness of the «-free calculus, we
have to prove that - D(~;), which follows easily from the first sequent of the
translation.

Note that this is a relative soudness proof: the ¢-calculus is proved sound if we
assume the (-free calculus to be sound.

928 G. Vernaeve

7 Completeness
In this section we will prove the competeness of the (-calculus, i.e.,
if I' =, o then also I' -, «

Denote I' = 71,7, ... By definition, I =, o means that for any interpretation
I,

e whenever all ; are valid in Z, then so is a. Using lemma 1, this is equivalent
with
R(11)&D(m), R(12)&D(12), - - - = R(2)&D(a)

e all v; are defined in Z, which is by the same lemma equivalent with

= D(n)
= D(72)
=

Using the completeness of the (-free calculus, what we have to prove is reduced to a
syntactical problem:
R(1)&D (), R(72)&D(72), .. F R(a)&D(a)

= D(n)

F D(72)

l_

if

then also I' F, a.
One can show that for each formula « of the (-calculus, one can derive

{A(a)&a -, D(a)&R(a)
A(a) -, D(a)

The proof is by structural induction on o and uses a number of technical lemmas.
Using this result, it is easy to show the completeness of the ¢-calculus.
Note that this is a relative completeness proof, since we assumed the complete-
ness of the «-free calculus.

8 Defined symbols

8.1 Simultaneous extended substitution

As in [Hermes 1973|, given a formula «, terms ti,...,t, and variable symbols
x1,...,T,, where all z; are different, we define the simultaneous extended sub-
stitution of a as follows:

B_lli_ﬂa = Yy ... Yy ((y =& .. &y, =t,) =
Vay .. Vo, (v =pn& ... &z, = y,) = @)

where the variable symbols 1, . . ., y, are different from each other and from x4, ..., z,
and do not occur in ty,...,t, or a.

Extending a first order predicate calculus with partially defined iota terms 929

8.2 Definitional axioms

We will show that informally, without affecting the consistency of the logic, one can
admit the definition of a new function symbol g using an axiom of the form

At) b, g(xg,. .. xz,) =t

where ¢ is a new function symbol (i.e., it has not been defined in another axiom),
where the set of free variables of the term t is a subset of {x,...,x,} and t does
not contain g. We call t the definiens of g, which we will also denote as ¢*, and
A(t) its domain formula. Analogously, one can define a new predicate symbol ¢
using an axiom of the form

Ala) gz, x,) & @

where again the set of free variables of « is a subset of {x1,...,x,} and o does not
contain g. We call o the definiens of ¢, which we also denote as ¢*, and A(«) its
domain formula.

We call the axioms above definitional axioms and the symbols g resp. ¢ de-
fined symbols.

Formally, we will again define a new calculus, which is a conservative extension
of the t-calculus. We will call this calculus the //-calculus, and note its sequents as
;T .« so the definitional axioms above should actually have read

A'(t) Fo oglxy,...,z,) =t
Alla) Fyoqlzg,...,x,) &

where A’ is identical to A, except for the treatment of the freshly defined symbols:

Ayt tn) = Allt)&. . LA ()& L] Al(gY)

1

Aty 1) = At)&. . &A(t)&[2-] A'(gr)

1 Tn

The deduction rules of the ¢/-calculus are the same as those of the t-calculus,
where A’ is used instead of A.

One can show that the addition of defined symbols does not render the cal-
culus inconsistent, essentially by considering ¢(ti,...,t,) as an abbreviation for
;—ii—i"'}(yw*))

T1 T2

(|] (y=g)).

[t_lt_2 .. } q* and analogously ¢(t1,...,t,) as an abbreviation for LyA({

References

[Farmer 1996] W. Farmer, Mechanizing the traditional approach to partial func-
tions. In: W. Farmer, M. Kerber, and M. Kohlhase, eds., Proceedings of the
Workshop on the Mechanization of Partial Functions, pp. 27-32, CADE-13, Rut-
gers University, New Brunswick, New Jersey, July 30, 1996.

[Hermes 1973] H. Hermes, Introduction to Mathematical Logic, Springer (1973).

930 G. Vernaeve

[Hilbert and Bernays 1968] D. Hilbert, P. Bernays, Grundlagen der Mathematik I,
2nd ed., Springer (1968).

[Hoogewijs 1987] A. Hoogewijs, Partial Predicate Logic in Computer Science, Acta
Informatica 24, pp 381-393, Springer Verlag, 1987.

[Whitehead and Russell 1910] A. Whitehead, B. Russell, Incomplete symbols: De-
scriptions, in J. van Heijenoort, From Frege to Godel, pp 216223, Harvard
University Press, 1967.

[Whitehead and Russell 1964] A. Whitehead, B. Russell, Principia Mathematica,
Cambridge University Press, 1964.

Department of Pure Mathematics and Computer Algebra
Gent University, Belgium
gvernaev@cage.UGent.be, bh@cage.UGent.be

